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Introduction
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e Efficient operation of Sl engines requires combustion phasing near 10°CA.

® In practice, knocking significantly inhibits SI engine efficiency by forcing
delayed combustion phasing.

¢ Knocking also prevents increases in engine compression ratio.
¢ Anti-knock quality of fuel is important.
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‘ 5 Fuels Matrix

~7 e Customer selects fuel based on AKI or RON.
® However, RON and MON are both important.

® Here, study three RON =98 fuels, and
one regular E10 gasoline.

e S=RON — MON.
e Octane sensitivity and composition vary greatly.

Alkylate E30 High
Aromatic
AKI 97 93 93
S 1 10 11
RON 98 98 98
MON 97 88 87
Ethanol [vol.%] 0 30 0
Aromatics [vol.%] 0 8 31
T90 [°C] 106 155 158
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N\ Relevance of RON & MON for Transients?

® RON and MON are determined for steady-state conditions.
e Actual vehicle operation is usually not steady-state.
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e \What is the relevance of RON and MON for load transients?
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.i A’ Research Engine Characteristics

</ DISI,CR=12:1,0.55 L.
e Well-mixed charge operation.

— 3-or 4- injection strategy for low
PM emissions.

e Single intake valve.
— Intake swirl.

— No valve overlap.
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Establish Steady-State

CRE.

o Motored to steady-fired operation.
e E30 fuel, P,, = 79 kPa, ST = -5.6°CA.
® Time constants = 10’s of s.

® True steady-state KL operation is not
achieved for many minutes.

e Adjust Spark Timing (ST) to achieve
Knock Intensity (KI) = 70 kPa.

e Record 500 consecutive cycles.
® Report average CA50 as KL-CAS50.

Moving-Average
Knock Intensity [-]
wn
o

550

Temperature [°C]
N w S
wv wm wv
o o o

[y
wn
o

50

Temperature [°C]
-
—
o

[ 2N
o O

N W D
o O O

(a)

—Ex. Port Gas Temp (°C)

.........................................................................................................

—Firedeck Temperature (°C)

0 100 200 300 400 500 600
Time [s]
(c)
0 20 40 60 80 100 120
Time [s]

COMBUSTION RESEARCH FACILITY 7

() Sandia National Laboratories



A\ Steady-State Operation Reveals Benefit of High-RON Fuels

CY?EL « RONB98 fuels provide knock suppression benefits, compared to RON92 fuel.

f’_' - RD5-87 develops low-temperature heat release (LTHR) at highest P,
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A RD5-87 and Alkylate Exhibit NTC Behavior
,
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« RD5-87 develops LTHR at highest P;...

* Increased T, suppresses LTHR, and KL-CA50 advances.
« RD5-87 and Alkylate both show clear NTC behavior in this regime.
— See SAE Paper 2017-01-0662 for detailed examination of RON98 fuels.

« Even so, the reduction of temperatures for load-transient operation
provides strong knock-suppression benefit for all fuels =

COMBUSTION RESEARCH FACILITY 9 @ Sandia National Laboratories



5 Load-Transient Operation Reveals Benefit of High-S Fuels
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« The reduction of temperatures for load-transient operation provides strongest
knock-suppression benefit for fuels with moderate to high S.

« Smallest benefit for low-S Alkylate.
— Alkylate fuel is deep into NTC regime for steady-state operation.
— Displays LTHR even for cooler transient operation.
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' A! Test Regimes: Steady State and Transient

CRF.
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Data Collection: 20/80 Firing Cycle

o §—I

—Alkylate, 146 kPa Intake
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¢ 20 fired cycles followed by 80 motored cycles
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Time [s]

— Only 3 motored cycles are recorded — 1 ahead of sequence and 2 afterwards.

— 50 repetitions of 20/80 sequence are recorded = 1000 fired cycles.

® Fluctuations seen in both firedeck temperature and dynamometer torque

— Effects of 20/80 sequence and cooling-water control.

— Firedeck temperatures 25°C lower than steady-state KL operation.
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E30 Heat Release

—E30 Transient 146 kPa, Cycle #1
-- E30 Transient 146 kPa, Cycle #5
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® E30 exhibits consistent AHRR across batch of 20 cycles
® Highly repeatable end-gas autoignition observed, which leads to light knock
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e Alkylate AHRR exhibits strong transient behavior for each 20-cycle batch.
e LTHR never occurs on first cycle, but occurs on all subsequent cycles.
® End-gas autoignition exhibit greater variation = occasional strong knock.
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' A’ 20-Cycle Transient

~ /¢ Only Alkylate shows clear LTHR for
20/80 load-transient operation.

® LTHR magnitude builds rapidly when
firing starts for each 20-cycle batch.

e Alkylate flame development is very
slow without LTHR.

® Averages are based on 50 repetitions.
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' A! 20-Cycle Transient

~Z, 10 e T T
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' A! 20-Cycle Transient

CRE. w | [0 | I I /,
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A Stability of 20-Cycle Transient

~ /o Across full 20-cycle batch, IMEP variability is higher than steady-state.
/
® However, COV of last 17 cycles is comparable to steady-state.

— When residual transient is excluded.

2000 ; ; ;
1800 ""Alkylate, Steady, 110 kPa VVVVVVVVVVVV VVVVVVVVVVVV 7

Fuel Alkylate Alkylate 1600 —Alkylate, Transient, 116.5 kPa
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g | ST | |- - -
| St S | I 8 S| S| S "
2200 i i i i i i
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< Load-Transient Operation Reveals Benefit of High-S Fuels

. CRE.
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« Steady-state: All RON98 fuels provide knock suppression benefits, compared to RON92.

» Load Transient: RON98 low-S Alkylate fuel (AKI = 97) is outperformed by RON92 RD5-
87 (AKI = 88).

« Put these results in context of Octane-Index framework.
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A\ Octane Index Framework

4 g 1000 - AT=0.167 ms

g 900 - MON /.... o ° — e « © \\
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o ’..,./
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Beyond m B0 1 Beyond
400 -
MON 200 RON

1000 2000 3000 4000 5000 6000 ﬁ
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Ol Reference: Kalghatgi, SAE 2001-01-3584.
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Calculation of K
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Calculation of K

Octane Index = RON—-K ¢ S

® Linear regression between KL-CA50
and Octane Index (Ol) values to
determine K at each operating
condition

KL-CA50 (CAD aTDC)
]
Q

e Sweep across range of K values

e e Calculate Ol for each fuel for each K
. o value

caw | e Determine which K value yields best
_ fit between Ol and KL-CA50 data

KL-CAS50 (CAD aTDC)
N
=]

| | | | | |
70 80 90 100 110 120 130 140
Octane Index (-)
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K-Factor

“» Steady-state operation falls
" between K=0and K = 0.5.

- T,=80°Cor90°C
 Only for heated and throttled that
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2N K-Factors for Actual Vehicle Operation
W
C_REL Kalghatgi, SAE 2005-01-0239
 These highly negative K-factors are consistent . :OZZ e
’ W|th Iiterature. %38'00 82N re=09795
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’- Fuel Performance
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¢ Higher load of high-S fuels is consistent with other studies showing faster
acceleration.

® Higher efficiency is an important benefit, and justifies further fuels research.
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Conclusions

 Load-transient operation results in significantly improved KL-CA50’s relative
to steady-state performance for all tested fuels.
— Due to the lower thermal state of the engine structure under transient operation.
 Transient operation allows the exploration of a wide range of Octane Index K
values, from 0.5 to -2.3.

« Boosted conditions lead to “beyond RON” conditions in which high-RON,
high-S fuels exhibit improved performance over a high-RON, low-S fuel.

 Efficiency gains warrant more examination of these types of gasoline fuels.
 With non-controlled S, AKI may be a poor indicator of acceleration
performance for downsped-downsized Sl engines.

— Examined AKI97 Alkylate is the most knock limited fuel under cool boosted
conditions.

Kevin Stork, Gurpreet Singh

, U.S. DEPARTMENT OF B Co-Optimization of
Leo Breton, Mike Weismiller &

ERGY Fuels & Engines

SAE INTERNATIONAL SAE 2017-01-2234 26




2N Acknowledgements

The authors would like to thank Alberto Garcia, Gary Hubbard, Keith Penney,

Chris Carlen and Tim Gilbertson for their dedicated support of the DISI
laboratory.

The work was performed at the Combustion Research Facility, Sandia
National Laboratories, Livermore, CA. This research was conducted as part of
the Co-Optimization of Fuels & Engines (Co-Optima) project sponsored by the
U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable
Energy (EERE), Bioenergy Technologies and Vehicle Technologies Offices.
Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a
wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energy’s National Nuclear Security Administration under
contract DE-NAOOO3525.

COMBUSTION RESEARCH FACILITY 27 @ Sandia National Laboratories



