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" Motivation

Identify low-cost, light-weight alternatives to annealed type

316L austenitic stainless steels for vehicle applications
* Reduced nickel content is prime candidate for
cost reduction
* High-strength is prime candidate for weight reduction
— Less material also reduces cost

Methodology:

- Evaluate fatigue life of commercial austenitic stainless
steels in hydrogen environments
— Benchmark existing “standard”: annealed type 316L

— Evaluate alloys with low-nickel content and in high-
strength conditions

— Compare hydrogen-precharging with testing in gas
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Hydrogen effects occur in materials under the
influence of stress in hydrogen environments

Bulk
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1) Hydrogen-surface interactions
 Adsorption and dissociation

) Bulk metal-hydrogen interactions
* Diffusion and trapping

3) Hydrogen-assisted cracking

 Deformation and fracture
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Environment: evaluate influence of pressure and

temperature on fatigue life

- Effect of hydrogen pressure
— 10 MPa
— 103 MPa
- Effect of temperature
— Room temperature: 293 K
— Low temperature: 223 K (-50°C)
- Surrogate hydrogen environment: internal H
— Thermal precharging: 138 MPa H, at 300°C for 10+ days
* Uniformly saturated
« ~140 wt ppm H for 300-series alloys
« ~220 wt ppm H for nitrogen-strengthened alloys
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Materials: consider a diverse range of austenitic

stainless steels, both composition and strength

Yield Tensile

material strength strength Cr Ni Mn N
(MPa) (MPa)
316L 280 562 17.5 12 1.2 0.04
CW 316L 573 731 17.5 12 1.2 0.04
304L 497 721 18.3 8.2 1.8 0.06
XM-11 539 881 20.4 6.2 9.6 0.26
Nitronic 60 880 1018 16.6 8.3 8.0 0.16
SCF-260 1083 1175 19.1 3.3 17.4 0.64
\ ' J \ ' J
Wide range Wide range

of strength of Ni/Mn content
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assesses design-relevant performance

Conventional fatigue life testing
+ “smooth” specimens

* Fully reversed loading (R = -1)
« Strain-based for low cycle

Stress |

Hydrogen fatigue life testing

“notched” specimens: K, = 3.9
Tension-tension loading (R = 0.1)
Constant stress amplitude

In situ in gaseous hydrogen ",
or hydrogen-precharged
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—
Hydrogen effects are naively correlated with nickel
content or nickel equivalent in tensile tests
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» Strength properties are
generally not affected by
hydrogen

* Relative tensile ductility is
used in the literature as a
metric for performance in
hydrogen

However

* Tensile ductility is not a
design parameter

* Tensile ductility does not
correlate with fatigue and
fracture properties
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—
Hydrogen effects are naively correlated with nickel
content or nickel equivalent in tensile tests
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» Literature assumes effects
on ductility related to
formation of strain-induced
martensite
(i.e., austenitic stability)

e Causal effect of martensite
has not be mechanistically
demonstrated

 Deformation mechanisms
also correlate with nickel
content

« Fatigue and fracture
properties do not correlate
with nickel content
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Pressure does not have as—ignificant ;’fect on
fatigue life of most austenitic stainless steels

Fatigue life
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 In general, notched fatigue
data shows low scatter

« Scatter in these data is
related to the quality of the
machined notch

- Surface hardening can
delay crack initiation

* Pressure has little, if any,
effect on fatigue life of most
austenitic stainless steels

 Nitronic 60 may be an
exception
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Low temperature often increases fatigue life
relative to room temperature, but not always

Fatigue life
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« Temperature does not
significantly affect fatigue life
of Type 304L and 316L

 Fatigue life of strain-
hardened 316L is greater than
annealed 316L

 XM-11 and SCF-260 display
improved fatigue life at low
temperature

» Fatigue life of Nitronic 60 is
decreased at low temperature
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Internal H generally increases fatigue life relative
to tests in gaseous hydrogen
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» Superficially internal H
improves fatigue life

However

 Internal H increases the
strength of austenitic
stainless steels by 10-20%

» Fatigue limit scales with alloy
strength

Strengthening associated
with internal H must be
considered
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“Normalization of fatigue stress by tensile
strength collapses external and internal H data

Fatigue life
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Normalization of fatigue stress by allowable
stress enables comparison of alloys

Fatigue life
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Typical
material allowable stress

(MPa)
316L 115
CW 316L 218
304L 195
XM-11 207
Nitronic 60 218
SCF-260 333

For exceptional vehicle
lifetimes (10,000 cycles),
large safety factors exist
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" How does the test cycleHn'pare to the o—
design cycle?

Stresst * Are the loads representative?
* Are the strains representative?

e Test cycle (R=-1)
- —_——— _—— e == YS

W 4 Design cycle
| \ [ T

« What is the effect of notches?
* Is the notch changing?

max

14



ll'l Sandia National Laboratories l-& FCHydrogen and Fuel Cells Program

-Notch has important implications on E{e

cracklng process Small crack behavior

/ : ! e Small/
Small i Long « K x(kS) I"
crack | crack - Dominated by stress
concentration
« Dominates total life

Long crack behavior
 Large [
e K ocS al?

 Dominated by crack
length

Small crack behavior is
difficult to characterize
and to generalize

distance from notch

k, = stress concentration factor
K = stress intensity factor
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‘Crack ini;iation and growth during fatigue gidentified—’
using direct current potential difference (DCPD)

« Constant current applied 220

through specimen S Crack
— Voltage change measured 52185 initiation
across notch 5 8
217.5 e o6
— Extensometry can be used to 217 e *
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Crack lengths <10um can be
resolved with DCPD
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Crack initiation is relatively reproducible and
consistent among materials
Fatigue crack initiation * For eva_luating c!'ack initiation
10 [ e stress is normalized by the
\, o ol me ey || true tensile strength (stress
sl “ A 1 at tensile instability)
L ".‘ g §(§34FL-260 - Incorporates both stress and
i "\, strain-hardening
0_6:’ . o | characteristics
o .  With the exception of 304L,
U)é % . }._i data collapses to signal
0.4 - 1 curve
j W WS a » | - Critical stress where cracks
0 | x 1._‘*. . ngm . clc
1 Temperature: 293K | Crack initiation appears to be
" | Pressure: 10 MPa dominated by specimen
N I T R I R R mechanics, perhaps
1 10 10° 10° 10* 10° 10°

Cycles to initiation

analogous to fatigue crack

growthrrates
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“"Fatigue crack growth rate can be determined
from notched specimens

XM-11: S,.,= 556 MPa

SN

1.E-04 max

Long crack behavior
~20% of total life

1.E-05 .

1eos FCGRfrom D7 gl Curves are derived from

S CT specimens DCPD data to track crack
-E 1E-07 evolution during fatigue of
= cos notched specimens
A Small crack behavior | * Crack length is estimated
© . .
T oo ~60% of total life from Johnson’s equation
(/= Aa)
1E-10 e"<_ Crack initiation * AK is estimated based on a
~20% of total life (notch depth + crack length)
1.E-11
10 100

AK (MPa Vm)
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Mechanistic understanding of microstructural evolution is
needed to develop micromechanical models of fatigue
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* Preliminary evaluation suggests hydrogen “sharpens”
twins, which may have significant effects on crack initiation
* No evidence of strain-induced martensite
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I N | -
Summary

Notched tension-tension fatigue life measurements on
austenitic stainless steels were performed

- Environmental variables
— Pressure has little effect on fatigue life
— Low temperature generally does not reduce fatigue life

— Thermal precharging to high [H] has similar effect on fatigue
life as testing in gaseous hydrogen — if normalized

- Materials variables
— Wide range of alloy compositions show comparable fatigue life
— Higher strength materials show superior life at same stress

* Mechanics variables

— Fatigue crack in notch interacts with stress field

— DCPD can be used to monitor cracking process and shows
stabilization of small cracks

20



