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Nomenclature
mi effective mass of mode i
{φ}R rigid body row vector
M mass matrix
{φ} mode shape vector
ki effective stiffness of mode i
fn natural frequency
ftransition transition frequency
EI bending stiffness
KAG shear stiffness
L length of beam element

1 Abstract
Effective mass models are powerful tools that allow for a convenient means to calculate the energy associated with vibration 
response of a structure to a base input acceleration in a particular direction.  This is useful for hardware qualification activities 
and margin assessment. Traditionally, these models are generated from purely analytical means such as a finite element model.
However, experimental methods have recently been introduced as an intriguing alternative, particularly for applications where
no finite element model is available. In this work, an effective mass modal model of a cable-connector assembly is desired, and 
neither component has a finite element model. Moreover, there can be multiple cable-connector combinations making analytical 
modeling as well as explicit testing of each combination impractical. This work develops the capability to combine an 
experimentally derived connector effective mass model with a simplified and easily extensible analytical cable model.  The 
experimental connector effective mass model is generated through specialized modal testing.  The simplified cable model is a 
Timoshenko beam finite element model whose properties are empirically derived from pinned-pinned cable modal data. The 
modeled length of the cable is appropriately adjusted for each configuration. Finally, the cable and connector component models 
can be combined to form the final assembly modal effective mass model for a given translational direction. This method lends 
itself to developing catalogues of connector and cable data, which can then be easily combined to form any number of assembly 
configurations without having to explicitly test/model them.
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2 Introduction and Motivation
An effective mass model is a modal model that simulates the response of a structure due to a base acceleration input in one 
direction, see Fig. 1. It can be used to calculate the actual energy in the structure during the base acceleration environment. 
This is a useful metric for comparing energy at failure relative to that in a qualification test (i.e. margin quantification). Standard 
methods for calculating an effective mass modal models require a finite element model [1]. Recently, however, methodologies 
have been developed to extract these models experimentally of a component on a fixture [2].  Typically, there are three effective 
mass modal models for a component, one for each translational direction (X, Y, and Z). Rotation directions are usually ignored 
since standard laboratory tests focus on a single translational direction.

Fig. 1 Effective mass modal model

Developing effective mass models for cable-connector assemblies poses several challenges. The first is that finite element 
models (FEMs) are typically not developed for the assemblies nor their components. Additionally, there can be multiple cable-
connector combinations that make analytical modeling as well as explicit testing of each combination impractical. The goal of 
this work is to develop a method that can calculate the effective mass modal model of a cable-connector assembly using limited 
dynamic information of the individual connector and cable components. This is accomplished by combining an experimentally 
derived connector effective mass modal model with a calibrated numerical model of the cable. The practical implementation 
would require modal testing each cable family at minimum and maximum lengths to create a catalog of empirically derived 
cable stiffness properties.  Additionally, each connector type would have to be modal tested in order to develop a catalog of 
connector effective mass modal models. Thus as cable-connector designs change (either switching out the connector or 
changing the cable length), the important dynamic information (i.e. effective mass and corresponding natural frequencies) can 
be readily calculated using the process developed herein without the need to recreate a complex FEM nor re-test the combined 
physical hardware. This allows for the capability to quantify product margin during qualification activities with minimal effort.

Fig. 2 Combining connector and cable components to create cable-connector assembly effective mass model 

The remainder of this report is outlined as follows. Section 3 describes the proposed method for calculating the effective mass 
modal model of a cable-connector assembly by combining a beam model representing the cable to an effective mass modal 
model of the connector. The methodology is verified with an analytical model. The proposed method is then employed on 
physical hardware in Section 4. Included in the section is a discussion of the connector effective mass modal model extracted 
from a modal test (4.1).  Additionally, the cable stiffness properties are empirically derived from cable modal test data in 
Subsection 4.2. Subsection 4.3 uses the connector and cable information from 4.1 and 4.2 to calculate the cable-connector 
effective mass modal model and associated frequencies. These are then compared with the results of a truth test conducted on 
a physical cable-connector assembly. Included in these results are estimations of the uncertainties associated with the effective 
mass and natural frequencies for both the truth test data and the results of the proposed method. Conclusions are presented in 
Section 5.



3 Analytical Verification for Combining Effective Mass Models
The goal of this work is to have a method to calculate the natural frequencies and associated effective masses of the modes
with high effective mass in a specific translational direction for a cable-connector assembly without the use of a complex finite 
element model and only knowing the cable type, cable length, and connector type. From experiments, it has been shown that 
the cable mode shapes can be accurately modeled as pinned-pinned beam mode shapes (see Subsection 4.2.3). Experiments 
can also be used to extract the connector effective mass. The analytical verification was to determine if we could couple the 
two separate results and achieve the analytical truth model response.  

The remainder of this section discusses the analytical verification. Subsection 3.1 describes the truth model that was used to 
develop and validate the proposed method which is described in Subsection 3.2. The results of the verification are presented in 
3.3.

3.1 Analytical Truth Model
An analytical truth model (see Fig. 3) was created to investigate the efficacy of the method used to compute cable-connector 
assembly effective masses and natural frequencies using cable and connector component dynamic information. It consisted of 
a cantilevered beam for the connector and a pinned beam for the cable. The two beams are coupled via a pinned connection.

Fig. 3 Truth model for effective mass connection models

Natural frequencies and mode shapes were computed by solving the eigen value problem. The effective mass for each 
translational direction was calculated using equation (1) [1].

mi = Pi
2 (1)

where mi is the effective mass of mode i and Pi is the modal participation factor for mode i. Equation (2) was used to compute 
Pi for each mode [1]:

Pi = {ϕ}�M{ϕ}
i

(2)

where {ϕ}� is a rigid body row vector with a “1” at every entry corresponding to DOF oriented in the translation direction of 
interest and zero otherwise, M is the mass matrix, and {ϕ}

i
is the shape of the mode for which the effective mas is calculated.

Note that equations (1) and (2) are assuming unit modal mass. Typically, effective mass is presented as a percentage of the 
total mass of the object.



The proposed method described in the following subsection was designed to match the natural frequencies and effective masses 
of the dominant modes of this truth model for transverse beam axes motion. Dominant modes are those that have large effective 
mass for the given direction (>5% of the total mass). The reason for this is that modes with the largest effective mass have the 
greatest potential to cause damage during qualification/operation environments.

As previously discussed, an effective mass model is produced for each translational direction. Effective mass and frequencies 
in the axial coordinate of the cable (X direction) were determined by another method. Thus the remainder of this paper focuses 
on the remaining transverse cable directions (Y and Z).

3.2 Creating Assembly Effective Mass Models from Component Dynamic Information
The proposed method assumes that an effective mass modal model of the connector and stiffness properties of the cable will 
be available. As discussed in the introduction, in practice these data will be contained in catalogs created from previously-
conducted connector and cable testing. The basic concept of the proposed method is to create a simple numerical model of the 
cable beam from the desired length and stiffness properties then use the connector effective mass model to appropriately load 
the tip of the cable as it does in the cable-connector assembly. This is accomplished by sequentially connecting individual 
effective masses (mcoi) and stiffnesses (kcoi) of the connector to the tip element of the cable model, see Fig. 4.  Mathematically, 
this is approximated by adding mcoi to the element in the mass matrix that corresponds to the cable tip DOF for the given 
translational direction and similarly adding kcoi in the stiffness matrix. The eigenvalue problem is then solved and the effective 
mass model is derived from the results and equation (1) to create the assembly submodel.

Fig. 4 Proposed method for calculating cable-connector assembly effective mass and natural frequencies from dynamic 
information from individual components 

There could be multiple connector modes in the bandwidth of interest that are coupled to the cable. In this scenario, the fir st 
connector effective mass and stiffness are coupled to the cable and its effective mass model is calculated to create an assembly 



submodel. The second connector effective mass and stiffness are then used without the first (i.e. the connector effective mass 
added to the cable tip is just mco2 and not mco1+mco2) to create a second assembly submodel. This continues for every connector 
mode with large effective mass (see discussion below) in the bandwidth of interest. The final effective mass model of the 
assembly (called the final assembly model) is stitched together from each assembly submodel. The results from the first 
assembly submodel are included in the final assembly model up until a transition frequency. The results from the second 
assembly submodel are then used until a second transition frequency. For this work, each transition frequency was selected to 
be half-way between the subsequent connector natural frequencies.  This process is depicted in Fig. 5 when two connector 
modes are used to compute the final assembly model.

Fig. 5 Example of creating the final assembly model using different assembly submodels

It is important to note that only those modes of the connecter with large effective masses are used in this process. The reason 
for this is, if in a particular direction, a connector mode has a very small effective mass, it will correspondingly have a very
low effective stiffness. When coupled to the cable as shown in Fig. 4, the tip of the cable would be virtually unconstrained and 
behave like a pinned-free beam which does not accurately represent the conditions of the true assembly. Therefore, only 
connector modes with large effective masses are included in this process.

In practice, an experimental effective mass modal model will be available for the connector.  For the analytical verification
work, however, the effective mass modal model of the connector was extracted from a cantilevered beam representing the 
connector in the truth model, see Fig. 6. 

Fig. 6 Connector beam used to create the effective mass modal model for analytical verification 



3.3 Analytical Verification Results
To demonstrate the capabilities and limitations of this process, stiffness and geometrical parameters were selected for the 
individual connector and cable beams shown in Fig. 3 and for the truth model, were coupled accordingly. The effective mass 
modal model was created for the connector using equation (1) in substitution for an experimental effective mass modal model 
which would be utilized in practice. The cable was then coupled to this model as described in Subsection 3.2 to create the final 
assembly model for the Y-direction and then for the Z-direction.  For both directions, only two connector modes with significant 
effective mass were within the desired bandwidth of 7000 Hz. A comparison of the effective masses for each mode and 
corresponding natural frequency for the truth model and the final assembly models are shown in Fig. 7 and Fig. 8 for the Y-
and Z-directions, respectively. The key quantity to notice is how close the vertices of each plot align, as they show both the 
frequency and effective mass of one of the modes. Additionally, the final assembly model is a reduced order model and as such 
has fewer DOFs than the truth model, resulting in fewer modes. Lastly, since only two connector modes were used to create 
the final assembly model, there is only one transition frequency for each direction.

Fig. 7 Analytical verification results, truth model vs final assembly model comparison for Y-direction

Fig. 8 Analytical verification results, truth model vs final assembly model comparison for Z-direction

In general, the final assembly model matches the effective mass and frequency of the truth model well for modes with large 
effective mass for both directions. It is also worth noting that the cable deformation in the mode shapes match well. For the 
modes in the vertical direction with greater than 4% effective mass, the final assembly model had a maximum frequency error 
of less than 6% (the predicted frequency was 5200 Hz when the truth was 5520 Hz) and the maximum effective mass error was 
less than 2%.

Likewise, the results for the Z-direction agree well for modes with effective mass larger than 4%. There appears to be larger 
effective mass errors for the modes near 4200 Hz and 4660 Hz. In the truth model, these modes correspond to the connector 



2nd bending in phase and out of phase with the cable 6th bending. This coupling distributes the effective mass in the truth model 
between these two modes in a fashion that cannot replicated in the final assembly model since the connector is absorbed into 
the mass of the cable tip.  However, it is worth noting that the sum of the effective masses of these two modes is nearly identical 
(~0.2% difference) for the truth and final assembly models. This indicates that the final assembly model is able to capture the 
general dynamic effect of this mode pair. These results were sufficiently accurate that this process was implemented on physical 
hardware.

4 Proof of Concept on Physical Hardware
This section discusses the calculation of the effective mass modal model and corresponding natural frequencies for a physical
cable-connector using the process developed in the previous section. The experimental effective mass modal model for the 
connector is first extracted from a modal test (Subsection 4.1). The stiffness parameters for the cable model are then empirically 
fit from modal tests of two different cable lengths in Subsection 4.2. The process developed in Subsection 3.2 is then employed 
to combine the connector effective mass modal model and the simplified cable FEM created from the cable stiffness and 
geometrical parameters. The results are compared to a truth test in Subsection 4.3.

4.1 Connector Effective Mass Experiment
This section discusses the extraction of the connector effective mass modal model from experimental data. The connector was 
installed into a stiff fixture and modal tested. Natural frequencies, damping values, and mode shapes were extracted. The 
method described in [2] was then used to extract the effective mass modal model of the connector, see Table 1 for the results. 
For brevity, the details of the technique are not given here, but [2] provides a detailed procedure on its implementation. 

Table 1 – Experimentally Extracted Connector Effective Mass Model Results

Mode
Frequency 

(Hz)
Description

Normalized 
Effective Mass (%)

X Y Z

1 768 connector bending in Z 0 2.5 52.3*

2 785 connector bending in X 44.4* 1.4 0

3 1170 cable stub bending in Y 10.1 7 0

4 1264 cable stub bending in Z 0 0.1 0.4

5 1926 connector axial 0 80.2 0.1

*These values were reconfigured so that effective mass of connector bending 
is either purely in the X or Z direction

Note that the mode shapes showed that the bending modes 1 and 2 were not directly aligned with the coordinate axes, e.g. the 
connector did not bend purely in X, but also had some Z direction motion. This resulted in the effective mass for each of the 
first two modes being distributed between these two directions. The analytical verification from Section 3 had the connector 
modes aligned with the coordinate axes. Additionally, modes 1 and 2 have similar frequencies, so they could be oriented in any 
two orthogonal directions. Therefore, the bending axes were realigned to match the modeling axes, but with the same amount 
of effective mass is still retained in the appropriate direction.

4.2 Cable Model as a Timoshenko Beam
4.2.1 Creation of the Cable Model as a Timoshenko Beam
Previous work by Goodding, et. al. shows that cables can be represented by the bending (EI) and shear (KAG) stiffness terms 
of the Timoshenko beam without the rotary inertia term [3].  The EI and KAG values are used to create the stiffness matrix for 
the cable model. This cable is of the same length as that of the physical cable-connector assembly tested in the truth experiment 
in Subsection 4.3. The first step is to calculate the stiffness matrix of the Bernoulli-Euler beam, Kcable,B, using EI and the length
[4]. This is performed in one transverse direction using the translation and rotation at the first node and then the translation and 
rotation at the second node of the beam element. The shear beam stiffness matrix, Kcable,S, is constructed from the elemental 
form given in (3) which was calculated from the wave equation [5].
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where L is the elemental length of the cable beam. Note that this elemental matrix will produce a Kcable,S where all of the 
diagonal values will be 2KAG/L except the first and last. Additionally, the zero terms in (3) correspond to the rotational DOFs 
of the cable beam. The total stiffness matrix of the cable beam, Kcable, is then the sum of Kcable,B and Kcable,S. Once Kcable has 
been calculated (along with the cable mass matrix, Mcable), the cable is constrained with pinned boundary conditions for the 
stiffness parameter calibration to experimental data, see Subsection 4.2.2. The Mcable and  Kcable comprise the cable model that 
is used in Subsection 4.3 along with the connector effective mass modal model from Subsection 4.1 to calculate the effective 
mass model and corresponding natural frequencies of a physical cable-connector assembly using the method outlined in 
Subsection 3.2.

There is the problem of shear locking over-stiffening the result using the formulation in equation (3) [6].  However, with this 
class of problem, the connector is sufficiently stiff that it minimizes the effect due to shear locking.

4.2.2 Modal Test of the Cable
The proposed method discussed in Subsection 3.2 requires the EI and KAG stiffness properties of the cable by itself in order 
to compute the simple FEM (Mcable and Kcable). Since a cable is a complex, non-homogenous combination of wire strands and 
insulation material, the stiffness properties were empirically fit from modal testing of the cable clamped at either end, see Fig. 
9. In order to achieve robust stiffness properties, two cable lengths were tested, and natural frequencies, damping values, and 
mode shapes were extracted for each.

Fig. 9 Configuration for experiments used to empirically fit cable stiffness parameters

4.2.3 Fitting the Stiffness Parameters for the Timoshenko Beam
For the Timoshenko beam, two stiffness parameters need to be fit: EI (bending stiffness) and KAG (shear stiffness). This was 
accomplished by performing a sensitivity analysis according to the following:

�f
n,exp

�  = �f
n,model

� + �
∂ �f

n,model
�

∂EI
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n,model

�

∂KAG
� �

∆EI
∆KAG

� (4)

where {fn,exp} is a vector containing the experimental natural frequencies of the cable, and {fn,model} is a vector of the model 
natural frequencies calculated using an initial estimate of EI and KAG. Each {fn,model} were computed from an eigenvalue 
analysis of a Timoshenko beam defined by Mcable and  Kcable. Note that the models were created using pinned-pinned boundary 
conditions.  

Table 2 displays the difference between the experimental natural frequencies of the cable and those of the Timoshenko beam 
generated from the converged EI and KAG values. It is important to note that several cable modes were affected by motion of 
clamps on the fixture which secure the two ends of the cable during the experiment. The influence on the frequencies could not 
be exactly quantified but are estimated to potentially shift frequencies up to 10%.



Table 2 – Results of Cable Stiffness Fit, Experiment vs Model

Length
(in)

Mode
% Difference 

in fn

8

1 9

2 2

3 -2

4 5

6

1 -10

2 0

3 -11

The boundary conditions for the cable experiment were initially assumed to be clamped-clamped. However, no reasonable fit 
to the experimental frequencies could be achieved. The use of pinned boundary conditions was supported by the fact that the 
deflection of the ends of the cable in the experimental mode shapes visually appeared to replicate the motion of a pinned-pinned 
beam. Note that the KAG and EI values were one to two orders of magnitude below the values that one would obtain with the 
copper wire with the measured diameter.  This reinforced that the experimental process of fitting these two parameters was 
required.

4.3 Comparison with Truth Test Results
The results from Subsection 4.2 were used to create a cable model of the physical hardware and this was coupled to the 
connector experimental effective mass modal model presented in Subsection 4.1 using the method proposed in Subsection 3.2
to create a final assembly model of the physical cable-connector assembly. During the course of this work, it was discovered 
that the cable lengths used in Subsection 4.2 to empirically fit the stiffness parameters did not bound the cable length used in 
the truth test. Thus the results presented below represent an extrapolation on the length effect, a poor engineering practice that 
lends itself to larger-than-expected errors. Schedule did not permit performing an additional cable test on the shorter length.
Fig. 10 and Fig. 11 show the truth test results and the final assembly model calculations for the effective mass and natural 
frequencies for the cable-connector assembly.  Note that for either direction only modes with the two largest effective masses 
are presented.

Fig. 10 Truth test vs final assembly model results, Y-direction



Fig. 11 Truth test vs final assembly model results, Z-direction

These results include estimated uncertainty bounds on both the effective mass and natural frequency for the truth test and final 
assembly model. They assume cable lengths interpolated within the tested bounds (an assumption that was not appropriately 
observed here). Uncertainties are valuable when computing the failure margin of a product. Due to cost and schedule 
limitations, an exhaustive uncertainty quantification effort could not be performed, so the error bounds in Fig. 10 and Fig. 11
were determined using engineering judgement and multiple experiments from previous work. For the truth test results, the 
frequency and effective mass uncertainties were chosen to be, respectively, ±10% of the extracted natural frequency and ±7% 
of the total mass of the cable-connector assembly. These numbers have been shown to be typical for effective mass experiments.
The frequency and effective mass uncertainties for the final assembly model were selected to be a root-sum-square of the
individual uncertainties from each source as listed in Table 3.

Table 3 – Sources of Uncertainty in Final Assembly Model

Parameter

Source

Connecter 
Experiment

Max Error from 
Analytical 

Verification
Results

Unit-to-Unit 
Variability

Frequency
±10% of natural 

frequency
±6% of natural 

frequency
±30% of natural 

frequency

Effective 
Mass

±7% of total 
mass

±3% of total mass
±10% of calculated 

effective mass

Ideally, the final assembly model results in Fig. 10 and Fig. 11 would encompass the test results. The test frequencies are nearly
within the model frequency bands, but this is not the case with the effective mass, particularly in the Z direction. The cable 
stiffness extrapolation, especially for shorter cables as explained above is impacting the model results, but at this stage we do 
not know if it is the only error. One phenomenon that was observed during the analytical verification work was that when
modes of the individual connector and cable were close in frequency, they coupled in the cable-connector assembly which then 
distributed the effective mass between the two modes in a fashion that the final assembly model was not able to reproduce. 
However, the sum of the effective masses of these two modes was captured by the model.  This is similar to the situation for 
the two modes in the Z direction.

5 Conclusion
A method for calculating the effective mass modal model of a cable-connector assembly using dynamic information of the 
components was developed. An analytical verification model showed that the method appeared to be sufficiently accurate to 



implement on physical hardware. Using a connector effective mass modal model extracted from experimental data and a simple 
cable FEM created from empirically fit stiffness parameters, the effective mass modal model of a simplified assembly was 
computed. The results were compared to a truth experiment with uncertainties applied to both the effective mass and natural 
frequencies for the model and experiment. While the model did not completely encompass the experimental results, its 
performance was encouraging especially when considering the influence of unanticipated extrapolation. Closely coupled cable 
and connector modes may also induce more error to the process.
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