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§ Model	uncertainty
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§ Statistical	model	uncertainty
§ Computational	simulation	model	uncertainty
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SANDIA	NATIONAL	LABORATORIES	
AND	THE	MOTIVATING	PROBLEM
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Sandia	National	Laboratories

§ “National	security	is	our	business”	(SNL	website).
§ Defense,	Energy	and	Climate,	Global	Security

§ Statistical	Sciences	group:	5	Masters-level,	6	PhD-level	statisticians,	2
interns,	and	growing.

§ UT-Austin	is	an	Academic	Alliance	(AA)	school.
§ “These	are	top-tier	universities	whose	leadership	has	a	commitment	to

collaborate	on	projects	that	have	a	mutual	benifit and	are	willing	to	invest	in
growing	the	relationship	with	Sandia”	(SNL	AA	website).

§ Sandia	is	incentivizing	collaboration	with	AA	schools,	e.g.	LDRD	grants.

§ My	opinion:	Decision	sciences	can	help	inform	how	modeling	informs
decisions	in	the	SNL	mission	space.
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Fukushima Quake 
Sandia helps clean up 
radioactive wastewater.

9/11
Sandia	sets	contingency	plans	for	release	of	
materials	and	aircraft	attacks	on	critical	
facilities	immediately	after	9/11.	Search	
dogs	are	equipped	with	cameras	for	search	
and	rescue	K-9	handlers.	The	capability	
allowed	search	efforts	to	be	carried	out	in	
spaces	inaccessible	to	humans.

Hurricane Katrina
Sandia is called to assess 
flooding and infrastructure 
failures.

Cleanroom	invented	1963
$50	billion	worth	of	cleanrooms	built	
worldwide.	They’re	used	in	hospitals,	
laboratories	and	manufacturing	
plants	today.	

Sandia’s	Impact

Ebola Outbreak
Sandia contributes to global response of 
Ebola outbreak by developing a sample 
delivery system cutting the wait time and 
potentially fatal exposure.

Detecting IEDs
Combat personnel now have a new tool 
for uncovering improvised explosive 
devices: Sandia’s highly modified 
miniature synthetic aperture radar 
system, which is being transferred to 
the U.S. Army.
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Sandia	assumes	an	increasingly	pivotal	role	
in	sustaining	the	nation’s	nuclear	deterrent.

Nuclear	Deterrence



QMU

§ Quantification	of	Margins	and	Uncertainties	(QMU)	is	a	framework	for	risk
informed-decision	making	about	the	nuclear	weapon	stockpile.
§ Assess	the	health	of	the	stockpile	in	the	absence	of	full	system	testing.

§ Four	components	of	information	(Pilch,	Trucano,	&	Helton,	2006):
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1. What can go wrong?
2. How likely is it? (likelihood)
3. What are the consequences if it happens? (consequence)
4. How much confidence do we have in this risk assessment? (credibility)



QMU

§ Goal: Show	that	a	performance	measure	will	not	exceed	a	performance	threshold
with	high	confidence.
§ A	performance	measure is	a	measure	of	performance	related	to	system	functionality

and	requirements.
§ A	performance	threshold is	the	required	performance	for	the	measure.

§ Complications:	Requirements	must	be	met	across	a	wide	range	of	inputs
(e.g.	electrical),	environments	(e.g.	mechanical,	thermal),	and	over	the
specified	life	(e.g.	20	years).

9



§ QMU is a conceptual framework that is evolving over time that outlines a
process for communicating the confidence in the stockpile.

QMUUncertainty
Quantification

Expert
Judgment

Statistical
Analysis

Decision 
Theory

Reliability
Engineering

Probabilistic Risk
Assessment

The	Complexity	of	QMU	at	Sandia

System Lab 
Data

System Flight 
Data

CME Data

Computational 
Data

Production 
Data

V&V Data

* Figure	is	notional	and	does	not	represent	all	sources	of	data
and	the	complete	range	of	methodologies	that	could	be	used.

Calibration 
Data

Risk-Informed 
Decision Making 

Process
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Complexity	of	QMU

§ QMU	is	a	difficult	prediction	problem,	with	the	goal	of	assembling	an
evidence	package	that:
§ Provides	quantitative	evidence	of	positive	margin	and
§ Includes	a	comprehensive	treatment	of	uncertainty.

§ Challenges	are	similar	to	nuclear	power	and	climate.
§ Risk	assessment,	risk	communication,	decision-making	under	deep

uncertainty.

“QMU emphasizes and quantifies the presence of subjectivity.”

“QMU is not a machine that produces numbers that highly influence a decision.”

“QMU is a collection of methods supporting NW decision making under uncertainty.”

Pilch, Trucano, and Helton (2006)



Complexity	of	QMU

§ Ideal:	We	are	XX%	confident	that	YY%	of	units	will	meet	the	requirement.
§ In	practice:	We	have	high	confidence	that	units	will	meet	requirement.

Here’s	why	[insert	evidence	package].

§ Barriers	to	“full	quantification”	in	practice:
Test data have measurement uncertainty, are limited to a restrictive set of inputs and conditions, and 
are relatively few in number. 

Models have model form uncertainty, numerical uncertainty, coding errors, and input distribution 
specification uncertainty.

Experts state of knowledge is imperfect.

Information comes from heterogeneous sources (test data, modeling, and expert judgment) that are 
difficult to combine.

Separation of aleatory and epistemic uncertainty is infeasible.

Not all uncertainties can be straightforwardly quantified.

Quantity of interest is poorly defined. 12



MODEL	UNCERTAINTY
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Model	uncertainty

§ My	primary	area	of	interest	is	risk	communication	under	model
uncertainty	(with	a	strong	statistics	slant).
§ How	to	choose	a	model/inferential	procedure	that	is	robust	to	model

misspecification.
§ How	to	communicate	the	results	from	that	model.

§ Earlier	research:	Model	selection	in	health	effects	estimation,	survey
design	for	resource	allocation	using	lot	quality	assurance	sampling.

§ Nowadays: Communicating	model	uncertainty	in	QMU,	developing	a
principled	framework	for	QMU	at	SNL,	model	uncertainty	in	Bayesian
model	calibration	of	computer	experiments.
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Overall	research	question

§ Does	a	modeling	effort	improve	decision-making?

§ How	can	we	assess	the	added-value	of	increasing	model
complexity	in	QMU	predictions?
§ Wrong	models	with	little	uncertainty
§ Better	models	with	high	uncertainty

15

“Increasing a model's complexity… may actually increase the uncertainty.”
Pidgeon and Fischoff (2011)



Model	uncertainty

16

“Formal (statistical) models… serve a crucial but limited role in providing hypothetical 
scenarios that establish what would be the case if the assumptions made were true and 
the input data were both trustworthy and the only data available… Overconfident 
inferences follow when the hypothetical nature of these inputs is forgotten and the 
resulting outputs are touted as unconditionally sound scientific inferences instead of the 
tentative suggestions that they are (however well-informed).”

Greenland (2017)

§ Is	there	a	need	for	understanding	the	added	value	of	statistical	modeling
more	broadly?



EXAMPLES
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Example:	Percentile	estimation

§ My	interest	in	this	research	question	stems	from	my	experiences	with	one
of	the	simplest	examples:	fitting	a	normal	distribution	to	a	set	of	data.*

§ “Simple”	QMU	applications	fit	parametric	distributions	to	data	and
extrapolate	extreme	percentiles	from	this	model.
§ This	problem	generated	my	hypothesis	that	education	about	and

communication	of	model	uncertainty	is	lacking.

*We	will	talk	about	more	complicated	models	later.
18

“In	nature,	there	never	was	a	normal	distribution" (Box	1976).



Model	uncertainty	in	tolerance	interval	estimation

§ Characterizing	the	“tails,”	i.e.	extreme
percentiles,	of	probability	distributions	plays	a
large	role	in	QMU	applications.

§ Tolerance	intervals	are	often	used	to
“demonstrate	margin”	to	a	requirement	when
test	data	are	available.
§ A	one-sided	tolerance	bound	is	simply	a

confidence	bound	on	a	percentile.

§ Example: a	hypothetical	launch	safety	device
on	a	missile	has	a	requirement	to	close	within
23.5s	of	launch	with	99.5%	reliability.
§ Device	is	tested	at	hot	and	cold,	n	=	100	times	per

condition.

§ Are	we	95%	confident	that	99.5%	of	units	will	pass	the
23.5s	requirement?

§ When	is	there	enough	information	or	data
such	that	this	analysis	is	credible?
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Current	practice

§ Use	statistical	tools	to	select	a	model
for	the	data	(often	normal	model).
§ QQ	plots
§ Goodness	of	fit	tests

§ Extrapolate	to	the	tails	using	the
model.
§ Conclusion:	we	have	95%	confidence	that

99.5%	of	units	will	pass	the	requirement,
assuming	the	model	is	correct.

§ Correct	answer:	Hot	has	margin,	cold	does
not.

20

Figure: QQ plots for hot (left) and cold (right) closure time under a normal model.

Figure: Percentile estimates (green) and 95% tolerance bounds (blue) relative to 
requirement (red) for hot (left) and cold (right) closure time under a normal model.



§ Problem:	modelers	know	model	uncertainty	decreases	confidence	in
results,	but	lack	a	method	to	communicate	this	uncertainty.
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The	[normal]	tolerance	interval...	is	not	distributionally robust	to	even	small	deviations	from	
normality" (Fernholz and	Gillespie	2001).

“Estimating	tail	parameters	is	analogous	to	estimating	parameters	`exterior	to	the	data'...	Many	
times	estimates	are	made	by	assuming	the	data	is	sampled	independently	from	a	parametric	
family.	This	can	lead	to	disastrous	results”	(Scholz 2005).

“[Obtaining]	a	numerical	estimate	of	reliability	based	on	knowledge	of	full	probability	
distributions	in	conjunction	with	QMU	would	place	great	demands	on	our	ability	to	characterize	
uncertainties.	In	view	of	this,	it	is	inevitable	that	there	would	be	pressure	to	adopt	‘short	cuts’	
by	simply	assuming	the	forms	of	PDFs	or	using	PDFs	that	are	not	based	on	some	but	inadequate	
supporting	data.	The	response	to	such	pressure	would	make	or	break	nuclear	certification.	No	
analysis	that	is	based	on	speculation	or	that	neglects	significant	possibilities	can	lead	to	genuine	
confidence,	but	instead	will	frequently	lead	to	over-confidence	or	under-confidence,	both	of	
which	carry	severe	costs”	(Sharp	et.	al	2003).

Model	uncertainty	in	tolerance	interval	estimation



Model	validation

§ QQ	plots	and	goodness	of	fit	tests	do	not	address	model	validity	for
extrapolative	prediction,	which	is	the	objective.
§ Goodness	of	fit	test	can	tell	you	there	is	evidence	of	lack	of	model	fit,	but

cannot	validate	a	model.
§ QQ	plots	tell	you	about	the	fit	of	your	data	over	the	entire	range,	rather	than

“for	the	intended	uses	of	the	model.”

§ Solution:	relate	statistical	model	selection	to	model	validation	in
engineering	applications.
§ Validity:	Is	the	model	an	accurate	representation	of	the	real	world	for	the

intended	uses	of	the	model?	(Oberkampf	and	Barone	2006).
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Model	validation

§ Metrics	for	model	validation:
1. Degree	of	extrapolation:	is	extrapolation	outside	the	range	of	the

observed	data	occurring?
2. Model	fit	in	the	tails:	How	consistent	are	the	observed	tails	of	the

data	with	the	fitted	model?
3. Sensitivity	to	model	choice:	How	much	do	the	tail	estimates	change

when	the	modeling	assumptions	are	relaxed?

§ These	metrics	supplement/replace:
§ GoF test:	Is	there	evidence	that	my	model	is	not	a	good	fit?
§ QQ	plot:	How	well	does	the	model	fit	all	of	the	data?
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Degree	of	extrapolation

§ How	many	samples	would	be	needed	for	non-parametric	estimation	(i.e.
no	model	required)?

n∗ = log 1 − 𝛾 /log	(𝑟)

where	𝛾 is	the	confidence	level	and	r	is	the	percentile	(Wilks	1941).

§ Degree	of	extrapolation:	𝑛∗/𝑛

Degree of extrapolation as 
a function of r.  Dashed 
line is 90% confidence, 
solid line is 95%.
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Model	fit	in	the	tails
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§ Plot	the	outcome	and	model	predictions
(with	CI)	as	a	function	of	the	return-level
(Coles	et.	al	2001).
§ The	return-level	for	percentile	r	is	the	number

of	units	for	which	we	expect	one	failure.

§ Mathematically,	𝑛0 =
1
123

.

§ Heuristically,	a	99th percentile	pertains	to	a	1
out	of	100	failure	rate.



Sensitivity	to	model	choice

§ How	much	do	the	tail	estimates	change	when	the	modeling	assumptions	are	relaxed?

§ Developing	a	metric	is	a	tougher	question.
§ Need	a	relevant	comparison	model	that	relies	only	on	the	tail	behavior;	we	used	the	generalized	Pareto

distribution	from	extreme	value	theory,	fitted	to	the	tails	(e.g.	upper	10%	of	data)	only.
§ Important	caveat:	requires	enough	data	to	be	able	to	realistically	model	the	tails.
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Validation	metrics

§ Need	a	metric	for	deciding	whether	the	percentile
estimates	change	substantively	comparing
parametric	to	extreme	value	model.

§ Area-based	metric:

∫ |𝐹89 𝑥 − 𝐹8; 𝑥 |𝑑𝑥	
§ Pros:	Equals	0	if	distributions	are	identical.
§ Cons:	Value	difficult	to	interpret,	must	pick	x	range.
§ Alternative:	Simple	comparison	of	tolerance	bounds

§ Reliability	metric

§ Pros:	Interpretable	as	a	probability.
§ Cons:	Does	not	equal	0	when	distributions	are

identical;	must	choose	𝜖 based	on	SME.

27

Two	sided:	𝑅 = 𝑃 𝑄1 − 𝑄A < 	𝜖

One-sided:	𝑅 = 𝑃 𝑄1 − 𝑄A < 	𝜖



Metric	properties

§ Reliability	metric	has	good	properties:
§ Less	data	are	required	when	we	are	willing	to	tolerate	more	error	in	the

model	predictions	(𝜖).
§ More	data	are	required	as	the	target	percentile	moves	further	out	in	the	tails

of	the	distribution	(p gets	closer	to	0	or	1).

§ Compare	to	goodness	of	fit	tests:
§ Evidence	of	lack	of	model	fit	increases	with	sample	size.
§ Does	not	consider	how	the	model	is	being	used.
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Example

§ Closure	time	at	cold	temp:	estimate
99.5th percentile	with	95%	confidence.

§ Degree	of	extrapolation:	When	n =	100,
extrapolation	is	occurring	beyond	the
97th percentile.	We	would	a	6	times
larger	sample	to	avoid	extrapolation.

§ Validation	metrics:	 Median	of	the	99.5th
percentile	estimate	is	23.4	s	under	tail-
based	model	versus	22.9	s	under	normal.
If	the	decision-maker	is	willing	to	
tolerate	a	2-3s	error	in	percentile	
estimation,	then	normal	is	likely	a	
sufficient	approximation.		
Difference	between	95%	tolerance												
interval	estimates	is	2.7s.
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Conclusions

§ Main	message:	communication	of	statistical	model	uncertainty	in
engineering	language	may	have	added	value	in	QMU	applications.

§ Future	work:	We	have	only	looked	at	the	simplest	case	possible	– the
challenge	of	model	uncertainty	communication	increases	as	models
become	more	complex.
§ Does	modeling	have	added	value	under	model	uncertainty?
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A	HARDER	EXAMPLE
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Background

Sandia’s Z machine ‘provides the fastest, most accurate, and cheapest method to
determine how materials will react under high pressures and temperatures’ (SNL
Z-machine website).
The increasing complexities of these experiments are resulting in data which can longer
be analyzed using traditional analytic techniques.
An inverse problem must be solved by coupling modeled velocity profiles with
experimental measurements. Models are good, but not perfect.
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Background - model calibration

Bayesian model calibration is a popular framework for estimating the values of input
parameters into computational simulation models in the presence of multiple uncertainties
(Kennedy and O’Hagan, 2001; Bayarri et al., 2012).

Kennedy and O’Hagan (2001) framework is widely used to estimate calibration
parameters θ and model discrepancy δ given experimental output y, design points x, a
simulation model η, and measurement error ε:

y(x) = η(x, θ) + δ(x) + ε(x)
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Background - Dynamic material properties

Goal: Estimate of 2 parameters of the equation of state
for tantalum, the bulk modulus (B0) and pressure
derivative (BP0), which inform how tantalum’s density
changes as a function of pressure and density.

Velocity profiles were measured across 9
experiments at varying input pressure.
Hydrocode simulations produce computational
predictions of velocity as a function of time,
considering as inputs:

Material properties: B0 and BP0 (shared), and
Nuisance parameters: Sample density, sample
thicknesses, boundary condition/pressure.

Uncertainties in the material property estimates are
driven by:

Unknown model inputs,
Experimental measurement error, and
Potential physics model misspecification.

Figure: (Top) 9 experimental velocity
curves. (Bottom) Standardized velocity
residuals for a single experiment. 34



Data application

There are 9× 4 + 3 total input parameters that could be calibrated.

Primary question: What is a reasonable calibration approach to estimate the material
properties?

Challenges: How much statistical information about material properties is provided from
experimental data under model uncertainty?
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Model calibration - identifiability

Nonidentifiability: multiple values of the calibration parameters produce the equally valid
solutions.

Bayesian framework handles identifiability issues well when model is correctly specified.
In the presence of model discrepancy, calibration parameters will typically be biased
(Kennedy and O’Hagan, 2001; Brynjarsdóttir and O’Hagan, 2014).

In the presence of discrepancy, the problem of identifiability is often bypassed when models
are used for prediction.

Model is calibrated to a set of ‘best fitting’ (Kennedy and O’Hagan, 2001) parameters
that do not typically have a physical interpretation but improve predictive capability.
For physical parameter estimation, parameter identifiability must be carefully considered
in order to obtain accurate and precise estimates (Arendt et al., 2012, 2016;
Brynjarsdóttir and O’Hagan, 2014).

We are interested in the true physical values of the material properties.
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Model calibration - functional output

Experimental outputs are functions - velocity profiles over time.
While we can sample an arbitrarily large number of points from the measured velocity
profiles, these curves only contain a finite amount of information about the values of the
calibration parameters.
Previous work on calibration with functional outputs focuses on prediction (McFarland
et al., 2008; Bayarri et al., 2007; Williams et al., 2006).
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Discrepancy function

Discrepancy must be accounted for when quantifying uncertinaty on the physical
parameters.

Model discrepancy = temporal autocorrelation.
Residuals are clearly autocorrelated over time.
Pressure seems to impact parameter estimates.
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Discrepancy function

Figure: MLEs of bulk modulus (left) and pressure derivative (right) assuming no nuisance input parameter
uncertainty and no model discrepancy. Estimates are provided for the 9 individual experiments, ordered by
pressure ramping input Pj (experiment-specific), as well as pooled across all experiments (combined). For
the combined estimates, the narrower estimate is based on the assumption that all experiments have the
same material properties whereas the wider estimate allows experiment to experiment variability in the
material property estimates. The external estimates come from published estimates.
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Estimation approach

Steps for estimating the equation of state parameters are:
1. Generate multiple Monte Carlo realizations of the output given known uncertainties on

the computer model inputs.
2. Build a Gaussian process emulator to obtain computationally cheap samples from the

velocity output curve.
3. Determine how sensitive the velocity output is to each of the model inputs.
4. Calibrate the model to estimate the material properties.

(Left) Step 1: Simulate output realizations; (Right) Step 2: Build Gaussian process emulator for each experiment/time. 
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Calibration model

For physical parameter estimation, partition input paramters into: physical parameters and
nuisance parameters.
Model for experimental data: We model the ith observation in the jth experiment as:

y(xij) = η(xj , γ
T
j , θ) + δj(xj) + ε(xij) (1)

where
y is experimental data, η is computer model simulator, ε is measurement error, x is time.
θ is the true but unknown value of the physical parameters,
γT = [γT

j ] is the true but unknown value of the nuisance parameters, and
δ is a model discrepancy term.

Should we calibrate all nuisance parameters γ? How should we incorporate the model
discrepancy term, δ?
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Scale the likelihood

Rather than modeling the discrepancy function, we consider scaling the likelihood function to
adjust for model discrepancy/temporal autocorrelation in the residuals when estimating
physical parameters.

Rather than modeling the autocorrelation through Σδ, formulate the likelihood assuming
velocity observations are IID normal:

log l∗(yj |α, γj , φ) =

[
−

n
2

log(2π)−
n
2

∑
i

log(φσ2
ij)−

1

2

n∑
i=1

(
y(xij)− η(xij , α, γj)

φσij

)2
]

(2)

Then, the likelihood is:

log l(y|α, γ, φ) ≈
ne

n
log l∗(yj |α, γj , φ) (3)

Interpretation of ne: the number of independent pieces of information provided from an
experiment in the presence of model discrepancy.

42



Scale the likelihood

How to estimate the scaling factor ne:
Pick something that looks decent (Mosbach et al., 2014).
Scale by the number of sampled points - assume all
experiments are wrong but all are useful.
Scale by ne - assume each experiment has a mean 0
discrepancy function.

To estimate ne, note that the effective sample size for an
autocorrelated time series is:

ne = n/τ

τ = 1 + 2
∞∑

k=1

ν(k)

where ν(k) is the autocorrelation at lag k, i.e. the correlation
between ε(xi) and ε(xi′ ) where |i − i′| = k.

ν(k) can be estimated using the sample correlation
(non-parametric) or assuming a parametric form.

Figure: True versus median
estimated ESS, comparing
parametric (blue) to
nonparametric (black) estimate
of ESS. The parametric
estimate for ESS = 20 failed to
converge at least half of the
time and is therefore not
included in the plot.
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Scale the likelihood

Advantages:
Computationally cheap
Computationally stable
Estimates do not change with amount of discrepancy/temporal correlation.
Variance of estimates increases with the amount of discrepancy/temporal correlation.
GP discrepancy is non-identifiable anyway.

Disadvantages:
Ad hoc?
Discrepancy function is not directly estimated (but easy to obtain).
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Application to tantalum EOS

Figure: Estimates of bulk modulus (top) and pressure derivative (bottom). (Right) Maximum likelihood
estimates with 95% CIs are provided for the 9 individual experiments, ordered by pressure ramping input
Pj (experiment-specific). (Middle) BMC estimates pooling across all experiments (combined). (Left) The
external estimates come from published estimates of the material properties.
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Are we underestimating uncertainty using full Bayesian model calibration?
Updating 37 nuisance calibration parameters using BMC will decrease variance in
physical parameter estimates.
In the presence of non-mean 0 model discrepancy, the calibration parameters will be
biased.
The model is definitely wrong (but we are unsure of how wrong).
Should all nuisance parameters be updated in the MCMC?

46



Modularization

To ‘modularize’ the nuisance parameters from the experimental data, we simply do not
update the values of the nuisance parameters using the data and assume π(γ|y) = π(γ).

The idea of modularization is used throughout the calibration process: building
emulators; estimating parameters using MLEs (Liu et al., 2009), for the computational
advantages.

Using this approach, the ‘posterior’ is:

π(α, γ, φ|y) = P(α, φ|y, γ)π(γ|y)
= P(α, φ|y, γ)π(γ)

P(α, φ|y) =

∫
γ

P(α,Σ|y, γ)fγ(γ)dγ (4)

where P denotes a posterior and f denotes priors and

P(α,Σ|y,Ds, γ) ∝ l(y|α,Σ,Ds, γ)fα(α)fΣ(Σ) (5)
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Modularization does not result in full Bayesian inference and the estimated posterior
distributions to not converge to a true posterior (Plummer, 2015).

Philosophically appealing to assume the collected data cannot inform the values of the
nuisance parameters under discrepancy.
Induces bias similar to leaving the outcome out of a multiple imputation model.
Modularization has been applied in other areas to reduce model misspecification bias
(Plummer, 2015; Zigler et al., 2013).

Figure: Posterior distribution of the bulk modulus and pressure derivative from a single experiment using
different estimation procedures: (left) maximum likelihood approximation ignoring nuisance parameter
uncertainty; (middle) Bayesian model calibration inferring only sensitive nuisance parameters (boundary
scaling and density); and (3) modularizing all nuisance parameters.
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Summary

In summary, we are working toward developing a general inverse analysis technique for
dynamic material properties rooted in Bayesian model calibration.

The estimates and uncertainties on the tantalum EOS parameters are reasonable and
consistent with those from traditional analytic techniques.
Future work

Improve likelihood scaling factor.
Determining if, when, and how to ‘modularize’ in general.
Make functional calibration more ‘functional.’
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Questions?

Thank you!
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