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The Goal () e

Develop the foundation for a new infrared detector that will lead to
an order of magnitude improvement in noise and real-time
spectrally tunable pixels.

Pixel-Level Active
Spectral Tunability

ise Reduction

To achieve a radically improved
sensor both new architectures and
materials must be investigated.




Outline otoes

= Resonantly Enhance IR Detectors
= Type-ll Superlattices

= Metallic nanostructures

= Tunable IR Filters

= Graphene

= Reflectance-mode Filter Nanoantenna

= Summary
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Infrared Detection
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Lord, S. D., 1992, NASA Technical Memorandum 103957, Gemini Observatory




Type-ll Superlattices

Sandia

0.1¢
= |nAs/(In)GaSb _
" |nAs/InAsSb — 1E-3¢
=
= |nGaAs/InAsSb é’
§ 1E-5|
i ' Rule07
. Experiment
. E B Th n
= Bandgap controlled by layer thickness : eory
1E-7 ' '
= Uniform material across wafer 0.0008 0.0010 0.0012 0.0014
110, T) (um K)™

Predicted lower predicted dark current than MCT.

Lower absorption coefficient than MCT
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Detector structure () e

=  Thick structures absorb more but have

higher dark current.
Air Air . ) i
= Enhance field in detector using resonant

structures = increase QE.

= Importantin low background
applications.

Fabry Pérot

Cavity

= Enable higher operating temperature.

Absorption « 1 — e~ %%

e OC W =1
Jaiff Contatts € 500 UM =—p

M. D. Goldflam, D. W. Peters et al., Appl. Phys. Lett. 109 (25), 251103 (2016).
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Detector structure () e
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M. D. Goldflam, D. W. Peters et al., Appl. Phys. Lett. 109 (25), 251103 (2016).
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Resonant detector: Fabry-Pérot Naorel_
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Coupled Resonances

Air

|

Fabry Pérot
Cavity

Resonant
Nanoantenna

<4 1850 nm P

<b P

<= 2100 nm »

Absorption

B

Employ two coupled resonances: Fabry-

Pérot cavity with metal nanoresonator.

Variable response in fixed detector through

variation of nanoantenna only.

9.6 um
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Loss Mechanisms o]
Laboratories
100 ' . — . .

Resonant \ Total |
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Majority of “lost” absorption is in the nanoantenna
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Measured Quantum Efficiency

Absorber Absorption
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Spectral response (a.u.)

B

QE>55%: 4-5x improvement compared to
non-resonant detector.

Temperature independent spectral
response: lower cooling requirements.
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Resonance Wavelength Modification
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Nanoantennas enable a fixed detector stack to be resonant at
multiple wavelengths without changing detector itself.
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Two-Color Detections
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Electromagnetic Crosstalk Analysis
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Supercell: Broadened Resonance (i) e
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= Doubles FWHM of resonance.

= Enables improved QE over a

broader range of frequencies.

= Polarization dependent response.
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Conclusion

60

(o))
o

= Demonstrated significant gains in QE

I
o
N
o

with reduction in absorbing volume.

N
o

N
o
Absorber Absorption (%)

External QE (%)

= Control of detector response without

changing detector itself.

= Broadband resonant response

Examined two color detectors
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Outline o

= Resonantly Enhance IR Detectors
= Type-ll Superlattices

® Metallic nanostructures

= Tunable IR Filters

= Graphene
= Reflectance-mode Filter

= Summary
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Tunable materials
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M. D. Goldflam, et al, Appl. Phys. Lett. 99 (4), 044103 (2011).
M. K. Stewart, et al, Phys. Rev. Lett. 107 (17), 176401 (2011).

T. Driscoll, et al, Appl. Phys. Lett. 93 (2), 024101 (2008).
Y. C. Jun and I. Brener, Journal of Optics 14 (11), 114013 (2012).

Y. W. Huang, et al, Nano Lett. (2016).
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Plasmonic Tuning in Graphene o _

v
b
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Plasmonic response easily tuned through carrier injection ;i eta), nano tett. 2011, 11, (11), 47015,

J. Chen, et al, Nature 487 (7405), 77-81 (2012).
M. D. Goldflam et al, Nano Lett. 15 (8), 4859-4864 (2015).
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Plasmonic Tuning in Graphene o _
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Plasmonic response easily tuned through carrier injection ;i eta), nano tett. 2011, 11, (11), 47015,

J. Chen, et al, Nature 487 (7405), 77-81 (2012).
M. D. Goldflam et al, Nano Lett. 15 (8), 4859-4864 (2015).
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Limitations of Graphene o

Graphene changed by environment and fabrication methods

= Fermilevel pinning

Plasmon Dispersion
2000 : ;

=" Environmental degradation SiO,

1800 HfO,

= Plasmon dispersion modification 1600}
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"'21200-

Alr Cap %1000-
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600
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l. Ruiz, et al., Opt. Lett. 42 (14), 2850-2853 (2017). Z. Fei, et al, Nano Lett. 2011, 11, (11), 4701-5.
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Device Design Nt

Graphene

= Scalable (continuous and unpatterned large-area CVD graphene)
= Protected graphene (capping layer)

= Avoid metal-graphene contact

Goldflam et al, in preparation
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Building the Filter Response (7)o
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" Presence of SiO, increases resonance Q-factors
= Dielectrics can modify resonance location.
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Measured Reflectance ()
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= Spectral shifts depend on geometry.

" Location and tuning amount can be designed.
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Measured Reflectance Natora
Wavelength (um) Wavelength (um) Laboratories
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= Shift in position of two resonances simultaneously.
= Larger shifts at lower frequencies.
= Spectral shift depends on both grating design and SiO, thickness.
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Measured Reflectance Nalrad
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= Shift in position of two resonances simultaneously exceeding 50 cm-L.
= Larger shifts at lower frequencies.
= Spectral shift depends on both grating design and SiO, thickness.
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= Shift in position of two resonances simultaneously exceeding 50 cm-L.
= Larger shifts at lower frequencies.

= Spectral shift depends on both grating design and SiO, thickness.

= Change in reflectance near 20%.
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Origin of Tuning Seas ol ()

Wavelength (um) | e
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= Tuning occurs only where plasmon is excited and modified with Fermi energy.
= These regions are determined by dielectric cladding layers making them selectable.
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Origin of Tunmg
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= Tuning occurs only where plasmon is excited and modified with Fermi energy.
= These regions are determined by dielectric cladding layers making them selectable.
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Wavelength Selection
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Transmittance-mode Filter Naorel_
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Conclusion

Wavelength (um)
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= Demonstrated scalable and tunable

graphene-based IR filter. 4 100
=  Enables modification of response in . 80 .
two bands simultaneously. = 50 %
: : < | g
=  Graphene is continuous and protected S 40 %
for device longevity. D Y
20
= Mechnisms described here can be used 4
to enable frequency-agile IR sensing. 0
I
600 1000 1400 1800

Frequency (cm™)

E-=0.8 eV ®=1250 cm™
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Outlook (i)

Modifiable Response

Integrated Filter [

Tunable Detector

Tunable Filter

L g

Detector Response

Wa'velen'gth
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