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Interfacial Line Defects: 7 i

e Connection between details of atomic structure
and larger-scale structure and behavior of interfaces.

* Essential to extending from specific boundaries to more
general boundaries

e Clues to essential physics and mechanisms controlling
behavior and properties of interfaces.




In general interfacial line defects have
both dislocation and step content

Dichromatic Pattern Volterra Operation . .
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R.C. Pond, Dislocations in Solids, Chapter 38 (1989) reference state
J. Hirth & R.C. Pond, Acta Materialia (1996) is critical. ;



In general interfacial line defects have
both dislocation and step content

Dichromatic Pattern Volterra Operation Example: (1/3)<111> disconnection:
FCC {111} twin boundary (=3 )
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H(A)=5[121],

O ®m O m O b=1[111],

"disconnection” :
both step and dislocation content

R.C. Pond, Dislocations in Solids, Chapter 38 (1989)
J. Hirth & R.C. Pond, Acta Materialia (1996)
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in in Au:
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(1/3)<111> dislocations accommodating @ Ex.

misorientation at 2=3 twin boundary
2 i c2 i} o - g

Deformed
Ultra Fine
Grained
(UFG) Copper

HRTEM

Strain analysis

from Geometric
Phase Analysis

(GPA)

M. Sennour,S. Lartigue-Korinek, Y. Champion, M.J. Hytch, Phil Mag (2007)




Grain Boundary Structural Transition: dissociation 7l

of (1/3)<111> disconnections with compact core

(1/3)<111> Disconnections GB FreFinasitions Méshiamiotinn from ~=3
A9-+8 98° from exact =3 (1/3)<111> dlsconnec%%'eﬁﬁprosnely signed
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Misfit Dislocations: topological analysis
in coherent reference frame

Bulk Lattice Dislocation. Heteroepitaxial Misfit Dislocation.

Example: Misfit dislocations
Si/Si, Ge, , interface
(Plan-view TEM)
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Reference Frame: Reference Frame:
Perfect Crystal Coherently Strained Interface

A S 500 11
Cheaito, Duda, Beechem, Hattar,lhlefeld,

Medlin, Rodriguez, Campion, Piekos, Hopkins,
Phys. Rev. Letts., 109, 195901 (2012)

Equilibrium density of misfit dislocations Santia
cancels the long range coherency strain @ National

Laboratories



Accomodation of Grain Boundary S

Coherency Strain by Disconnections

90° Boundary in Gold 5.7% strain
T T T T T B L T across terraces

101
111 101 Eg
121 101 ~ {121}
121 {111}
2,
111 7)
s = s § o m &
N | Oo m le ol o Um
- 2 a 2 *P.., describes 90° crystal rotation and
wo 'O o, ®° 'o o, ®0 strain to bring A and p into coherency.
coh ! R TR T R T *Defects efficiently accommodate
Ref X o Do D:moo Et:; Do om ‘d«w- the 5.7% misfit on the {111}/{112} facets.

Frar Um my / *Nearest CSL is X=99
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Disconnections in Phase Transformations )
Example: Sb,Te; precipitate in AgSbTe, thermoelectric

Burgers vector: Resolve b into components
‘ ' normal and parallel to interface

b =(a,,-c,. /3V3)[111]

'mismatch of step heights.
o|b,|=0.3747A

a — — *Analogous to

ab121] Shockley partial

6 Dislocation
°|b,|=2.48A

b|| =
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Habit plane inclination:

Measured: 14.8°
Predicted: 16.2°
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[} (degrees)

Defect spacing accommodates the (111)/(0001) coherency strain.




Facet Junctions and Grain Boundary Dislocations: () &
Accommodating deviations from low energy interfaces

Grain 1 C/ Grain 1
- ——+ PN

Grain 2 C Grain 2

* Inclination:
-Reduce energy by faceting on
lower energy planes
-Facet junctions.

Misorientation:
-Accomodate deviation with
grain boundary dislocations

Interaction of grain boundary dislocation and facet junctions?




HRSTEM shows nanoscale faceting at Grain boundary () &=

Boundary is faceted on
{210} and {310} type inclinations

HAADF-STEM =5 <001> Boundary in Fe

#
¢ B

Pulsed Laser Deposited Fe on Rocksalt (NaCl).
36 nm thickness. Specimen released and annealed
on Mo grid 675°C, 2 hours, under vacuum




HRSTEM shows nanoscale faceting at Grain boundary () &=

HAADF-STEM >=5 <001> Boundary in Fe Boundary Geometry

Inclination from {310}:
$=26.3°*1°

Misorientation:
0=34.49 £ 0.75°

AO=-2.38 £0.75°
from exact =5




Energetics predict growth of {210} and {310} facets ()&=

Atomistic Simulation

(HAADF-STEM peak positions overlaid)
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Energy vs Boundary Inclination
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Reduction of Energy with Facet Coarsening
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(v = v0) = (G1/A)InA + G /A
Stable facets only for C;< 0

fit: C,=+76.55 mJ/m?
C,=+2.94 mJ/m?
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Circuit Mapping: Grain Boundary Disconnections at

all Facet Junction Pairs
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Defect spacing accounts for misorientation and boundary inclination




Observed SGBD Density Accommodates Deviation () &
from Exact 2=5 Misorientation Burgers Vector Density from

Frank-Bilby Equation
Inglinationirom {310%:15

Dislocation Content Required is function 3°x1°
of both Misorientation and Inclination (115)13 1,01 =1 experimental ’
(<))
Frank-Bilby Equation: % 2|
b-vector _5 B=(]-P-1)ve Interface vector, (115)[12 0]
density / defining inclination 2 4
Matrix defining E i
misorientation E“
from reference S :

Predicted Burgers Vector Density:
B=[0.029 £ 0.010, 0.030 £ 0.010, 0]

experimental -
boundary 1§
@

Observed Burgers Vector Density:

B=[0.030 £ 0.002, 0.027 £ 0.002, 0]
(b per unit length of boundary)

(1/5)[1 2/0]

Coupling of SGBDs and junctions
dictates the facet length scale
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Conclusions ) 2=

Rich set of phenomena associated with interfacial
line defects

-Strain accomodation.
-Interfacial motion
-Phase transformation.
-Interfacial properties.

Interfacial defect crystallography provides a
framework for evaluating and interpreting complex
interfacial structures.

-Determining interfacial mechanisms.
-Informing and guiding modeling.
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Grain Boundaries: Lattice Dislocation
Description limited by overlap of defect cores

Example: Atomistic simulations LAGB in Al
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Low Angle Grain Boundary cut-off
typically between 5° and 15°

7| Netora

Example: HCP Stacking at Au GB
06=29°: Dislocations separated
by 1 atomic plane
vl e g

T

Medlin & Hamilton,
J. Mat Sci 2009.

Dissociated dislocations give
stacking faults every other plane




Dislocations in High Angle Boundaries ()&

High Angle GB Energy vs misorientation
S1¥mmetric FCC <110> tilt boundaries

g (®)
1.2 .A'u T
/ L gu
1
Grain Boundary
Dislocations N§ o8
N 1 §
IE 0.6
0.4-
D.2li
Reference Frame: s T
Typically choose energy minimum in Angle, degrees
misorientation/inclination space.
P V.V. Bulatov, B.W. Reed, M. Kumar,
Often a low CSL boundary, but not always! Acta Mat 2014




Example: GB dislocation network at >=3 boun@&
facets in Nickel (Diffraction Contrast STEM) -

100 nm

200 nm Average dislocation spacing: ~15 2 nm
Measured misorientation from exact >=3: 0.41°

~ 2 si 2
d ~ |b|/(25in(6/2)) Dislocation spacing to accommodate

|b| (a/6) <112 >=0.14nm misorientation: ~20 nm



Schematic of Transformation Sequence

Y
B v B
o B A
Ag ) Sb C Double Te layer, (00 Y
(but wrong C B
Te B stacking) Dislocation shears
A \\ B crystal into L
,Y | A correct stacking C Rocksalt
ng}z\g/;elg/ae?)e B T B Tetradymite

o o 1/6[-12-1] ol

C C C

Rocksalt AB A A
Tetradymite C C C

N AP N

(i) (ii) (iii)

Sandia
National _
Medlin and Sugar, Scripta Materialia, 2010. Laboratories



Defect properties give local mass
flux required for transformation

Partition flux for defect motion into step and dislocation components

AgSbTe,

Species

+0.00334

Sb
: /003459
-2 (\3a_, -
\Te Aoy

i (V3a,, -1 13)

-0.00668

+ 4 (\/gamb —Cp /3)

acub

+0.00668

Step flux Dislocation flux | Total flux
— (atoms/A?) (atom/A?) (at
\ %ZTM'; a%(‘\/gacub = Chex /3) %:2/5
Ag ¢ cub cub
\ +0.09043 +0.00334 I +0.09377
/ gc}iiﬁ - 8@ %(ﬁarub ~Chex /3) - 2’\/5
3a,, 3d, cub 3(13

\

)h+x1

dlslocatlon

= (XI

L(Sy step

Hirth & Pond, Acta Mat 1996

Reject Ag and Incorporate Sb
in ratio of 3:1

Tellurium:
Step and Dislocation fluxes cancel.
No long-range Te transport required.
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How are the grain boundary dislocations S
manifested in the junction structure?

Relaxed Periodic Atomistic Structure

Experimental Junctions
b=(1/5)(120) and (1/5)(310)

Exact CSL:
no defect
content

-

-
+*
+
&
++‘
A R e T i

1/5)[120]

+

+ " H
4

g —

'{'_‘ b—(

units: agJsqrt(2)




How are the grain boundary dislocations

)
manifested in the junction structure?
Experimental Junctions Relaxed Periodic Atomistic Structure

b=(1/5)(120) and (1/5)(310)
Wl il

L +* +
- + - - - - +
+ +
4T +
e

+¥ + ., 4 b=(1/5)[310
_++++++‘. i (+ .)[+ T_]

+,. + 0+
T g W o e e
+ T+ + o T T
+ L L F g TRl EFREE
S T L +. + -
+ oo+ L+ + O+, 7+ T4
+ T T + o F L o+ +
+ + L bl e AT
+ 4+ PR T el O
F B e LT ATl P
; +
Kites Offset + + T+ T+ T
e o F,T+ T4 Ty
i TR L + + .+
T T
LN R S o F o+ T+
+ T+ + + .+, +
+ L+ L+ . 0+, +
 FREL, P T y B A, I
o N Bl T R o T S SRR




Geometric construction links junction core
structure to defect content

No dislocation

b=0
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=
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Impact on facet length scale .

 Distribution of grain boundary
disconnections consistent with that
needed to accommodate misorientation
from exact =5 misorientation.

(1/5)[3 1 0]
(1/5)[12 0] e Disconnection cores located at
facet junctions.

(1/5)[1 2 0]

» Suggests that facet length scale
here is tied to
misorientation/inclination via
dislocation content.

(1/5)[3 1 0]

(1/5)[1 2 0]




Low angle boundaries: Arrays of dislocations

Low angle GB in Al thin film D|slocat|on Cells in Ni

q gWBD ,‘
g= 111

— h—- | Low Angle
v A A | grain boundary
| in Bi,Te,
Nanowire

Dislocation density depends on misorientation
and inclination (Frank-Bilby Equation)

b-vector _5 B=(I- P'1)v

density / “— Interface vector,

defining

Matrix defining inclination

misorientation

Crystal Lattice————

DislocatiO}\,_\
L \

1l
/_\

Reference Frame:
Single Crystal

Symmetric tilt boundaries:

0=2sin"1(b/2
Misorientation Burgers
vector

Spacing




Coupling of GBD's with facet junctions (@&,

Dislocations

[111] {111} Facet

~

T=550°At=400 sec

/ {112} Facets

Movie is repeated 20 nm >=3 {112} facets in Au
(Dark Field TEM)

-(1/6)<112> dislocations climb on X=3 {112} facets
-Segments on horizontal {111} facets move by glide.
-Climb is driven by repulsive elastic interactions
between the dislocations
-Finite tilt wall, un-relaxed long-range stresses

Understanding dislocation/junction ey
interactions important to relating
grain evolution to local plastic strain. _ o 185
50 nm T=490°C minutes 31




