SAND2017- 11645P

SCP

EXASCALE COMPUTING PRDJECT

ECP ExaWind Experience in Trans:tlomng
Nalu to MPI+X

Stefan P. Domino
Computational Thermal and Fluid Mechanics Department
Sandia National Laboratories, Albuquerque, NM

University of Utah PSAAP-2 TST Meeting

Salt Lake City, Utah ’
November 1St and an’ 2017 SAND TBD

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-685 NA0003525. This
research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S. Department of Energy organizations (Office of Science and
the National Nuclear Security Administration) responsible for the planning and preparation of a capable exascale ecosystem, including software, applications, hardware,
advanced system engineering, and early testbed platforms, in support of the nations exascale computing imperative.

T,«‘.‘"ﬂ"!\ U.S. DEPARTMENT OF ofﬂce of ‘ia
&) ENERGY scces i N REL

NS S @ Sandia National Laboratories

Mational Noclear Security Administration

AT i

“Proposition: Deployen of
HP ards HF Wind Plant Modeling

Current Wind Plant Scalable flow solver Paradigm shift in
Flow Physical Models + technology p— wind plant design &
operation

* Wind plant simulation
that simultaneously
resolves wakes and
near-blade flow.

* Allows the engineer to
fully characterize
linkages between
turbine design, site
characteristics, and
plant performance.

pree 5 77 S v Time = 199.85s
Wind plant wake simulation
using NREL SOWFA tool
(current state of the art)
Millions of elements,
low-order

Near-blade simulation using
SNL Nalu code on Trinity
Billions of elements,

P=1, 2, ...

Time: 0.815619

Enabling SNL technollogy \

y/ / . |

Nalu Element-DG; WALE

Xda ample
of Research Topics

= Low-/higher-order tradespace for LES ,}' '
= Sliding mesh and/or overset 2 _ SR
m Advanced stabilization techniques for nonlinear

PDEs *

m Increased solver performance at scale; 0(100) Low/high-order (with NC interfaces)
billion elements

m Matrix storage reduction techniques for higher-
order (static condensation)

m AMG coarsening strategies
® In situ matrix modification

Time: 2.389763

m Efficient parallel searches

m Kokkos integration
m NGP focused for Exascale on open-source

Multi-lab

Diverse Core Competency Team

i iNREL

NATIONAL RENEWABLE ENERGY LABORATORY

* Project lead
* Flow Physics and FSI modeling
* Application performance/scaling

OAK
RIDGE

National Laboratory

e Software integration
* NGP scaling and performance

Sandia
National
Laboratories

* Unstructured Algorithms and software design
» Software infrastructure/NGP performance
* Physics model/discretization interface

THE UNIVERSITY OF

S SITw
& AN
. @)
5 Q\g
& 7 5] 9>
3\ & §/ g
?. y o
< &
* \ ¥ Gq &/ %
g
1

—— AT AUSTIN ——

e Turbulence modeling
* Uncertainty quantification

gw Funding streams both from: Office of Science ECP and EERE AZ2e

1-meter helium plume simulation
comparing P=1 (left) and P=4 (right)
on the same number of node mesh
(shown: volume-rendered density)

®
10'13\||\I||\\I|\\|I\||\I||\PI|:\8\|? B .:P*?EEEH
T T E—
log(N/Ny) Coabibil ey
Spectral CVFEM convergence (left) and

polynomial promotion (right) from P=1 to P=6
outlining the dual mesh configurations (four-

element patch)

igher-order for low-Mach
Unstructured LES?

m Experience shows >> one order of magnitude error
reduction at the coarsest mesh for P=1 and P=2

m LES resolved advection can improve

0.01
temperature
7.500e-01 U7 17
S LN A
IS X-HIT
TV ’1.‘:'. Y, 0.001 |
A
ARSI O
ORI e
3.750e-01 IR b
KRR AR
L RIS RS A 3,
LKA »q
SRR i oion |
> O TALDTAN 9,
RS TS A 4
D% % ‘] 7
0.000e+00 :‘5;&;‘ .::45}:::"1 ;‘Q
P A ~]
HA ALK iy
O SRR £
CRRBR R § s
KA B)
par it ks X
3750601 AR sanise 'q,"l
LERoKT b el
e])
% 15 "
‘ B ! 1e-06 |
s Vn"
-7.500e-01
1e-07
1e-08

Non-conformal DG/CVFEM
Laplace MMS

" Firsl—orc‘ier s

Second-order

Third-order

p1Edge --o--
8 - T~ plEdgeGLb -~ 7
. e

-0
10000

L L L
100000 1e+06 1e+07

Number of nodes

1e+08

P=2 Thex27 simulations (at the same
node-count) results in > 1 order of
magnitude error reduction compared to
the P=1 Thex8 Hex8

Much more local work to possibly
exploit for higher-order algorithms

Challenges:

memory footprint, solvers, and
preconditioners

wards Performance and Portability

m Although Nalu is a relatively new code base (by way of Tri-lab
code lifecycles), the V1.1 code base, i.e., prior to ExaWind is:

- non-threaded

- hon-SIMD

- non-GPU (FY20 plan)

- heavy on std::vector usages for data gather (with re-size)

- Computational kernels include a low-order edge- and
element-based scheme in addition to a P>1 hex element
m How does an application code “protect” itself from future
changes?
= The SNL ASC/ATDM efforts are heavily leaveraged on Kokkos
#% for the performance/portability path forward

A FY17/Q1 View of Nalu

m MPIl-based, lots of resize, physics within specialized
heterogeneous algorithms, e.g.,
AssembleMomentumElemSolverAlg.C

m Very much, a non-DSL design...
- The developer manages rhs(), lhs(), with rho()*u_j()*n_j()*dS

Block 1is quad4 Block 2 is quad9 Block 3 is quad4 Block 4 is tri3

Figure 4: Heterogeneous topologies example.

Consider a heterogeneous mesh use case

a Toolkit (STK)/Nalu Interface:
stk::selector and stk::bucket

// define the selector; locally owned, the parts I have served up and active
stk::mesh::Selector s_locally_owned_union = metaData_.locally_owned_part ()

& stk::mesh::selectUnion(partVec_)

& '(realm_.get_inactive_selector ());

Listing 1: Basic selector usage in STK.

~

// given the defined selector, eztract the buckets of type ‘‘element’’

stk::mesh::BucketVector const& elem_buckets
= bulkData_.get_buckets(stk::topology::ELEMENT_RANK, s_locally_owned_union);

// loop over the wector of buckets
for (const stk::mesh::Bucket* bptr : elem_buckets) {
const stk::mesh::Bucket & bucket = bptr;

// exztract master element (homogeneous owver buckets)
MasterElement *meSCS = realm_.get_surface_master_element (bucket.topology());

for (stk::mesh::Entity elem : bucket) {
// operate on this elem
tc... T .
) /7 ete Common code for all specialized algorithms
}

Listing 2: Basic bucket looping STK.

alu Algorithm Abstraction:
nalu::Kernel

m nalu::Kernel is a part of a PDE that is activated for a given
simulation, e.g., advection_diffusion, time_derivative,
buoyancy, etc.

m The superset of all fields, master element calls, e.g., grad_op(),
area_vec(), required for all kernels are provided in prereq_data

Algorithm::execute ()
{
for(elem : elements) {
//gather coords, compute gradients, etc
for(kernel : computeKernels) {
kernel ->execute (elem, prereq_data, lhs, rhs);
}
apply_coeff (lhs, rhs, ...);
}
}

Listing 3: Basic Algorithm/Kernel loop structure.

alu Algorithm Abstraction:
nalu::Kernel::Kernel()

m nalu::Kernel is templated on AlgTraits, e.g., integration rule
such as nodesPerElement_, numintgPoints_, etc.

template<typename AlgTraits>
MomentumNSOElemKernel <AlgTraits >::MomentumNSOElemKernel (
ElemDataRequests& dataPreRegs)
{
// define master element rule for this kernel
MasterElement *meSCS
= sierra::nalu::MasterElementRepo::get_surface_master_element (AlgTraits::topo_)

// add ME rule
dataPreReqs.add_cvfem_surface_me (meSCS);

// add fields to gather
dataPreReqs.add_coordinates_field (*coordinates_, AlgTraits::nDim_, CURRENT_COORDINATES);
dataPreReqs.add_gathered_nodal_field (*velocityNpl_, AlgTraits::nDim_);

// add ME calls
dataPreReqs.add_master_element_call (SCS_GIJ, CURRENT_COORDINATES);

Listing 4: Attributes of a kernel; part A the constructor.

alu Algorithm Abstraction:
nalu::Kernel::execute()

template<typename AlgTraits>

void

MomentumNSOElemKernel <AlgTraits >::execute(
SharedMemView <DoubleType**>& lhs,
SharedMemView <DoubleType *>& rhs,
ScratchViews <DoubleType >& scratchViews)

SharedMemView<DoubleType**>k v_uNpl <« Thread-local scratch arrays using
= scratchViews.get_scratch_view_2D (*velocityNpl_); A KOkkOS SharedMemV|eW

SharedMemView <DoubleTypex***>& v_gijUpper
= scratchViews.get_me_views (CURRENT_COORDINATES).gijUpper;

for (int ip = 0; ip < AlgTraits::numScsIp_; ++ip) {

// determine scs wvalues of interest
for (int ic = 0; ic < AlgTraits::nodesPerElement_; ++ic Templated
// assemble each component
for (int k = 0; k < AlgTraits::nDim_;

++k) {

// determine scs wvalues of interest
for (int ic = 0; ic < AlgTraits::nodesPerElement_; ++ic) {

// save off welocityUnpl for component k

const DoubleType& ukNpl = v_uNpl(ic,k); MD'array I’athel’ than

// denominator for nu as well as terms for "upwind" nu error-prone
for (int i = 2; i < AlgTraits::nDim_; ++i) { pOInter arlthmath

for (int j 0; j < AlgTraits::nDim_; ++j) {

gUpperMagGrad += constant*v_gijUpB&£L1241*;)+——————”””———————

}
}

Listing 5: Attributes of a kernel; part B the body.

alu Algorithm Abstraction:
Kokkos integration, parallel for()

m Team-based nested Kokkos::parallel_for() model

parallel_for()

Algorithm::execute ()

{

int bytes_per_thread = //scratch bytes per element
auto team_exec = get_team_policy(... bytes_per_thread, ...):
Kokkos::parallel_for (team_exec, buckets, [&](team)
{
ScratchViews scratchViews(topo, meSCS, dataNeeded ...);
Kokkos::parallel_for (team, bucket.size()) { .
fill_pre_req_data(dataNeeded, elem, ..., scratchViews); scratchViews
for(kernel : computeKernels) {
kernel ->execute (elem, lhs, rhs, scratchViews);

}

}
apply_coeff (1lhs, rhs, ...);

fill_pre-req_data()

Listing 7: Thread-parallel Algorithm structure.

alu Algorithm Abstraction:
STK::SIMD

m Explicit SIMD instructions allow Nalu to take advantage of
vector processing units even when auto-vectorization
(compiler-based) fails

stk::simd::Double x
stk::simd::Double y
stk::simd::Double 2z

1.0;
2.0;
stk::math::sqrt (x*y);

Listing 8: Basic SIMD Usage.
m STK::simd::Double is an array of doubles at the enabled vector
instruction set

void execute(const DoubleType* densityAtElemNodes, DoubleType* rhs)
{
for(i : nodesPerElement) {
rhs[i] = f(densityAtElemNodes [i]);
}
}

Listing 9: Function using DoubleType.

alu Algorithm Abstraction:

nodes-per-elem = 4,
stk::simd::ndoubles = 4

rhs: DoubleType[nodes-per-elem]

rhs[0] —-F T
rhs[1] : -
rhs[2] —-:
rhs[3] —:

Element 0O,
Element 1,
Element 2,
Element 3,

Element O,
Element 1,

node 0
node 0
node 0
node 0

node 1
node 1

Figure 5: Interleaved array illustration.

STK::SIMD

DoubleType
stk::simd::double
stk::simd::ndoubles

Application SIMD code
must, therefore, gather,
copy and interleave data
manually

A note on Performance

= Data from FY17/Q4 ExaWind study, “Deploy Nalu/Kokkos
algorithmic infrastructure with performance benchmarking”

m Project is focused on KNL

m Unit-test and code application-driven (solver performance
performed (GMRES/SGS) however, will not be reported here
(learning KNL/threading expertise on Cori, Trinity, etc)

® Interior master element methods transitioned from F77-based
to Kokkos/SIMD for increased performance

Unit Test Findings; SIMD

m Unit test was promising: >5x improvement KNL

v sierra::nalu::AssembleEIemSoIverAlgorithm::exé 2.240s |
p sierra:;:nalu::MomentumNSOElemKernel<siert, 0.900s (G

b sierra::nalu;:MomentumAdvDiffElemKernel<si| 0.660s |(D
» sierra::nalu:fill_pre_req_data | 0.380s GEE

p sierra::nalu:fill_master_element_views | 0.140s @

p sierra::nalu:extract_vector_lane | 0.080s @

» sierra::nalu:copy_and_interleave | 0.060s 8

B sierra::nalu::ScratchViews<doub|e>::~ScratchVie|E: 0.020s |

Figure 7: Two Momentum Kernels unit-test, 125000 Hex-8 elements, KNL
architecture.

v sierra::nalu::AssembleEIemSoIverAlgorithm::execute(void)::{Iambda(Kokkos::Impl::Hos‘ 8.500s (D

» sierra::nalu;:MomentumNSOElemKernel<sierra::nalu::AlgTraitsHex8> ::execute 5.100s (D
p sierra::nalu;:MomentumAdvDiffElemKernel<sierra::nalu::AlgTraitsHex8> ::execute | 2.180s CEEEEED
v sierra::nalu:fill_pre _req_data | 1.060s EEB

» sierra::nalu::MasterElementViews<double>:fill_master_element_views 0.760s @B

» sierra::nalu::gather_elem_node_field
p sierra::nalu::gather_elem_node_field_3D
» sierra::nalu::gather_elem_node_tensor _field

Figure 6: Two Momentum Kernels unit-test, no SIMD, 125000 Hex-8 elements,
KNL architecture.

aswell/KNL Application Code
Matrix Assembly Performance

m Test case: Re 50k turbulent open-jet (LES)
m Modest sized problems, O(150)M; RHS and LHS timings

ca pt u re d Table 1: Table showing the details of parallel execution (MPI ranks and OpenMP
threads) for the various code configuration results shown in this section.
Haswell KNL
Code Num. | MPI | Ranks per OMP | Nodes | MPI | Ranks per OMP
Configuration || Nodes | ranks node | Threads | Nodes | ranks node | Threads
Coarse P =1 mesh (17.5M HEX-8 elements)
Hybrid 5 160 32 1 5 320 64 1
Baseline 5 160 32 1 5 320 64 1
C1 5 160 32 1 5 320 64 1
C2 5 160 32 1 5 320 64 1
C3 10 160 16 2 5 320 64 2
C4 10 160 16 2 5 320 64 2
Fine P =1 mesh (140M HEX-8 elements)
Hybrid 40 | 1280 32 1 40 | 2560 64 1
Baseline 40 | 1280 32 1 40 | 2560 64 1
C1 40 | 1280 32 1 40 | 2560 64 1
C2 40 | 1280 32 1 40 | 2560 64 1
C3 80 | 1280 16 2 40 | 2560 64 2
C4 80 | 1280 16 2 40 | 2560 64 2
Coarse P = 2 mesh (17.5M HEX-27 elements)
Baseline 40 | 1280 32 1 40 | 2560 64 1
C1 40 | 1280 32 1 40 | 2560 64 1
C2 40 | 1280 32 1 40 | 2560 64 1
C3 80 | 1280 16 2 80 | 2560 32 2
C4 80 | 1280 16 2 80 | 2560 32 2

Table 2: Matrix assembly timing comparisons on Haswell partition of NERSC
Cori system. Code configurations: H — Hybrid element/node algorithm; B —

Baseline non-consolidated algorithm; C1 — consolidated kernel algorithms; C2
— C1 with SIMD datatypes; C3 — C2 with OpenMP threading; C4 — C3 wi

sumInto(...) and SIMD interleave optimizations.

Haswell General Application Findings

Matrix assembly time (s) / Speedup ratio
Equation Hybrid | Baseline | Conf. C1 | Conf. C2 | Conf. C3 | Conf. C4 | B:C1 | C1:C2 | B:C2 | B:C3 | B:C4 | H:B | H:C4
Coarse P =1 mesh (17.5M HEX-8 elements)
Momentum 233.9 264.5 278.0 219.2 154.7 1159 | 0.95 1.27 | 1.21 1.71 | 2.28 | 0.88 | 2.02
Continuity 60.9 60.9 61.2 50.8 36.8 272 | 0.99 1.21 1.20 | 1.66 | 2.24 | 1.00 | 2.24
TKE 70.1 93.2 94.3 70.1 52.2 419 | 0.99 1.34 | 133 | 1.78 | 2.23 | 0.75 1.67
Mix. Frac. 68.8 91.7 86.6 62.5 45.9 36.1 1.06 1.38 | 147 | 2.00 | 2.54 | 0.75 1.91
Fine P = 1 mesh (140M HEX-8 elements)
Momentum 246.9 277.8 290.1 228.8 161.1 118.2 | 0.96 1.27 | 1.21 1.72 | 235 | 0.89 | 2.09
Continuity 64.4 64.4 65.1 54.4 38.5 289 | 0.99 1.20 | 1.18 | 1.67 | 2.23 | 1.00 | 2.23
TKE 73.9 97.7 99.2 73.9 55.6 449 | 0.98 1.34 | 1.32 | 1.76 | 2.17 | 0.76 | 1.64
Mix. Frac. 72.5 96.1 90.9 66.1 48.2 38.3 | 1.06 1.38 | 145 | 1.99 | 2.51 | 0.76 1.89
Coarse P =2 mesh (17.5M HEX-27 elements)
Momentum = 967.3 937.6 697.7 470.3 392.2 | 1.03 1.34 | 1.39 | 2.06 | 247 = -
Continuity = 2494 201.1 172.0 118.9 95.5 | 1.24 1.17 | 1145 | 2.10 | 2.61 = =
TKE = 254.5 277.1 257.9 157.6 132.7 | 0.92 1.07 | 10.99 | 1.61 1.92 - -
Mix. Frac. = 251.7 261.4 243.0 1474 123.6 | 0.96 1.08 | 1.04 | 1.71 | 2.04 = -

Table 3: Matrix assembly timing comparisons on KNL partition of NERSC Cori
system. Code configurations: H — Hybrid element/node algorithm; B — Baseline

non-consolidated algorithm; C1 — consolidated kernel algorithms; C2 — C1 with
SIMD datatypes; C3 — C2 with OpenMP threading; C4 — C3 with sumInto(..

and SIMD interleave optimizations.

KNL General Application Findings

Matrix assembly time (s) / Speedup ratio
Equation Hybrid | Baseline | Conf. C1 | Conf. C2 | Conf. C3 | Conf. C4 | B:C1 | C1:C2 | B:C2 | B:C3 | B:C4 | H:B | H:C4
Coarse P =1 mesh (17.5M HEX-8 elements)
Momentum 329.6 398.0 473.0 352.0 250.7 203.1 | 0.84 134 | 113 | 1.59 | 196 | 0.83 | 1.62
Continuity 91.7 91.7 98.1 73.3 54.2 41.1 | 0.94 1.34 | 1.25 | 1.69 | 2.23 | 1.00 | 2.23
TKE 117.6 156.5 170.7 101.5 81.4 64.6 | 0.92 1.68 | 1.54 | 1.92 | 242 | 0.75 1.82
Mix. Frac. 115.2 154.0 152.2 87.3 67.0 53.0 | 1.01 1.74 | 1.76 | 230 | 290 | 0.75 | 2.17
Fine P =1 mesh (140M HEX-8 elements)
Momentum 343.0 419.4 493.0 374.9 266.2 2209 | 0.85 1.32 | 1.12 | 1.58 | 1.90 | 0.82 1.55
Continuity 97.1 97.1 105.4 80.2 61.0 46.9 | 0.92 1.31 | 1.21 | 1.59 | 2.07 | 1.00 | 2.07
TKE 123.8 165.7 184.6 114.9 94.3 76.8 | 0.90 1.61 1.44 | 1.76 | 2.16 | 0.75 1.61
Mix. Frac. 121.6 163.3 162.6 96.7 76.4 61.5 1.00 1.68 | 1.69 | 2.14 | 2.66 | 0.74 1.98
Coarse P =2 mesh (17.5M HEX-27 elements)
Momentum = 1746.8 1642.3 894.0 456.2 379.4 | 1.06 1.84 | 1.95 | 3.83 | 4.60 - -
Continuity = 370.8 308.5 228.9 114.6 94.8 | 1.20 1.35 | 1.62 | 3.23 | 3.91 = -
TKE = 449.6 496.8 290.1 146.9 126.1 | 0.90 1.71 | 1.55 | 3.06 | 3.57 - -
Mix. Frac. = 446.0 461.0 276.9 140.2 119.7 | 0.97 1.67 | 1.61 | 3.18 | 3.73 - -

—

«©r

Conclusions

m The ECP-funded project is focused on low-Mach unstructured
turbulent flow using implicit matrix solves

m The Nalu open-source code base is the base code from which
NGP improvements are being made

= Kokkos has been used for the performance/portability design

m stk::SIMD is used for vectorization when and if the compiler can
not perform this task

m KNL and Haswell performance shows modest increase in SIMD
m Higher-order kernels are showing larger speed-ups
m P=2 kernel now < 2x that of the same P=1 kernel
m Path forward:
- Convert all remaining master elements for hybrid meshes
&% - Continue testing and improving of Kernels/solvers

s to the Nalu NGP Applications
team

m Robert Knauss and Alan Williams (SNL ExaWind)
m Shreyas Ananthan (NREL ExaWind)

m Thanks also to synergistic work conducted at SNL:
- Cristian Trott, FY16 Nalu/STK NGP prototyping
- The Sierra Thermal/Fluids Aria team:

+ Victor Brunini
+ Jonathan Clousen

- STK::SIMD:
+ Mike Tupek

ormance Benchmdrking of
Atmospheric Boundary Layer LES

m Physics models required for wind-plant scale simulation of
the atmospheric boundary layer (ABL)

- Surface shear stress boundary condition

. COFiOIiS source term Nalu simulation of ABL driven by
atmospheric pressure gradient
Nalu Verification result for Ekman balanced with Coriolis

spiral exact solution | Wind Speed|

4.8 6.3 77 9.2 10.6
2500 \ \]

—Geostrophic wind direction (exact)
2000 1 —Lateral direction (exact)
* Nalu

=
Ll
o
o

Height (m)

1000 -

500 -

1 1 1
0 5 10 15 20
Velocity (m/s)

