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Introduction
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• Efficient operation of SI engines requires combustion phasing near 10°CA.

• In practice, knocking significantly inhibits SI engine efficiency by forcing 

delayed combustion phasing.

• Knocking also prevents increases in engine compression ratio.

• Anti-knock quality of fuel is important.
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Fuels Matrix

• Customer selects fuel based on AKI or RON.

• However, RON and MON are both important.

• Here, study three RON = 98 fuels, and

one regular E10 gasoline.

• S = RON – MON.

• Octane sensitivity and composition vary greatly.

E10

RD5-87

Alkylate E30 High 

Aromatic

AKI 88 97 93 93

S 7 1 10 11

RON 92 98 98 98

MON 85 97 88 87

Ethanol [vol.%] 11 0 30 0

Aromatics [vol.%] 21 0 8 31

T90 [°C] ? 106 155 158
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Relevance of RON & MON for Transients?

• RON and MON are determined for steady-state conditions.

• Actual vehicle operation is usually not steady-state.

SAE 2015-24-2538, Riis Johansen et al.

• What is the relevance of RON and MON for load transients?



Research Engine Characteristics

• DISI, CR = 12:1, 0.55 L.

• Well-mixed charge operation.

– 3- or 4- injection strategy for low 

PM emissions.

• Single intake valve.

– Intake swirl.

– No valve overlap.
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Low Residual Level



Establish Steady-State

• Motored to steady-fired operation.

• E30 fuel, Pin ≈ 79 kPa, ST = -5.6°CA.

• Time constants ≈ 10’s of s.

• True steady-state KL operation is not 

achieved for many minutes.

• Adjust Spark Timing (ST) to achieve 

Knock Intensity (KI) ≈ 70 kPa.

• Record 500 consecutive cycles.

• Report average CA50 as KL-CA50.

7



0

5

10

15

20

25

30

35

50 60 70 80 90 100 110 120 130 140 150 160

K
n

o
c
k
-L

im
it

e
d

 C
A

5
0
 [
°
C

A
]

Intake Pressure [kPa]

RD5-87, RON92, S7

Alkylate, RON98, S1

High Aromatic, RON98, S11

E30, RON98, S10

RON98
K ≈ 0

1400 rpm
Well-mixed SI

φφφφ= 1.0

S
te

a
d

y

Steady-State Operation Reveals Benefit of High-RON Fuels
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• RON98 fuels provide knock suppression benefits, compared to RON92 fuel.

• RD5-87 develops low-temperature heat release (LTHR) at highest Pin.

RD5-87 LTHR

Alkylate LTHR



RD5-87 and Alkylate Exhibit NTC Behavior
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• RD5-87 develops LTHR at highest Pin.

• Increased Tin suppresses LTHR, and KL-CA50 advances.

• RD5-87 and Alkylate both show clear NTC behavior in this regime.

– See SAE Paper 2017-01-0662 for detailed examination of RON98 fuels.

• Even so, the reduction of temperatures for load-transient operation 

provides strong knock-suppression benefit for all fuels ⇒

RD5-87, Pin = 90 kPa
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Load-Transient Operation Reveals Benefit of High-S Fuels
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• The reduction of temperatures for load-transient operation provides strongest 

knock-suppression benefit for fuels with moderate to high S.

• Smallest benefit for low-S Alkylate.

– Alkylate fuel is deep into NTC regime for steady-state operation.

– Displays LTHR even for cooler transient operation.



Test Regimes: Steady State and Transient

• First fired cycle likely not 

representative of real operation.

– Cold air-only residuals.

• Consider 10’s of cycles, by operating 

in a 20 fired / 80 skipped mode.

• Lower thermal state is evidenced by 

higher volumetric efficiency.
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Data Collection: 20/80 Firing Cycle

• 20 fired cycles followed by 80 motored cycles 

– Only 3 motored cycles are recorded – 1 ahead of sequence and 2 afterwards.

– 50 repetitions of 20/80 sequence are recorded = 1000 fired cycles.

• Fluctuations seen in both firedeck temperature and dynamometer torque

– Effects of 20/80 sequence and cooling-water control.

– Firedeck temperatures 25°C lower than steady-state KL operation.
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E30 Heat Release

• E30 exhibits consistent AHRR across batch of 20  cycles

• Highly repeatable end-gas autoignition observed, which leads to light knock

13



Alkylate Heat Release

• Alkylate AHRR exhibits strong transient behavior for each 20-cycle batch.

• LTHR never occurs on first cycle, but occurs on all subsequent cycles.

• End-gas autoignition exhibit greater variation ⇒ occasional strong knock.
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20-Cycle Transient

• Only Alkylate shows clear LTHR for 

20/80 load-transient operation.

• LTHR magnitude builds rapidly when 

firing starts for each 20-cycle batch.

• Alkylate flame development is very 

slow without LTHR.

• Averages are based on 50 repetitions.

15



20-Cycle Transient

• IMEP approaches quasi-steady state 

surprisingly quickly.

• Alkylate was prone to misfire on the 

first cycle.

– Slow flame development.

– Alkylate never knocks on first cycle.

• Generally, Knock Intensity increases 

steadily for all fuels.

• Spark timing adjusted for KI ≈ 70 for 

last 17 cycles.

16

Average KI ≈ 70



20-Cycle Transient

• Spark timing adjusted for KI ≈ 70 for 

last 17 cycles.

• Average of last 17 cycles reported as 

KL-CA50.

– Eliminates effect of residual transient.

17

Average KI ≈ 70

Reported KL-CA50



Stability of 20-Cycle Transient

• Across full 20-cycle batch, IMEP variability is higher than steady-state.

• However, COV of last 17 cycles is comparable to steady-state.

– When residual transient is excluded.

18

Fuel Alkylate Alkylate

Intake Pressure 110 kPa 116.5 kPa

Operation Steady State Transient

KL-CA50 28.1 CAD aTDC 27.3 CAD aTDC

COV IMEP 1.6 % -

COV IMEP All 20 Fired - 7.8 %

COV IMEP Final 17 Fired - 1.9 %



0

5

10

15

20

25

30

35

50 60 70 80 90 100 110 120 130 140 150 160

K
n

o
c
k
-L

im
it

e
d

 C
A

5
0
 [
°
C

A
]

Intake Pressure [kPa]

RD5-87, RON92, S7

Alkylate, RON98, S1

High Aromatic, RON98, S11

E30, RON98, S10

RON98
K ≈ 0

1400 rpm
Well-mixed SI

φφφφ= 1.0

S
te

a
d

y

RON98
K ≈ -2

Load-Transient Operation Reveals Benefit of High-S Fuels
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• Steady-state: All RON98 fuels provide knock suppression benefits, compared to RON92.

• Load Transient: RON98 low-S Alkylate fuel (AKI = 97) is outperformed by RON92 RD5-
87 (AKI = 88).

• Put these results in context of Octane-Index framework.



Octane Index Framework
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MON RON

Lower pressure 
for a given 

temperature

K=1

Higher 
pressure for a 

given 
temperature

K=0

Beyond 
MON

K > 1
Ex: Heated 
intake / high 

residuals HCCI

Beyond 
RON

K < 0
Ex: Boosted SI,

GCI

Octane Index = RON – K • S

S = RON - MON

K = Dependent on operating 

condition

MON

RON

OI Reference: Kalghatgi, SAE 2001-01-3584.



Calculation of K
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Calculation of K

• Linear regression between KL-CA50 

and Octane Index (OI) values to 

determine K at each operating 

condition

• Sweep across range of K values

• Calculate OI for each fuel for each K 

value

• Determine which K value yields best 

fit between OI and KL-CA50 data

22

Octane Index = RON – K • S
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K-Factor
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• Steady-state operation falls 

between K = 0 and K = 0.5.

– Tin = 30°C or 90°C 

• Only for heated and throttled that 

AKI97 fuel is superior.

– Customers hoping for a winning 
race fuel may be disappointed.

• Transient operation result in

K < 0, “beyond RON” conditions.

• Realistic? AKI

E10

RD5-87

Alkylate E30 High 

Aromatic

AKI 88 97 93 93

S 7 1 10 11

RON 92 98 98 98

MON 85 97 88 87

Ethanol [vol.%] 11 0 30 0

Aromatics [vol.%] 21 0 8 31

T90 [°C] ? 106 155 158



K-Factors for Actual Vehicle Operation
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• These highly negative K-factors are consistent 

with literature.

• Naturally aspirated PFI 2003 Mercedes CLK1:

K = -1.1 during high-gear acceleration.

• Turbocharged DISI 2012 vehicle:

K = -0.6 to -0.9

Kalghatgi, SAE 2005-01-0239

Prakash et al., SAE 2016-01-0834



Fuel Performance
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• Higher load of high-S fuels is consistent with other studies showing faster 

acceleration.

• Higher efficiency is an important benefit, and justifies further fuels research.
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• Load-transient operation results in significantly improved KL-CA50’s relative 

to steady-state performance for all tested fuels.

– Due to the lower thermal state of the engine structure under transient operation.

• Transient operation allows the exploration of a wide range of Octane Index K 

values, from 0.5 to -2.3. 

• Boosted conditions lead to “beyond RON” conditions in which high-RON, 

high-S fuels exhibit improved performance over a high-RON, low-S fuel.

• Efficiency gains warrant more examination of these types of gasoline fuels.

• With non-controlled S, AKI may be a poor indicator of acceleration 

performance for downsped-downsized SI engines.

– Examined AKI97 Alkylate is the most knock limited fuel under cool boosted 

conditions.

Conclusions

Co-Optimization of

Fuels & Engines

Kevin Stork, Gurpreet Singh

Leo Breton, Mike Weismiller
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