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Counter Adversarial Data Analytics (in general)
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Common Wisdom: If white and 
fuzzy, then harmless

Goal: to be the 
suspicious sheep



Philosophy

3

We must learn to love life

without ever trusting it

We must learn to love  life  data
… without ever trusting it.

Our broad question: how to turn this 
into quantifiable, practical advice?



An Algorithmically Informed, 
Empowered Adversary 

 For the current talk, we assume the worst case: an adversary that knows 
every detail of our analytic and has some ability to alter the network. 
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We aim to quantify just how badly we are hosed. 

Fully Informed . . . . . . And Empowered 



Community Detection For Prioritizing 
Investigation 
 Red and blue are the “temperatures” of nodes.

A community’s temperature is the average of its nodes.
The hotter the community, the more likely to be scrutinized. 
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 The red fiend is the adversary node. Its goal: not be in a hot community. 
Attack: add links (orange) from self, to tamper with community structure. 
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Node Vs. Community Temperature 

 Hot (red) = 1, Cold (blue) = -1, 
Unknown = 0. 

 Community temperature is the average of 
nodes. 

 So higher temperature means more 
suspicious. 

 Compute the average temperature in each 
community 

 • A: T = (6×1+2×−1)/8 = 0.500 

 • B: T = (1×1+6×−1)/7 = −0.714 

 • C: T = (3×1+5×−1)/8 = −0.250 

 • D: T = (5×1+2×−1)/7 = 0.429 

 • E: T = (2×1+6×−1)/8 = −0.500 
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One Louvain of 

One Stratified Random Attack 
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Twenty Louvains of 
One Stratified Random Attack
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2,000 Louvains of 
One Stratified Random Attack 
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2,000 Louvains of
20 Stratified Random Attacks 
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Stratified Random Attack Against
One Node Only 
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Different Probe Nodes Yield 
Different Curves
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So Average Across All Probe Nodes 
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This, finally, is an overall efficacy curve for the ``stratified random'' attack 
as applied to a single graph.



We’ve Devised Multiple Attacks 
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 Stratified Random: 
 Cold, then unknown, then hot nodes; 

 Each cohort randomly ordered. 

 Cold and Lonely: 
 Cold nodes in order of increasing 

degree, unknown in random order, hot 
nodes in order of decreasing degree; 
each cohort randomly ordered. 

 Greedy Pesimal: 
 Exhaustively search for best 

unattacked node to attack; repeat. 
(Infeasible for real graphs.) 

Recall: an “attack” is just a heuristic for choosing the “who to link to” 
ordering of all of the other nodes in the graph.

ham_2_core.dot 
www.kenwoodusa.com
# Probe vertex above here 
mail.google.com
video.google.com
checkout.google.com
www.elkantennas.com
news.google.com
www.google.com
maps.google.com
chrome.google.com
www.blogger.com
google.com
code.google.com
services.google.com
www.orkut.com
promote.orkut.com
feeds.feedburner.com
googlewebmastercentral.blogspot.com

First 15 nodes in a particular attack 



“Stable Structure” Attack

 Repeat Louvain N times. A “stable 
structure” is a set of nodes V such that all 
nodes in V always end up in the same 
community with each other. (Dark maroon 
in the figure.) 

 The attack heuristic: 

 Pre-process to extract all stable 
structures. 

 Link to the coldest stable structure in 
random order, then next coldest, and 
so on. 

 Then revert to “stratified random” on 
the remaining free-agent nodes. 

 Offers better scalability for larger graphs
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Stable Structure From 2,000 Louvains



The Relative Efficacy of These Attacks 
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Can We Defend Against Attacks? 

 Defend against these attacks: identify the inserted edges and 
remove them. 

 In other counter-adversarial work, we found we could train 
ML to identify adversary-altered data. 

 Can the same be done here? 

 Note that we can’t simply train and test on random samples 
of edges from the same graph. 
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canacSBM

 In this case, we have only the one graph sample. 

 So infer the real graph’s characteristics, then generate more 
graphs that are statistically similar. 

 We developed a community and node attribute corrected 
Stochastic Block Model, “canacSBM”. 

 Like a generalization of Chung-Lu: 
 Estimate communities 

 Preserve a node’s expected degree within its estimated community. 

 Treat temperature attribute as blocks within a community, and do 
“attribute corrected” SBM. 

 This is a drastic simplification; ask for our pre-print. 
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How Well Does canacSBM Match Real 
Data? 
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Does canacSBM agree with real data in terms of attack efficacy? 

More pointedly, can canacSBM help in defense? 

Original Graph 
Averaged canacSBM



Defending Using ML and canacSBM

 Train defense model:
 Select training node and training attack. 

 Attack canacSBM graph with budget of 20 nodes.

 Extract features for each edge in attacked graph.

 Train ensemble of decision trees to differentiate “inserted” vs. 
“original”. 

 Use model to defend:
 Select testing node and training attack. 

 Attack original graph with budget of 20 nodes.

 Extract features for each edge in attacked graph. 

 Apply ensemble created above on these features. 
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Measuring Remediation Effect 

 Measure defense’s effectiveness:
 Remove all edges identified as “inserted” – call this remediation. 

 Compute probe’s community temperature before attack, after attack, 
after remediation. 

 Attack effect is change in temperature due to attack (generally 
cooler); remediation effect is change in temperature from attacked-
to-remediated. 
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Train on All canacSBMs; SMOTE; Test 
the Model
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What’s Next? Similarly Undermining 
Node Labeling 

 Still, possible community detection follow-ups: 

 Design a robust-to-attack community detection algorithm 
that trades modularity against the presence of locally 
homogeneous hot sub-communities. 

 Change the efficacy metric? Sort order likely matters more 
than temperature, given our scenario. 

 Generalize our (unrealistically restricted) adversary attack 
model to one that permits a number of adversary nodes, in 
collusion. 
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What I Hope I Showed Today 

 Why counter-adversarial analysis?
 (And what does that mean, exactly?)  

 Using community detection to prioritize investigation.  

 Inventing attacks against that use.  

 Quantifying the efficacy of those attacks.   

 Some possible defenses. 
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