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» solid-solid interfaces are ubiquitous
« present in solid- and liquid-electrolyte-based batteries
« comparative study should be fruitful

Critical to know interfacial structure -> key to many properties
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All-solid-state battery example:
LiIPON at lithium metal and Li,CoO2 interfaces

Single phase thermodynamics method (from literature)

« simple and elegant

« each simulation cell contains one phase

* Find lowest energy phases from single-phase energies

* e.g., 8Li(s)+Li,PON LisP +LizN + 2 Li,O -0.66 eV/Li zhuetal.)

* no explicit interface; every component in a separate simulation box
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o assumption: have reached thermodynamic equilibrium oo | Lien

« reasonable for material synthesis (700-1000°C for 10 hours)
 not a good assumption at interfaces (fabrication at 150-300°C)

« examples of kinetic- (not thermodynamic-) controlled interfacial products exist
(e.qg., Sang, Haasch, Gewirth, Nuzzo, Chem. Mater. 2017)
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Models, methods, and philosophy

« DFT/PBE, DFT+U, optimization and nudged elastic band

» perfect crystal, infinite chain LIPON model by Holzwarth
with Li,PO,N stoichiometry [Du, Holzwarth, PRB 84, 184106 (2010)]

* recent ALD synthesis attain this stoichiometry
[Pearse et al., Chem. Mater. 29, 3740 (2017)]

« Single phase thermodynamics calculations: compare the
energies of different phases — each in a different simulation box

--elegant, efficient, gives final product if system at equilibrium

« |If system not at equilibrium, needs to calculate reaction barriers
(AE™), compare them with thermal energy, to see if reactions
occur fast enough. AE* = 0.93 eV «—1 hour at T=300 K

« Liquid-electrolyte battery interfaces are seldom at equilibrium.
Increasingly, solid-electrolyte batteries also found to be so.

Interfacial kinetics slow at LIPONY/Li (001) interface (our work)

LiPON
cyrstal slab
Li (001)
AE =0.00 eV AE =-0.3 to -1.0 eV for 18 P-O bonds at surface
AE* > 2.1 eV! (takes “age of universe” at T=300 K)
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AE =0.00 eV AE =-2.9 eV, AE* = 0.43 eV! (nanoseconds)

but subsequent reactions, or P-N cleavage, slow
LiPON stable on Li due to slow reaction kinetics — explains why very little SEI found

Summary

« single-phase thermodynamics is typically used to model electrode
materials and solid electrolyte interfaces

 interfacial kinetics typically used to model liquid state batteries

« Here we use both computational approaches for both battery types
« examples: LiIPON, ethylene carbonate, SEI films

« thermodynamics say everything reacts — not too useful

« kinetics — costly but determine what can happen at a certain
temperature; indispensable for solid interface studies
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Interfacial kinetics faster at LIPON/Li, C0O, (104) interface ‘
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reduction of Co(lV) consistent
with our conductance expt.,
where LiIPON deposition lowers
LCO conductivity (via injecting
Li* and electrons)

LCO loses O atom to LiPON, gaining
2 electrons AE=+0.10 eV, AE*=0.72 eV transfer of O atom consistent with
Co spin state very complex (different colors) Fingerle et al, Chem. Mater. (2017)

Low O-transfer barrier may explain large LCO disordered region seen in STEM

Organic liquid electrolyte battery example:
Ethylene Carbonate (EC) and its SEI components

Single phase thermodynamics for liquid electrolytes (our work)

single phase thermodynamics never used for liquid electrolytes — here’s why

potential vs. Li*/Li(s) (V) '« EC: main solvent .
t [>6.0V: |electrochemical oxidation (glassy carbon) « no instability onset

>5.0V: |electrochemical oxidation (Borodin) at 4.5-4.7 V, often

X . cited as solvent:
<35V: |[EC+ LiMn204 -> MnO + L|2003 (KL) i breakdown in “h|gh i

. . . voltage” cathode
at any voltage, 1.2V: |thermodynamic instability (KL DFT/PBEO)

EC -> CO, + C,H,0} |0.7-0.8 V| electrochemical reduction ; 4.5-4.7 V instabilityi
. onset not due to:

solvent breakdown? !

________________________________________

electrochemical (i.e., observed) stability # thermodynamic stability limit (1.2 — 3.5 V)

* because liquid reactions occur at T~25 °C
« thermodynamic equilibrium is not reached because ...

* ... reactions governed by kinetics; thermodynamic approach fails

Single Phase Thermodynamics for SEI components
single phase thermodynamics never used for liquid battery SEIl — here’s why

Stability of Solid Electrolyte Interphase Compenents on Lithium
Q@ Metal and Reactive Anode Material Surfaces
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typically 30-50 nm

¢ Li,CO, + 4 Li -> 3 Li,0 + Cat < 1.29 V vs. Li*/Li (s)

Li,C,H,O (“LEDC”) + 10 Li ->6 Li,0 + 4 C+ 3 H,
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at < 1.22 eV vs. Li*/Li(s)

LiE LEDC

« SEI components thermodynamically unstable, except Li,O and LiF

* Nevertheless, they are found in expt. Thermodynamics fail for SEI films

« But learning from single phase thermodynamics lead to prediction that
Li,O and LiF must be found on Li metal surface (see below)

Interfacial kinetics allows SEI (Li,CO3) decomposition on Li(s)
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AE =0.00 eV AE*= +0.66 eV AE =-0.99 eV
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120: 6302 (2016)

C-0O bond breaking barrier surprisingly much lower than P-O cleavage in LiPON!

Interfacial kinetics allows Mn(ll) catalyzed SEI decomposition
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Mn(Il) lodged between inorganic SEI (Li,CO,) and organic SEI (LEDC) catalyzes
electrochemical reduction of LEDC. [Shkrob et al, J. Phys. Chem. C 120, 15119 (2016)]



