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= |ntroduction to Sandia and problem space

= Model uncertainty

= Examples

= Statistical model uncertainty

= Computational simulation model uncertainty
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“National security is our business” (SNL website).

= Defense, Energy and Climate, Global Security

Statistical Sciences group: 5 Masters-level, 6 PhD-level statisticians, 2
interns, and growing.

UT-Austin is an Academic Alliance (AA) school.

= “These are top-tier universities whose leadership has a commitment to
collaborate on projects that have a mutual benifit and are willing to invest in
growing the relationship with Sandia” (SNL AA website).

= Sandia is incentivizing collaboration with AA schools, e.g. LDRD grants.

My opinion: Decision sciences can help inform how modeling informs
decisions in the SNL mission space.
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Sandia’s Impact

Ebola Outbreak

Sandia contributes to global response of
Ebola outbreak by developing a sample
delivery system cutting the wait time and
potentially fatal exposure.

Cleanroom invented 1963

$50 billion worth of cleanrooms built
worldwide. They’re used in hospitals,
laboratories and manufacturing
plants today.

Fukushima Quake

Sandia helps clean up
radioactive wastewater.

Sandia
National
Laboratories

Detecting IEDs

Combat personnel now have a new tool
for uncovering improvised explosive
devices: Sandia’s highly modified
miniature synthetic aperture radar
system, which is being transferred to
the U.S. Army.

Hurricane Katrina

Sandia is called to assess
flooding and infrastructure
failures.

9/11

Sandia sets contingency plans for release of
materials and aircraft attacks on critical
facilities immediately after 9/11. Search
dogs are equipped with cameras for search
and rescue K-9 handlers. The capability
allowed search efforts to be carried out in
spaces inaccessible to humans.
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Nuclear Deterrence @Sanma

Sandia assumes an increasingly pivotal role
in sustaining the nation’s nuclear deterrent.
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= Quantification of Margins and Uncertainties (QMU) is a framework for risk
informed-decision making about the nuclear weapon stockpile.

= Assess the health of the stockpile in the absence of full system testing.

"  Four components of information (Pilch, Trucano, & Helton, 2006):

1. What can go wrong?
2. How likely is it? (likelihood)
3. What are the consequences if it happens? (consequence)

4. How much confidence do we have in this risk assessment? (credibility)
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= @Goal: Show that a performance measure will not exceed a performance threshold
with high confidence.

= A performance measure is a measure of performance related to system functionality
and requirements.

= A performance threshold is the required performance for the measure.

= Complications: Requirements must be met across a wide range of inputs
(e.g. electrical), environments (e.g. mechanical, thermal), and over the
specified life (e.g. 20 years).

Performance

threshold '

Observed

performance

measures | Probability observed
performance exceeds

/threshold is small.

Performance measure 9




The Complexity of QMU at Sandia ) e,

= QMU is a conceptual framework that is evolving over time that outlines a
process for communicating the confidence in the stockpile.
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* Figure is notional and does not represent all sources of data
and the complete range of methodologies that could be used.
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Complexity of QMU ) e,

= QMU is a difficult prediction problem, with the goal of assembling an
evidence package that:

= Provides quantitative evidence of positive margin and

= |ncludes a comprehensive treatment of uncertainty.

= Challenges are similar to nuclear power and climate.

= Risk assessment, risk communication, decision-making under deep
uncertainty.

[“QMU is a collection of methods supporting NW decision making under uncertainty.”

[“QMU emphasizes and quantifies the presence of subjectivity.” }

E‘QMU is not a machine that produces numbers that highly influence a decision.”
4

Pilch, Trucano, and Helton (2006)



Complexity of QMU ) e,

= |deal: We are XX% confident that YY% of units will meet the requirement.

= |n practice: We have high confidence that units will meet requirement.
Here’s why [insert evidence package].

= Barriers to “full quantification” in practice:

Test data have measurement uncertainty, are limited to a restrictive set of inputs and conditions, and

are relatively few in number.
.

Models have model form uncertainty, numerical uncertainty, coding errors, and input distribution
specification uncertainty.
N

Experts state of knowledge is imperfect.
&

Information comes from heterogeneous sources (test data, modeling, and expert judgment) that are
\difﬁcult to combine.

Separation of aleatory and epistemic uncertainty is infeasible.

N
>
Not all uncertainties can be straightforwardly quantified.

(S 5/

Quantity of interest is poorly defined. 10
.




MODEL UNCERTAINTY
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= My primary area of interest is risk communication under model
uncertainty (with a strong statistics slant).

= How to choose a model/inferential procedure that is robust to model
misspecification.

= How to communicate the results from that model.

= Earlier research: Model selection in health effects estimation, survey
design for resource allocation using lot quality assurance sampling.

= Nowadays: Communicating model uncertainty in QMU, developing a
principled framework for QMU at SNL, model uncertainty in Bayesian
model calibration of computer experiments.
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= Does a modeling effort improve decision-making?

= How can we assess the added-value of increasing model
complexity in QMU predictions?
= Wrong models with little uncertainty

= Better models with high uncertainty

“Increasing a model's complexity... may actually increase the uncertainty.”
Pidgeon and Fischoff (2011)
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Model uncertainty

= |s there a need for understanding the added value of statistical modeling
more broadly?

“Formal (statistical) models... serve a crucial but limited role in providing hypothetical
scenarios that establish what would be the case if the assumptions made were true and
the input data were both trustworthy and the only data available... Overconfident
inferences follow when the hypothetical nature of these inputs is forgotten and the
resulting outputs are touted as unconditionally sound scientific inferences instead of the
tentative suggestions that they are (however well-informed).”

Greenland (2017)




EXAMPLES
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Example: Percentile estimation ) faor

= My interest in this research question stems from my experiences with one
of the simplest examples: fitting a normal distribution to a set of data.*

“In nature, there never was a normal distribution" (Box 1976).

= “Simple” QMU applications fit parametric distributions to data and
extrapolate extreme percentiles from this model.

= This problem generated my hypothesis that education about and
communication of model uncertainty is lacking.

*We will talk about more complicated models later.

18
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Model uncertainty in tolerance interval estimation
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Characterizing the “tails,” i.e. extreme .
percentiles, of probability distributions plays a
large role in QMU applications. 2

Density
0

Tolerance intervals are often used to
“demonstrate margin” to a requirement when -

o 9}
test data are available.
o & a :
= A one-sided tolerance bound is simply a S
confidence bound on a percentile. Performance

Example: a hypothetical launch safety device
on a missile has a requirement to close within ] _
23.5s of launch with 99.5% reliability.

=  Device is tested at hot and cold, n = 100 times per —
condition.

15 20 25 30 35
1 1 1 1 J

Frequency
Frequency

= Are we 95% confident that 99.5% of units will pass the
23.5s requirement?

A
0
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1 1

When is there enough information or data o

T T 1
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such that this analysis is credible? Hot CT ()

T
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Current practice e

= Use statistical tools to select a model T
for the data (often normal model). : " : .
= QQplots ZL > f—é o
= Goodness of fit tests e ’ f
© ectounes T eeiacunties

Figure: QQ plots for hot (left) and cold (right) closure time under a normal model.

= Extrapolate to the tails using the 3 - IS i
model. . | RN i
=  Conclusion: we have 95% confidence that - |
99.5% of units will pass the requirement, : RN j S - ' i
assuming the model is correct. g - i i
= Correct answer: Hot has margin, cold does = j I
not. i :

1|8 1I9 ZIO 2I1 2I2 2I3 1|6 1|8 2I0 2|2

Performance Measure Performance Measure

Figure: Percentile estimates (green) and 95% tolerance bounds (blue) relative to
requirement (red) for hot (left) and cold (right) closure time under a normal model.

20
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Model uncertainty in tolerance interval estimation

= Problem: modelers know model uncertainty decreases confidence in
results, but lack a method to communicate this uncertainty.

Sandia
National _
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The [normal] tolerance interval... is not distributionally robust to even small deviations from
normality" (Fernholz and Gillespie 2001).

“Estimating tail parameters is analogous to estimating parameters “exterior to the data'... Many
times estimates are made by assuming the data is sampled independently from a parametric
family. This can lead to disastrous results” (Scholz 2005).

“[Obtaining] a numerical estimate of reliability based on knowledge of full probability
distributions in conjunction with QMU would place great demands on our ability to characterize
uncertainties. In view of this, it is inevitable that there would be pressure to adopt ‘short cuts’
by simply assuming the forms of PDFs or using PDFs that are not based on some but inadequate
supporting data. The response to such pressure would make or break nuclear certification. No
analysis that is based on speculation or that neglects significant possibilities can lead to genuine
confidence, but instead will frequently lead to over-confidence or under-confidence, both of
which carry severe costs” (Sharp et. al 2003).

21
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= QQ plots and goodness of fit tests do not address model validity for
extrapolative prediction, which is the objective.

= Goodness of fit test can tell you there is evidence of lack of model fit, but
cannot validate a model.

= QQ plots tell you about the fit of your data over the entire range, rather than
“for the intended uses of the model.”

= Solution: relate statistical model selection to model validation in
engineering applications.

= Validity: Is the model an accurate representation of the real world for the
intended uses of the model? (Oberkampf and Barone 2006).
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= Metrics for model validation:

1. Degree of extrapolation: is extrapolation outside the range of the
observed data occurring?

2. Model fit in the tails: How consistent are the observed tails of the
data with the fitted model?

3. Sensitivity to model choice: How much do the tail estimates change
when the modeling assumptions are relaxed?

= These metrics supplement/replace:
= GoF test: Is there evidence that my model is not a good fit?

= QQ plot: How well does the model fit all of the data?

23
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Degree of extrapolation L

= How many samples would be needed for non-parametric estimation (i.e.
no model required)?

n* = log(1 —y) /log(r)

where y is the confidence level and r is the percentile (Wilks 1941).

= Degree of extrapolation: n*/n

20.0

20 50

Degree of extrapolation as
a function of r. Dashed
line is 90% confidence,
solid line is 95%.

Degree of extrapolation
0.5

0.1
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Model fit in the tails Tl s

23
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= Plot the outcome and model predictions : 5
(with Cl) as a function of the return-level
(Coles et. al 2001). 2 /

50 -

= The return-level for percentile r is the number - =
of units for which we expect one failure.

100 -
200

23

: 1
= Mathematically, np = -

» Heuristically, a 99t percentile pertainstoa 1
out of 100 failure rate.

22
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= How much do the tail estimates change when the modeling assumptions are relaxed?

= Developing a metric is a tougher question.

= Need a relevant comparison model that relies only on the tail behavior; we used the generalized Pareto
distribution from extreme value theory, fitted to the tails (e.g. upper 10% of data) only.

= |mportant caveat: requires enough data to be able to realistically model the tails.
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Validation metrics

= Need a metric for deciding whether the percentile
estimates change substantively comparing
parametric to extreme value model.

= Area-based metric:
J |F@(x) — FO1(x)|dx

= Pros: Equals O if distributions are identical.
= Cons: Value difficult to interpret, must pick x range.

= Alternative: Simple comparison of tolerance bounds

= Reliability metric
Two sided: R = P(|Q; — Q,| < €)

One-sided: R = P(Q; — Q, < €)

= Pros: Interpretable as a probability.

= Cons: Does not equal 0 when distributions are
identical; must choose € based on SME.

0.8 1.0

Cumulative probability

0.2

1.0

0.8

Density
04 06

0.2

0.6

0.4
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Closure time (s)

22 23 24 25 26 27 28 29
Closure time (s) )7
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Metric properties

= Reliability metric has good properties:

= Less data are required when we are willing to tolerate more error in the
model predictions (€).

= More data are required as the target percentile moves further out in the tails
of the distribution (p gets closer to 0 or 1).

= Compare to goodness of fit tests:

= Evidence of lack of model fit increases with sample size.

= Does not consider how the model is being used.
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= Closure time at cold temp: estimate
99.5th percentile with 95% confidence.

23

= Degree of extrapolation: When n =100,
extrapolation is occurring beyond the
97th percentile. We would a 6 times
larger sample to avoid extrapolation.

Cold CT (s)
22
\ RN
.
\ \ N
\ Y
\ \
Density

21

20

- é o o o T T T T o T
- © 2 g 16 18 20 22 24 26
Cold CT (s)

Return level

= Validation metrics: Median of the 99.5t"
percentile estimate is 23.4 s under tail-
based model versus 22.9 s under normal.

1.0

| — Hot CT, Normal
== Hot CT, GPD

If the decision-maker is willing to T - EnE
tolerate a 2-3s error in percentile
estimation, then normal is likely a s
sufficient approximation. d

27

0.8
26

0.6
25

Tolerance interval (s)
24

23

Difference between 95% tolerance - A
interval estimates is 2.7s. 00 05 10 15 20 25 30 0B0 085 080 035

£ Confidence
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= Main message: communication of statistical model uncertainty in
engineering language may have added value in QMU applications.

= Future work: We have only looked at the simplest case possible — the
challenge of model uncertainty communication increases as models
become more complex.

= Does modeling have added value under model uncertainty?




A HARDER EXAMPLE
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Background =

m Sandia’s Z machine ‘provides the fastest, most accurate, and cheapest method to

determine how materials will react under high pressures and temperatures’ (SNL
Z-machine website).

m The increasing complexities of these experiments are resulting in data which can longer
be analyzed using traditional analytic techniques.

m An inverse problem must be solved by coupling modeled velocity profiles with
experimental measurements. Models are good, but not perfect.

Cartoon Configuration
—

25

Samples of LiF Windows
interest

20
L

Velocity ( mis)

3.02 304 306 3.08 3.10
Velocimetry used to i
measure interface velocities ime (us)
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Background - model calibration e

Bayesian model calibration is a popular framework for estimating the values of input
parameters into computational simulation models in the presence of multiple uncertainties
(Kennedy and O’Hagan, 2001; Bayarri et al., 2012).

m Kennedy and O’Hagan (2001) framework is widely used to estimate calibration
parameters 6 and model discrepancy § given experimental output y, design points z, a
simulation model 7, and measurement error e:

y(z) = n(z,0) + 6(z) + €(2)




Background - Dynamic material properties

Goal: Estimate of 2 parameters of the equation of state
for tantalum, the bulk modulus (Bp) and pressure
derivative (BPy), which inform how tantalum’s density
changes as a function of pressure and density.

m Velocity profiles were measured across 9
experiments at varying input pressure.

m Hydrocode simulations produce computational
predictions of velocity as a function of time,
considering as inputs:

m Material properties: By and BPg (shared), and
m Nuisance parameters: Sample density, sample
thicknesses, boundary condition/pressure.

m Uncertainties in the material property estimates are
driven by:

m Unknown model inputs,
m Experimental measurement error, and
m Potential physics model misspecification.

Sanda
Natonal
Laboratories

10 15 20 25 30 35

Velocity (km/s)

5

0

=4
o
3

0.05 0.10 0.15
Time (us)

00 05 1.0 15

Standardized veloicity residuals

-1.0

0.00 0.04 0.08
Time (us)

Figure: (Top) 9 experimental velocity
curves. (Bottom) Standardized velocity
residuals for a single experiment.
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Data application =

There are 9 X 4 + 3 total input parameters that could be calibrated.

Primary question: What is a reasonable calibration approach to estimate the material
properties?

Challenges: How much statistical information about material properties is provided from
experimental data under model uncertainty?




Model calibration - identifiability e

Nonidentifiability: multiple values of the calibration parameters produce the equally valid
solutions.
m Bayesian framework handles identifiability issues well when model is correctly specified.

m In the presence of model discrepancy, calibration parameters will typically be biased
(Kennedy and O'Hagan, 2001; Brynjarsdéttir and O'Hagan, 2014).

In the presence of discrepancy, the problem of identifiability is often bypassed when models
are used for prediction.

m Model is calibrated to a set of ‘best fitting’ (Kennedy and O'Hagan, 2001) parameters
that do not typically have a physical interpretation but improve predictive capability.

m For physical parameter estimation, parameter identifiability must be carefully considered
in order to obtain accurate and precise estimates (Arendt et al., 2012, 2016;
Brynjarsdéttir and O'Hagan, 2014).

We are interested in the true physical values of the material properties.
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Model calibration - functional output

Experimental outputs are functions - velocity profiles over time.

m While we can sample an arbitrarily large number of points from the measured velocity
profiles, these curves only contain a finite amount of information about the values of the
calibration parameters.

m Previous work on calibration with functional outputs focuses on prediction (McFarland
et al., 2008; Bayarri et al., 2007; Williams et al., 2006).
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Discrepancy function s

Discrepancy must be accounted for when quantifying uncertinaty on the physical

parameters.
=3
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m Model discrepancy = temporal autocorrelation. Time (us)
m Residuals are clearly autocorrelated over time. 7
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Discrepancy function @E.
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Experiment-Specific Combined External Experiment-Specific ~ Combined External

Figure: MLEs of bulk modulus (left) and pressure derivative (right) assuming no nuisance input parameter
uncertainty and no model discrepancy. Estimates are provided for the 9 individual experiments, ordered by
pressure ramping input P; (experiment-specific), as well as pooled across all experiments (combined). For
the combined estimates, the narrower estimate is based on the assumption that all experiments have the
same material properties whereas the wider estimate allows experiment to experiment variability in the
material property estimates. The external estimates come from published estimates.
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Estimation approach B
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Steps for estimating the equation of state parameters are:
1. Generate multiple Monte Carlo realizations of the output given known uncertainties on
the computer model inputs.

. Build a Gaussian process emulator to obtain computationally cheap samples from the
velocity output curve.

3. Determine how sensitive the velocity output is to each of the model inputs.
. Calibrate the model to estimate the material properties.

30
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(Left) Step 1: Simulate output realizations; (Right) Step 2: Build

process I for each experiment/time.
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Calibration model e

For physical parameter estimation, partition input paramters into: physical parameters and
nuisance parameters.

Model for experimental data: We model the i*" observation in the j* experiment as:

y(zi) = n(zj, v, 0) + 8;(x;) + e(zy5) (1)

where
m y is experimental data, 7 is computer model simulator, € is measurement error, z is time.
m 0 is the true but unknown value of the physical parameters,
myT = ['ij] is the true but unknown value of the nuisance parameters, and
m § is a model discrepancy term.

Should we calibrate all nuisance parameters v? How should we incorporate the model
discrepancy term, §7
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Scale the likelihood b,

Rather than modeling the discrepancy function, we consider scaling the likelihood function to
adjust for model discrepancy/temporal autocorrelation in the residuals when estimating
physical parameters.

Rather than modeling the autocorrelation through X7, formulate the likelihood assuming
velocity observations are IID normal:

n . — wi.’a, . 2
08 1*(1l0,73: ) = | = 3 loa(2m) — 5 Y log(ao) — 5 > (W= 00)) ] @)

i=1 ¢0ij
Then, the likelihood is:
n
log U(ylav,y,¢) ~  —~log U" (yjla, %5 @) ®3)

Interpretation of n.: the number of independent pieces of information provided from an
experiment in the presence of model discrepancy.



Scale the likelihood ()

How to estimate the scaling factor ne: -
m Pick something that looks decent (Mosbach et al., 2014). _

m Scale by the number of sampled points - assume all
experiments are wrong but all are useful.

20 25

15

m Scale by n. - assume each experiment has a mean 0
discrepancy function.

Estimated ESS
10
.

5
EX)

To estimate n., note that the effective sample size for an

autocorrelated time series is: ol
6 5 10 15 20 25
True ESS

L)

ne = n/t

oo
Figure: True versus median
T o= 142 Z V(k) estimated ESS, comparing
k=1 parametric (blue) to
nonparametric (black) estimate
where v(k) is the autocorrelation at lag k, i.e. the correlation of ESS. The parametric
between €(z;) and e(z;) where |1 — /| = k. estimate for ESS = 20 failed to

& b . d usi h | lati converge at least half of the
m v(k) can be estimated using the sample correlation time and is therefore not

(non-parametric) or assuming a parametric form. included in the plot.
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Scale the likelihood b,

Advantages:

m Computationally cheap

Computationally stable

m Estimates do not change with amount of discrepancy/temporal correlation.

m Variance of estimates increases with the amount of discrepancy/temporal correlation.
n

GP discrepancy is non-identifiable anyway.

Disadvantages:
m Ad hoc?

m Discrepancy function is not directly estimated (but easy to obtain).
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Application to tantalum EOS e

o
]
i
o8 I
Pt ¥
E J I {117 3 i
LTI
H
8
T 123456789 Combined Extérnal
Experiment
0
<~
= E ¥ {
<
| SIS S0 A :
<l T 1
¢ t
o
: I
123456 78%9 Combined Extérnal
Experiment

Figure: Estimates of bulk modulus (top) and pressure derivative (bottom). (Right) Maximum likelihood
estimates with 95% Cls are provided for the 9 individual experiments, ordered by pressure ramping input
P; (experiment-specific). (Middle) BMC estimates pooling across all experiments (combined). (Left) The

external estimates come from published estimates of the material properties.
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Are we underestimating uncertainty using full Bayesian model calibration?

m Updating 37 nuisance calibration parameters using BMC will decrease variance in
physical parameter estimates.

m In the presence of non-mean 0 model discrepancy, the calibration parameters will be
biased.

m The model is definitely wrong (but we are unsure of how wrong).

m Should all nuisance parameters be updated in the MCMC?
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Modularization e

To ‘modularize’ the nuisance parameters from the experimental data, we simply do not
update the values of the nuisance parameters using the data and assume 7 (v|y) = 7 (7).
m The idea of modularization is used throughout the calibration process: building

emulators; estimating parameters using MLEs (Liu et al., 2009), for the computational
advantages.

Using this approach, the ‘posterior’ is:

(7, 9ly) = Pa,dly,v)m(vy)
= P(a, 9ly,v)m(v)
Pladly) = [ PlSlunhmd (4)
Yy

where P denotes a posterior and f denotes priors and

Ple, By, D% ) o< l(yla, B, D%, y) fa (@) f2(X) 5)

47




Modularization does not result in full Bayesian inference and the estimated posterior (=
distributions to not converge to a true posterior (Plummer, 2015).

m Philosophically appealing to assume the collected data cannot inform the values of the
nuisance parameters under discrepancy.

m Induces bias similar to leaving the outcome out of a multiple imputation model.

m Modularization has been applied in other areas to reduce model misspecification bias
(Plummer, 2015; Zigler et al., 2013).
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Figure: Posterior distribution of the bulk modulus and pressure derivative from a single experiment using
different estimation procedures: (left) maximum likelihood approximation ignoring nuisance parameter
uncertainty; (middle) Bayesian model calibration inferring only sensitive nuisance parameters (boundary
scaling and density); and (3) modularizing all nuisance parameters.
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Summary -

In summary, we are working toward developing a general inverse analysis technique for
dynamic material properties rooted in Bayesian model calibration.

m The estimates and uncertainties on the tantalum EOS parameters are reasonable and
consistent with those from traditional analytic techniques.
m Future work

m Improve likelihood scaling factor.
m Determining if, when, and how to ‘modularize’ in general.
m Make functional calibration more ‘functional.
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Questions? @i,

Thank you!
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