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The here-described spectrometer was developed for the Extended X-ray Absorption Fine Structure (EXAFS) 
spectroscopy of high-density plasmas at the National Ignition Facility (NIF). It employs as the Bragg 
reflecting element at new type of toroidally bent crystal with a constant and very large major radius R and a 
much smaller, locally varying, minor radius r. The focusing properties of this crystal and the experimental 
arrangement of source and detector make it possible to (a) fulfill the conditions for a perfect imaging of an 
ideal point source for each wavelength, (b) obtain a high photon throughput, (c) obtain a high spectral 
resolution by eliminating the effects of source-size broadening, and (d) obtain a one-dimensional spatial 
resolution with a high magnification perpendicular to the main dispersion plane.  

I. INTRODUCTION

X-ray diffraction (XRD) and the Extended X-ray
Absorption Fine Structure (EXAFS) spectroscopy are 
among the most widely used diagnostics in high pressure 
condensed matter studies because of their capability to 
provide information about the structural transformations 
occurring in the material at the atomic level.  Developing 
these techniques to study samples that have been ramp-
compressed to very high pressures will extend knowledge 
of matter at extreme conditions. These conditions can be 
achieved using large lasers to do the compression, such as 
the NIF lasers at Lawrence Livermore National Laboratory 
or the OMEGA laser at the Laboratory for Laser 
Energetics (Rochester, NY).1 A major challenge for the 
EXAFS spectroscopy at these facilities is, however, the 
development of a spectrometer, which satisfies the 
simultaneous requirements of a high spectral resolution 
and a high photon-throughput, for an extended spectral 
range.  Notably, the effects of source-size broadening, 
which limit the spectral resolution, have been so troubling 
that, ultimately, in order to mitigate these effects, 
painstaking ‘source development’ experiments were 
conducted at the NIF to reduce the source size itself.1,2 

An important step towards a solution of the source-size 
broadening problem by an improved spectrometer design 
was made by J. Koch,3 who proposed the use of a modified 
Johann spectrometer with a spherical Ge-220 crystal of a 
large radius of R = 4826 mm, where the x-ray source 
would be close to the crystal to enhance the photon-
throughput and where the detector would be placed on the 
Rowland circle – see Fig. 1 - to eliminate the effects of 

source-size broadening, since - at the Rowland circle - the 
separation of the rays, which emanate from different points 
of an extended source and which are Bragg reflected with 
the same Bragg angle , is minimal. 

FIG. 1. Original Figure from Koch’s proposal3. – We point 
out that the parameter values used in FIG. 1 differ from 
those which are quoted. The Bragg angle, source-crystal 
distance, and crystal-detector distance, shown, are 35° 
(instead of 13.72°), 1380 mm (instead of 150 mm), and 
2768 mm (instead of 1145 mm), respectively. 

Koch’s spectrometer design had, however, two 
shortcomings:  

1. The distance, dSC 150mm , of the source from the

central point on the crystal surface was much shorter than 
the crystal’s sagittal focal length, which - for the main 
Bragg angle in Koch’s design of 0 13.72– amounted to 

fs 
R

2sin 0 
10174mm . The image of the source was

a)Published as part of the Proceedings of the 22nd Topical Conference on
High-Temperature Plasma Diagnostics (HTPD 2018) in San Diego,
California, USA.
b)Author to whom correspondence should be addressed: 
bitter@pppl.gov

http://dx.doi.org/10.1063/1.5036806


therefore a virtual image, which was located behind the 
crystal, at the distance, dIM 152.24mm , from the central 

point on the crystal’s surface. The reflected rays, which 
seem to emanate from this virtual image, were therefore 
divergent and their points of intersection with the detector 
plane were spread out on an elliptical arc of the length H, 
which was determined by the height h of the crystal: 

H 
dIM  Rsin 0 

dIM

h  8.5h

so that for a modest height of the crystal of h 10mm , the 
height of the detector needed to be H  85mm in order to 
collect all the reflected photons. The useful height of the 
crystal and hence the attainable photon throughput were 
thus ultimately limited by the height H of the detector. – It 
is not possible to increase the photon throughput beyond 
this limit by moving the source still closer to the crystal, 
since the reflected rays are then even more divergent. - The 
realization of Koch’s idea of increasing the photon 
throughput by moving the source close to the crystal is, 
therefore, actually very much constrained. 

2. Koch’s other suggestion, namely, to eliminate the
source-size broadening effects by placing the detector on 
the Rowland circle, is not specific enough and for his 
chosen orientation of the detector plane - perpendicular to 
the main reflected ray for the Bragg angle 0 13.72- the 

source-size broadening effects are only eliminated for the 
wavelength, which is associated with the Bragg angle 0 , 

but not for the entire spectral range.  

Our new spectrometer design, which is described in 
section II, eliminates these shortcomings of Koch’s design 
and satisfies the imaging conditions for each wavelength 
perfectly. Also, the effects of source-size and crystal-
thickness broadening are eliminated for the entire spectral 
range of interest by positioning the detector at the tangency 
point of the proper tangency circle (see section II) for each 
wavelength. Thus, it is possible to obtain at once a high 
photon throughput, a high spectral resolution, and a one-
dimensional spatial resolution perpendicular to the main 
dispersion plane with a high magnification.  

II. A NEW EXAFS SPECTROMETER

A. Spectrometer Design

FIG. 2 shows the ray pattern for Koch’s design in more 
detail and introduces the concept of the ‘tangency circle’, 
which is used for our new design. The point O is the center 
of the crystal sphere and a center of symmetry, since any 
straight line through O is an axis of rotational symmetry 
that can be used for imaging. Since the imaging conditions 
require that the point source S and its image point I are 
fixed points with respect to a rotation of the ray pattern, 
these points must be on an axis of rotation, which - in the 
case of a sphere - must also pass through O. This axis of 
rotational symmetry is therefore uniquely defined if the 

position of the source S is given. The image I is then at the 
point of intersection of the axis of rotation with the 
reflected ray. For Koch’s design, the image I is a virtual 
image, which is located behind the crystal, see FIG. 2. By 
rotating the ray pattern in FIG. 2 about the axis OSI, one 
can easily visualize that the reflected rays describe a cone 
with the apex at I. The reflected rays are, therefore, 
divergent and their points of intersection with a detector 
plane, which is oriented along OU and perpendicular to the 
main dispersion plane describe a conic section, which is 
often an ellipse.  

FIG. 2. More detailed ray pattern for Koch’s design, using 
the actual dimensions of FIG. 1.  

We also infer from FIG. 2 that the reflected ray in the 
main dispersion plane is - at its intersection point U with 
the Rowland circle - tangential to the circle with the radius 
  Rcos( ) about O, since the distance of CU is equal to 

p  Rsin( ) and since the Rowland circle is Thales’ circle. 

The points U’ and U, which are usually described as the 
intersection points of the incident and reflected rays with 
the Rowland circle, can therefore also be defined as the 
tangency points of the incident and reflected rays on the 
sphere with the radius   Rcos( ) about O; the green 

circle in FIG. 2 is then the trace of this sphere in the main 
dispersion plane. The definitions of the Rowland circle and 
the tangency sphere are substantially different: The 
tangency sphere maintains the spherical symmetry of the 
ray pattern, since it is concentric with the crystal sphere. It 
can therefore conveniently be used to describe the incident 
and reflected rays at each crystal point, for a given Bragg 
angle . By contrast, the definition of the Rowland circle 
breaks the spherical symmetry by singling out a particular 
crystal point, e.g., the point C in FIG. 2, since the Rowland 
circle passes through O and a particular point of Bragg 
reflection. In principle, one must define a Rowland circle 
for each crystal point, so that there is an infinite number of 
equivalent Rowland circles.  
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The concept of the ‘tangency’ sphere is also useful for 
a description of the ray pattern from an extended source, a 
derivation of the Johann error and an understanding of the 
source-size broadening effects. For this purpose, we 
consider in FIG. 3, the ray pattern from an extended source 
for the Bragg angle  = 59° > 45°, where the images I are 
real. The ray pattern, shown in FIG. 3, is actually a 
superposition of the identical ray patterns from three 
source points S0, S1, and S2 of an extended source. The 
points C0, C1, C2 and U0, U1, U2 are, respectively, the 
points of Bragg reflection and the tangency points for the 
reflected rays on the tangency circle with . 

The points U0, U1, U2 are also the positions of the real 
images I0, I1, I2. Since the three ray patterns are identical, 
they can be made congruent by a rotation about an axis 
through O that is perpendicular to the drawing plane of 
FIG. 3 by an angle . We infer from FIG. 3 that the 
reflected rays from C1 (red ray) and C2 (green ray) 
intersect each other at a point outside of and at a distance  
from the tangency circle, on the extension of the line 
segment OU0. This distance  is given by the equation, 
  cos()   ; and the solution of this equation, if 

and  can be considered as small quantities, is the well-

known Johann error:    
2

2
 w2

8R
cos( ) , where  has 

been expressed by the width w = C1C2 of the crystal. 

FIG. 3. Ray pattern for the Bragg angle  = 59° and three 
source points S0, S1, and S2 of an extended source. 

The Johann error is the minimum separation between the 
rays, which emanate from an extended source and which 
are Bragg reflected from a spherical crystal of the width w 
with the Bragg angle . This minimum occurs at the 
tangency point U0, which is therefore the preferred 
detector position, if it is necessary to eliminate source-size 
broadening effects in order to enhance the spectral 

resolution. Evidently, the spatial extension of a source will 
not be noticeable if the detector is placed at U0 and if the 
Johann error is smaller than the detector resolution.  

Also the detrimental effects to the spectral resolution 
which result from the penetration of the x-rays to lattice 
planes deep inside the crystal, the so-called crystal-
thickness broadening, can be minimized by positioning the 
detector at U0, since the Bragg reflection from those lattice 
planes leads to a lateral displacement of the exiting (Bragg 
reflected) ray from the incident ray on the front surface of 
the crystal that is similar to the displacement between the 
Bragg reflection points (C1 and C2 in FIG 3) in the case of 
an extended source. The crystal-thickness broadening leads 
thus to an additional Johann error at U0 that could be 
subsumed in the Johann error, which results from the 
spatial extension of the source.   

In the following, we describe our design of an EXAFS 
spectrometer for the x-ray energies 8.877  E 10.877keV
which include the energy of the TaL3 absorption edge at 
9.877 keV. Our design is based on Koch’s original design. 
But, instead of a spherical crystal, we use a toroidally bent 
crystal with a varying minor radius. This special crystal 
shape evolved from an application of basic physics 
principles as we tried to satisfy the imaging conditions for 
each wavelength and to generate a real image, at the 
tangency point of the reflected rays with the proper 
tangency spheres. The essential features of our design are 
shown in FIG. 4 and are further explained below. 

FIG. 4. Arrangement of source, crystal and image points in 
the main dispersion plane (x,y-plane).  

 The crystal is a Ge[400]-crystal with the 2d-lattice 
spacing of and a large major radius R = 
3068 mm. Its trace in the main dispersion plane is shown 
by the black circle with the radius R about the point (x=0; 
y=0). Also, similar to Koch’s design, the source is placed 
at a short distance, , from the central point 

(x=0; y=R) on the crystal surface. The points, shown in 
green, represent 21 crystal points, which are the points of 
Bragg reflection for 21 equidistant x-ray energies in the 
interval from 8.877 to 10.877 keV. The central crystal 
point at x=0, y=R is associated with the energy E=9.877 
keV of the TaL3 absorption edge. The points, shown in red, 
are the tangency points of the Bragg reflected rays in the 
main dispersion plane with the circles of the radii

  Rcos( )

2d  2.82868Å

dSC  280mm
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about x=0,y=0 for those 21 x-ray energies. 

Only three of these tangency circles, for the energies E = 
8.877; 9.877; 10.877 keV and the corresponding Bragg 
angles  = 29.588; 26.345; 24.482°, are shown in magenta 
in FIG. 4 together with the incident and reflected rays. In 
order to create, for each wavelength, a real image of the 
source at the tangency point for the Bragg reflected ray 
with the proper tangency circle in the main dispersion 
plane, we demand that the interconnecting straight (blue) 
lines between the source and the tangency point for each 
wavelength are axes of rotational symmetry for the crystal. 
The source point and the tangency points are then fixed 
points with respect to rotations of the ray patterns for each 
wavelength about those axes. The short line segments 
(blue), which are normal to these axes of rotational 
symmetry and which extend from these axes up to the 
points of Bragg reflection, represent the locally varying 
minor radii r of a toroidally bent crystal. We point out that 
according to the above given formula, the Johann error at 
the here defined image points, would only be about 0.3 
m, for a relatively large, 2 mm wide, extended source and 
our design parameters. 

B. Dispersion

The wavelength dispersion is defined as 
d
ds

, where  

is the wavelength and where s  is the length of arc on 
which the image points are distributed in the main 
dispersion plane. We use the following formulas:  

(1) ds  1 dyI

dxI











2

dxI

where xI  and yI  are the coordinates of the image points in 

the main dispersion plane. Equation (1) can be rewritten as  

(2)
ds

d
 1 dyI

dxI











2

 dxI

d

FIGS. 5 and 6 show the functions yi xI  and xi () on

enlarged scales and demonstrate that, for the parameters of 
our present design, these functions are well approximated 

by straight lines with the slopes 
dyI

dxI

 1.79 and 

dxI

d
 474.77[mm / Å]. Inserting these numerical values in 

eq. (2), we get 

 (2’)
ds

d
 972.12[mm / Å]

and  

 (1’) 
d
ds

1.03 [mÅ / mm]   

The resolving power derived from eq. (1’) for the 
case that the detector is an image plate, assuming a 100 m 
detector resolution, is 12000, which should be sufficient to 
accurately measure the EXAFS oscillations near the TaL3 
absorption edge, since the period of theses oscillations is 
about 50 eV – see FIG. 5c in ref [6] and FIG. 9b in ref. [7].  

FIG. 5. Image points in the detector plane (red) and the 
straight line (green) connecting the end points (xI=1165.93 
mm, yI=2554.36 mm) and (xI=1287.86 mm, yI=2336.51 
mm). 

FIG. 6. Abscissa xI of image points (green) as a function of 
 and straight line (blue) connecting the endpoints.

The required length of the detector to cover the energy 
range, 8.877 < E < 10.877 keV, is: 

 (3) 

where  and  correspond to 

the x-ray energies of 8.877 and 10,877 keV. 

C. Spatial Resolution

Our spectrometer design also provides a 1D spatial
resolution with a magnification M, given by 

(4) M 
Rsin( )cos( )

dSC cos( )


R

dSC

sin( )  

  Rcos( )

s  ds

d
 1  2   249.7mm 

1 1.39669Å 2 1.13987Å
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III. DISCUSSION AND CONCLUSIONS

The novelty of our spectrometer a toroidally bent
crystal with a varying minor radius, which changes in 
magnitude and direction along the crystal surface to 
establish, at each crystal point, the proper rotational 
symmetry for the imaging of an ideal point source. The 
axis of the rotational symmetry and the minor radius are at 
each crystal point uniquely defined by the law of Bragg 
reflection and the positions of source and image on the 
incident and reflected rays. In particular, one can choose a 
source position close to the crystal to enhance the photon 
throughput and then generate, for each wavelength, a real 
image at the point with the minimum Johann aberration in 
order to eliminate the effects of source-size broadening. In 
doing so, one obtains not only a high spectral resolution 
but also a high spatial resolution perpendicular to the main 
dispersion plane. - We point out that, in Koch’s design, the 
divergence of the reflected rays precludes the possibility of 
obtaining a spatial resolution. – Our new toroidal crystal 
spectrometer offers, therefore, a high degree of flexibility 
and new features that are unmatched by any of the existing 
spectrometers. In fact, the toroidal crystal spectrometers, 
which are presently being used for the diagnosis of laser-
produced plasmas – see, e.g. E. J. Gamoa et al. [4] - are 
distinctly different from our spectrometer due to the fact 
that these spectrometers use a conventional toroidal crystal 
form with a constant minor radius which at every crystal 
point is aligned with the normal to the crystal surface. 

The differences between our spectrometer and the 
traditional toroidal crystal spectrometer are further 
explained with aid of FIG. 4, where the black circles with 
the radii R = 400 mm about O and RR = R/2 about M 
represent the trace of a toroidal crystal and the Rowland 
circle in the main dispersion plane. The crystal point C is 
the point of Bragg reflection. The ray, which is incident on 
C with the Bragg angle , is assumed to emanate from an 
ideal point source that may be positioned at S1 or S2. We 
demand that the image of S1 or S2 is a real image at the 
point I on the Rowland circle. 

FIG. 7. Illustration of the differences between a torus with 
varying minor radius and a conventional torus. 

In the case of a conventional torus, the major and 
minor radii, Rt and rt, are perfectly aligned with each other 
in the main dispersion plane. The axis, associated with the 
rotational symmetry of the ray pattern, must therefore be 
perpendicular to the straight line from O to C and pass 
through I and S1, since the source and image points must be 
on the axis of rotation. It then follows that I and S1 have to 
be both on the Rowland circle; and the major and minor 
radii must be equal to Rt = OP and rt CP  Rsin2( ) , 

since the distances of S1 and I, from the point of Bragg 
reflection C, are equal to Rsin( ) . With a conventional 
toroidal crystal, one can simultaneously satisfy the 
conditions for imaging and eliminate the effects of source-
size broadening for only one particular wavelength The 
associated Bragg angle,  and minor radius, rt(), 
must fulfill the relation rt  Rsin2 ()  . For this

particular wavelength , one also obtains, a 1D spatial 
resolution perpendicular to the main dispersion plane with 
the magnification of M = 1. However, for any other 
wavelength and any other source and detector position, the 
basic physics principles for imaging are violated. 

On the other hand, it is possible to construct, for any 
given image point I and source point S2 a torus with 
varying minor radius rt CT - see FIG. 7- such that the 

Bragg condition and the imaging conditions are fulfilled; 
and, as we have shown in this paper, this can be done for 
each wavelength in an extended spectral range. 

Our spectrometer design for EXAFS studies of the 
TaL3 absorption edge will be tested at the Laboratory for 
Laser Energetics (LLE) in Rochester during this fall and 
then, depending on the outcome of this test, also be used 
at the NIF. The specifications and procedures for the 
manufacture and alignment of a toroidal crystal with 
varying minor radius are presently being defined and will 
be described in a subsequent paper. 
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