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Develop the foundation for a new infrared detector that will lead to 
an order of magnitude improvement in noise and real-time 

spectrally tunable pixels.

Noise Reduction
Pixel-Level Active 

Spectral Tunability

The Goal

To achieve a radically improved 
sensor both new architectures and 

materials must be investigated.



 Resonantly Enhance IR Detectors
 Type-II Superlattices

 Metallic nanostructures

 Tunable IR Filters
 Graphene

 Reflectance-mode Filter

 Summary
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Infrared Detection
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Lord, S. D., 1992, NASA Technical Memorandum 103957, Gemini Observatory



Type-II Superlattices
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 InAs/(In)GaSb

 InAs/InAsSb

 InGaAs/InAsSb

1 2 1 2 1

 Bandgap controlled by layer thickness

 Uniform material across wafer

 Predicted lower predicted dark current than MCT.

 Lower absorption coefficient than MCT



Detector structure
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M. D. Goldflam, D. W. Peters et al.,  Appl. Phys. Lett. 109 (25), 251103 (2016).

 Thick structures absorb more but have 
higher dark current.

 Enhance field in detector using resonant 
structures → increase QE.

 Important in low background 
applications.

 Enable higher operating temperature.
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Detector structure

SNL - Applied Photonics Microsystems Research and Technology Seminar

����
�� =

4��

2� − 1

� ∼ 2 μm

M. D. Goldflam, D. W. Peters et al.,  Appl. Phys. Lett. 109 (25), 251103 (2016).
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Resonant detector: Fabry-Pérot
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Coupled Resonances
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Resonant
Nanoantenna

2100 nm

1850 nm

b

Air

Fabry Pérot
Cavity

 Employ two coupled resonances: Fabry-

Pérot cavity with metal nanoresonator.

 Variable response in fixed detector through 

variation of nanoantenna only.
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Loss Mechanisms
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Majority of “lost” absorption is in the nanoantenna

Air

Fabry Pérot
Cavity

Resonant
Nanoantenna



Measured Quantum Efficiency
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 QE>55%: 4-5x improvement compared to 

non-resonant detector.

 Temperature independent spectral 

response: lower cooling requirements.

2100 nm

1850 nm

750 nm



Resonance Wavelength Modification
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2.25 µm

w

2.05 µm

Nanoantennas enable a fixed detector stack to be resonant at 
multiple wavelengths without changing detector itself.



Two-Color Detections
1.5 µm0.8 µm

30 µm
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1.5 µm0.8 µm
30 µm

Electromagnetic Crosstalk Analysis
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Supercell: Broadened Resonance
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4.5 μm
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 Doubles FWHM of resonance.

 Enables improved QE over a 

broader range of frequencies.

 Polarization dependent response.



Conclusion

 Demonstrated significant gains in QE 

with reduction in absorbing volume.

 Control of detector response without 

changing detector itself.

 Broadband resonant response

 Examined two color detectors
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Outline

 Resonantly Enhance IR Detectors
 Type-II Superlattices

 Metallic nanostructures

 Tunable IR Filters
 Graphene

 Reflectance-mode Filter

 Summary
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Tunable materials
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Tunable Material

Resonant structureResonant structure

M. D. Goldflam, et al, Appl. Phys. Lett. 99 (4), 044103 (2011). T. Driscoll, et al, Appl. Phys. Lett. 93 (2), 024101 (2008). Y. W. Huang, et al, Nano Lett. (2016).
M. K. Stewart, et al, Phys. Rev. Lett. 107 (17), 176401 (2011). Y. C. Jun and I. Brener, Journal of Optics 14 (11), 114013 (2012).

VO2
Increasing

Temperature
 Metal-Insulator transition materials

 VO2, V2O3, NdNiO3

 Thermally triggered

 Tunable bulk plasmonic materials
 CdO, semiconductors, indium tin oxide
 Electrically triggered

�� ∝ �



Plasmonic Tuning in Graphene
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Plasmonic response easily tuned through carrier injection Z. Fei, et al, Nano Lett. 2011, 11, (11), 4701-5.
J. Chen, et al, Nature 487 (7405), 77-81 (2012).
M. D. Goldflam et al, Nano Lett. 15 (8), 4859-4864 (2015).
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Limitations of Graphene
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Graphene changed by environment and fabrication methods

 Fermi level pinning

 Environmental degradation

 Plasmon dispersion modification

Substrate

Graphene

Air
Cap

AuAu

Substrate

SiO2

HfO2

Plasmon Dispersion

I. Ruiz, et al., Opt. Lett. 42 (14), 2850-2853 (2017). Z. Fei, et al, Nano Lett. 2011, 11, (11), 4701-5.



Device Design
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 Scalable (continuous and unpatterned large-area CVD graphene)

 Protected graphene (capping layer)

 Avoid metal-graphene contact

EF=0.2 eV

EF=0.7 eV
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Goldflam et al, in preparation



Building the Filter Response
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 Presence of SiO2 increases resonance Q-factors
 Dielectrics can modify resonance location.



Measured Reflectance
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1.6 μm

Thick SiO2

1.2 μm

Thin SiO2

 Spectral shifts depend on geometry.

 Location and tuning amount can be designed.



Measured Reflectance
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 Shift in position of two resonances simultaneously. 
 Larger shifts at lower frequencies. 
 Spectral shift depends on both grating design and SiO2 thickness.1.6 μm

Thick SiO2



Measured Reflectance
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 Shift in position of two resonances simultaneously exceeding 50 cm-1. 
 Larger shifts at lower frequencies. 
 Spectral shift depends on both grating design and SiO2 thickness.1.6 μm

Thick SiO2



Measured Reflectance
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 Shift in position of two resonances simultaneously exceeding 50 cm-1. 
 Larger shifts at lower frequencies. 
 Spectral shift depends on both grating design and SiO2 thickness.
 Change in reflectance near 20%.

1.6 μm

Thick SiO2



Origin of Tuning
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 Tuning occurs only where plasmon is excited and modified with Fermi energy.
 These regions are determined by dielectric cladding layers making them selectable.

Graphene
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Graphene



Wavelength Selection
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Si
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Transmittance-mode Filter
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GaSb

Al2O3



Conclusion

 Demonstrated scalable and tunable 
graphene-based IR filter.

 Enables modification of response in 
two bands simultaneously.

 Graphene is continuous and protected 
for device longevity.

 Mechnisms described here can be used 
to enable frequency-agile IR sensing.
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Outlook
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Tunable Detector
Tunable FilterTunable Filter

Infrared Detector

Integrated Filter
Modifiable Response
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