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Abstract

Experimental modal analysis via shaker testing introduces errors in the measured structural
response that can be attributed to the force transducer assembly fixed on the vibrating structure.
Previous studies developed transducer mass-cancellation techniques for systems with translational
degrees of freedom; however, studies addressing this problem when rotations cannot be neglected
are sparse. In situations where rotations cannot be neglected, the apparent mass of the trans-
ducer is dependent on its geometry and is not the same in all directions. This paper investigates
a method for correcting the measured system response that is contaminated with the effects the
attached force transducer mass and inertia. Experimental modal substructuring facilitated esti-
mations of the translational and rotational mode shapes at the transducer connection point, thus
enabling removal of an analytical transducer model from the measured test structures resulting
in the corrected response. A numerical analysis showed the feasibility of the proposed approach
in estimating the correct modal frequencies and forced response. To provide further validation,
an experimental analysis showed the proposed approach applied to results obtained from a shaker
test more accurately reflected results obtained from a hammer test.

1 INTRODUCTION

Conducting a modal test with a vibration shaker offers many benefits over impact testing; however,
one drawback includes the requirement of a force transducer fixed on the vibrating structure. If
the structure is relatively lightweight, the presence of this transducer can alter the structure’s mass
distribution, thus affecting the dynamic response and driving down the modal frequency estimates.
The mass-cancellation procedure for transducers at drive-point measurements has been well-known
for some time [1]. More recently, methods have been developed to extend the correction for transfer
measurements. [2, 3,4, 5, 6, 7, 8] Although showing success, these methods mainly focus on eliminating
the transducer mass effects from the dynamic response. For systems where rotations cannot be
neglected, such as beam- and plate-like structures, 75% of the frequency response function (FRF)
matrix corresponds to rotation-based quantities, so the transducer inertia can also pollute the dynamic
response. [9] The focus of the current paper is to develop a suitable approach capable of correcting
for the both the transducer mass and inertia on the measured response.

The proposed approach utilizes concepts from an experimental modal substructuring approach
introduced by Allen et al [10, 11] that utilizes a fixture attached to a test article for the purpose of
combining with an analytical model of a separate substructure. Inclusion of this fixture mass-loads
the test article interface which leads to an improved modal basis and more accurate modal parameter
estimates when combining with the analytical substructure. The fixture is of simple geometry so
that an accurate analytical model facilitates the removal of the fixture effects from the final combined
system. The current paper adopts this concept by incorporating an analytical model of a local section
of the test structure containing the attached force transducer. Rather than using the local analytical
model to remove the effects of the substructure from the system response, the model is instead used
in an expansion process to estimate the mode shapes corresponding to both translation and rotation
degrees of freedom at the transducer connection point. An accurate estimation of these connection
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point mode shapes, combined with a rigid body model of the force transducer, enables immediately
removal of the force transducer from the system.

The remainder of the paper is composed as follows: Section 2 develops the substructuring theory
used to remove the transducer effects. Also provided is a discussion on modeling the force transducer
as a general rigid body. Section 3 introduces the test structure utilized in this work. Simulations
are then performed on a 2-D finite element (FE) model with an attached force transducer to test
the performance of correction approach. The results are then compared to a similar model without
the transducer in terms of the modal frequencies, as well as the forced response. Section 4 provides
experimental validation of the proposed approach by correcting the response obtained from a shaker
test. The results are then compared to a hammer test on the same structure without the force
transducer assembly.

2 THEORETICAL DEVELOPMENT

2.1 Transducer Removal
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Figure 1: Example of transducer removal from experimental system.

Consider the T-Beam structure shown in Fig. 1. When performing a shaker vibration test, the
effects of the mass and inertia of the attached force transducer on the test structure, specified here as
CT, pollute the measured data. The approach presented here assumes the force transducer, specified
here as component 7', is a rigid body with a mass and inertia that can be determined leading to
an analytical mass matrix. Subtracting the mass matrix of the force transducer from the measured
system recovers the true system without the transducer, specified here as system C. The equations
of motion governing this process are

Mcr O Ucr Cer 0| | ucr Ker 0] | uer
. + . +
0 7MT ur 0 0 ur 0 0 ur
f

_ { cT } + { gcr }

0 gr
where u is the 3-D response vector containing both translations and rotations at each element node,
and the subscripts CT and T refer to quantities associated with the test structure CT and transducer
T, respectively. The above equations are also subject to constraints at the transducer connection point

where the motion between the transducer and the system are equal and the reaction forces are equal
and opposite. These constraints are

(1)

B{ “uCTT } =0 (2)
LT{ gcr } -0 (3)

The force transducer can be idealized with a simple geometry allowing for an analytical calculation of
the mass matrix My; however, the spatial model for C'T" is unknown. Instead, a modal model for CT
is derived from a modal test. Transforming the equations of motion into the modal coordinate system
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using the Ror frequencies and mass-normalized mode shapes for the system (wor, and ¢or), as
well as the Ry mass-normalized transducer rigid body modes (wr, = 0 and ¢7). The transformation
to the modal coordinate system is

Ve b= e ) o

with the associated modal equations of motion
Ier O der | [2¢,wn]er O] [ Ger + [whler 0] [ qor
0 —Ir (.flT 0 0 QT 0 0 qr

_ [ ®or'for n ®cr” 0 gcr
0 0 q)TT gr

The corresponding modal constraint equations are then
®cr O qcr
B =0 6
el ®
®cr’ 0 gcr
L,” =0 7
P [ 0 '1>TT gr Q
Enforcing the modal compatibility constraint of Eq. 6 requires knowledge of the mode shapes of
system CT, including rotational degrees of freedom, at the transducer connection point (i.e., ®cr
must be fully known); such knowledge may not be available in a typical modal test. Instead, enforc-
ing these modal constraints between the experimental system and the analytical transducer model
requires a separate approach. The approach proposed here assumes that a simple analytical model
AT can adequately describe the motion of a local section of the experimental system containing the
force transducer attachment (e.g., the vertical beam in Fig. 1). By measuring translations on this
local system, the analytical model then generates information regarding motion at the transducer

connection point. This process begins by first constraining the measurement points, denoted with
the m subscript, between AT and CT such that

()

UAT,m = UCT,m (8>

or in the modal coordinate system

D A7 maar = PormAceT 9)

Taking the pseudo-inverse (denoted with the T superscript) of the analytical mode shape matrix at
the measurement points produces a least-squares fit for the modal motion of AT in terms of the
modal response of C'T

aar = ®arm ®ormacr (10)

The application of the pseudo-inverse requires at least as many measurements on AT as there are
modes included in the model (i.e., m > Rar). This process is the basis of the modal constraints for
fixture and subsystem MCFS substructure constraint approach. [10, 11]. However, rather than using
these modal constraints to remove AT from system CT, the analytical mode shapes of AT allow for
an expansion of the modal response to estimate the motion at the transducer connection point

uar,r = Parrqar (11)

Substituting qa7 from Eq. 10 into the above equation leads to

uArT = [‘I’AT,T@AT,mT(I’CT,m} qcr = Ucr,T (12)

®cor,T

The bracketed terms are the estimated system CT mode shapes that correspond to the transducer
connection point degrees of freedom <i>CT7T and are generated using a combination of the system
CT measured mode shapes and analytical system AT mode shapes. Essentially, this process can
then be thought of as first applying a modal filter to obtain the modal response of system AT from
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the translation measurements on system CT, followed by a model expansion to obtain the motion
(translations and rotations) at the transducer connection point. This process allows for the motion
of the force transducer to be constrained to system AT at the transducer connection point

Uyr,T = ur (13)
or rewritten in terms of the modal response of T’
ugr,r = Prar (14)

Inserting the above equation into Eq. 12 and rearranging leads to an equation constraining the
transducer modal response with that of the measured system

‘i)C’T,TCICT —®7rqr=20 (15)

The constraints can be written in terms of the modal constraint matrix B,, such that

[crr — 1] { der } -0 (16)
N—— qr
BP
where B, enforces as many constraints as the number of degrees of freedom Nr in the transducer
model; for the general case of 3-D motion, this corresponds to three translations and three rotations,
so Np = 6. From Eq. 5, there are Ror + Ry equations and, using all the rigid body modes of
the transducer, there are Ry constraints, thus requiring a transformation to an unconstrained set of
modes. Choosing this set simply as the modes of C'T', the transformation is

acr Icr
= L 17
{ ar } ['I’T 1<I>CT,T:| dor (17)
—_—
Lp

where L, is the transformation matrix that is in the null space of B, thus always satisfying the
constraints of Eq. 16. Inserting this transformation into Eq. 5 and premultiplying by Lg results in
the unconstrained equations

Mdcr + Caor + Kqer =f + g (18)
where

- T 0 - 14

M=L," | _IT:| L, =Ior — ®L; 7 [®@r®rT] ' ®orr (19)
- :\2 . 0

c-1,7 [M2¢ L(U)r\}CT 0} L, = [\ngr\]CT (20)
~ . :[\wf\]CT 0 \, 2

K = Lp i 0 O LP = [ w’r\]CT (21)
- LYo ¥
f= LPT{ CTO “r } = ®or' for (22)

T
R A G S (23)

The updated modal damping matrix C, stiffness matrix K, and modal force vector f remain un-
changed from the initial measured system; however, the modal mass matrix M is reduced by an
amount that corresponds to the removal of the force transducer. Expanding this mass matrix further
results in

~ T _
M=Icr —®50,, {((I)AT,T(I)AT,mT) (2r@r") 1‘I>AT,T‘I’AT,mT] Porm (24)

The bracketed term in the above equation is pre- and post-multiplied by @gTﬁm and ® o7, indicating
mass is removed from the measurement locations on CT. Essentially, the above process utilizes the
analytical modes of AT and T to eliminate the requirement for directly measuring mode shapes
corresponding to the rotation degrees of freedom at the transducer connection point. The force
transducer mass and inertia are then distributed as an equivalent mass at the translation measurement
locations, thus allowing for immediate removal from the system.
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Figure 2: System of interest with attached transducer.

2.2 Transducer Model

The current approach utilizes the mass-normalized rigid body modes of the force transducer and
requires a model that accurately describes the rigid body dynamics. This analysis assumes the
transducer behaves as a general rigid body connected to a single point on the surface of the structure
with the transducer center of mass offset a distance rr = (z7, yr, 2r). The mass matrix of a general
rigid body with respect to the connection point on the surface of the structure is

mr 0 0 0 mrzr  —mryr
0 mr 0 —mmrzr 0 mrxr
. 0 0 mr mryr —mrxr 0
MT N 0 —mrzr mryr I:L’:E _Izy _Izz (25)
mrzr 0 —mpxr  —lyy Ly 1y
—mrTyr mrxr O _Ixz _Iyz Izz

where mqp is the mass of the force transducer, I., Iy, and I, are the moments of inertia, and
Iy, Iy, I, are the products of inertia about the coordinate system located at the connection point
on the structure surface. Also note that only half of the transducer mass contributes to the force
measurement as the terminal is located approximately halfway along the transducer thickness. In
the above mass matrix, only half of the transducer mass needs to be included in the direction in-
line with the applied force; for the perpendicular directions, the total mass of the transducer should
be used. Furthermore, the geometry of the transducer used in the proceeding sections is idealized
as a solid uniform cylinder allowing analytical calculations of the inertia terms. The transducer
mass-normalized rigid body modes can then be determined.

3 Numerical Simulations

3.1 System of Interest

To test the proposed approach, the T-beam system shown in Fig. 2 was utilized with the corresponding
parameters recorded in Table 1. This analysis assumes the out-of-plane motion is negligible, thus
reducing the system to 2-D that results in the transducer mass matrix

mr 0 —mTyT
My = 0 mr /2 0 (26)
—mryr 0 Izz

Note here the inclusion of only half of the transducer mass in the direction of the applied force reasons
previously discussed.

3.2 Results

The numerical analysis utilized the finite element (FE) approach to model the system with 2-D beam
elements where beams A and B contained 20 and 40 elements, respectively. Obtaining an adequate
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Table 1: T-Beam System Parameters

Beam A Beam B Force Transducer T

Material Steel Material Steel Mass 0.05 lbs

LixwaXha | 45x1x1in® | Lg Xxwg x hg | 12x1x0.75 in® | Inertia about C.M. | 0.0036 lbs in?

pom—
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Figure 3: Mode shapes generated from the FE model for the (top) simulated experimental system
with the attached transducer and the (bottom) analytical model of the local portion of the system
that contains the transducer.

estimate of the mode shapes at the transducer connection point (<§CT’T in Eq. 12) requires a sufficient
number of modes of the analytical beam AT to capture the modal motion of the local section of system
CT that contains the transducer. Figure 3 shows the first 10 mode shapes (3 rigid body modes and
7 elastic modes) of CT. The vertical beam A shows mostly rigid body motion for each mode, as well
as first beam bending motion for modes 7 and 9. Figure 3 shows the first four modes shapes (3 rigid
body modes and one elastic mode) of AT required to form a sufficient modal basis for the local modal
motion on CT.

To simulate an experimental test, translation measurements in both in-plane directions were
recorded at 3 locations along AT, two at the beam tips and one at the beam center. Figure 4 shows
an example of the process used to estimate the mode shapes at the transducer connection point for
mode 7 of CT. Also shown is the estimated mode shape of the vertical section generated by the mode
shapes at the measurement locations on C'T', and the analytical mode shapes of AT given by

Por = Par®arm ®orm (27)

This estimated mode shape includes both translation and rotation information at every point along
the vertical beam, including the transducer connection point, thus allowing for the removal of the
transducer mass and inertia from each mode included in the system.

The transducer was then removed from the simulated experimental system C7T using the process
described in the previous section. The simulated experiment assumed all the modes of C'T" under
10 kHz are “measured” exactly with the first 10 modes falling within this frequency band. The first
4 modes of AT were then used in the transducer removal procedure. A FE model of the system
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Figure 4: Example of the estimated mode shape (red) for mode 7 of CT. This shape was obtained
using x-, y-translation measurements at three locations (blue squares) on the local section of the CT
containing the force transducer.

without the transducer was used as the truth baseline and the corresponding modal frequencies are
compared to the system with the attached transducer, both before and after the correction procedure,
and recorded in Table 2. As expected, the presence of the force transducer drives down the modal
frequencies with a maximum error of 5.36% for the 9th mode. After correcting for the transducer,
the frequencies more accurately reflect the truth case with the maximum error reduced to just 0.56%.

Table 2: Modal frequency comparison between the baseline case without the attached transducer and
the cases with the attached transducer, both uncorrected and correct.

Flexible | f, actual: | f, with transducer: % Error fn with transducer: % Error

Mode # | FEM [Hz] uncorrected [Hz] ¢ corrected [Hz] ¢
1 723.17 708.42 -2.04 723.15 0.00
2 1723.7 1663.8 -3.48 1723.3 -0.03
3 3334.8 3290.1 -1.34 3333.6 -0.04
4 5340.7 5143.4 -3.69 5351.9 0.21
5 6033.2 6011.3 -0.36 6031.0 -0.04
6 9311.5 8812.5 -5.36 9363.3 0.56
7 9735.8 9723.5 -0.13 9731.4 -0.05

Analysis of the forced response also shows the effectiveness of the proposed approach. Figure 5a
shows the drive-point FRF for each of the three cases with modal damping ¢ = 0.1% assigned for all
modes. For the uncorrected system, the first three resonances and anti-resonances show clear shifts to
lower frequencies. For the corrected case, the resonance peaks show excellent agreement to the truth
case for all modes, although the anti-resonance locations begin to deviate after 7 kHz. As a general
rule of thumb for modal substructuring, modal information should be included for 1.5 to 2 times the
frequency band of interest for the final assembly [10]. As modal information up to 10 kHz was included
in this analysis, one would expect accurate results up to 5-6.7 kHz, which is indeed the case. Figure 5b
shows the complex modal indicator function (CMIF) for this single forcing configuration. Again, the
uncorrected system shows clear downward shifts for the resonance frequencies. Interestingly, two
spurious peaks are also present and correspond to the axial modes of the system. The presence of
these peaks indicates the presence of the transducer breaks the symmetry of the structure, leading to
an appreciable effect on the axial modes shapes that allows a transverse load to excite these modes.
The corrected system again shows excellent agreement for all modes in the frequency band. The two
spurious peaks were reduced in magnitude, though not fully eliminated. Although not shown here,
increasing both the number of modes in the analytical model AT and measurement points showed
further reductions for these spurious peaks.



100 | ©-No transducer i
=—Transducer: Uncorrected
——Transducer: Corrected

FRF Magnitude [(in/s%)/Ibf]

10° 10*
Freq. [Hz]
(a) Drive-point FRF.
8
10 *
106 | -
=
= 104"
(&)
102 L
©-No transducer
—Transducer: Uncorrected
—Transducer: Corrected
100 L 1 L L L 1 3 L L L L L L L L 1 4
10 10
Freq. [Hz]

(b) Complex modal indicator function.

Figure 5: Frequency response for the truth baseline with no transducer (blue circles) and the system
with the transducer, both uncorrected (red) and corrected using the proposed approach (green).

4 Experimental Results

Two separate modal tests were then performed to provide further validation for the proposed ap-
proach. Figure 6a shows the first test configuration, a hammer test that serves as the truth baseline
without the attached transducer assembly. Figure 6b shows the second test configuration, a shaker
test with the attached force transducer assembly. Excitation was provided up to 2.5 kHz to excite the
first two in-plane bending modes. The response was measured with 9 triaxial accelerometers mounted
on the structure, including 5 on the horizontal beam with the attached transducer.

The force transducer assembly consisted of not only the force transducer, but also a stinger adapter
that has mass and inertia, idealized here as a solid cylinder, requiring removal from the system. A
drive-cap was placed over an accelerometer used for drive-point measurements that introduces an
offset of the transducer assembly from the test structure. This offset increases the inertia of the
transducer assembly about the connection point and is accounted accounted for during the correction
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(a) Hammer test setup used as the truth baseline (b) Shaker test setup used to apply the transducer
without the attached force transducer assembly. correction procedure.

Figure 6: Modal test configurations used to provide experimental validation.

procedure. Similar to the numerical simulations, the first 4 modes of the FE model shown in Fig. 3
were used for the horizontal beam to estimate the connection point mode shapes. Furthermore, the
correction procedure utilized only 3 of the accelerometers located on the horizontal beam, the two
located at the beam tips and the one located at the center of the beam closest to the vertical beam
connection.

Table 3 shows a comparison of the modal frequencies. For the uncorrected shaker test, the first
two modal frequencies showed downward shifts with errors of —4.44% and —7.81% for modes 1 and
2, respectively. After application of the correction procedure, the modal frequencies shifted upwards
towards their true values with reduced errors of 1.41% and —0.48%.

The forced response was also analyzed for each of the cases. Figure 7a shows the drive-point FRFs
where the uncorrected shaker response clearly shows the downward shifts for both the resonance and
anti-resonance frequencies, as well as deviations in the peak response magnitudes. The corrected
response shows drastic improvements for both the resonance and anti-resonance frequencies, as well
as the peak magnitudes, though some deviations still exist. Figure 7b shows the CMIF where both
the measured and synthesized singular values are shown for the hammer and uncorrected shaker tests.
An out-of-plane bending mode can also be seen near 960 Hz, though was not synthesized in the modal
parameter extraction process. The CMIF for the corrected shaker test shows excellent agreement with
the hammer test, though again with some deviations in resonance frequency and the corresponding
magnitude of the singular values. These deviations can most likely be attributed to the modeling of
the force transducer assembly where both the force transducer, and the stinger adapter, were idealized
as uniform cylinders; the associated cables and connector can also introduce mass and inertia that
may not be negligible. Furthermore, it may be difficult to model completely the force transducer
assembly and the response from a hammer test may not be available to compare the corrected shaker
response. For such a case, one approach may be to develop a system with a simple geometry, such
as the T-beam system used in this work, for the purpose of tuning the mass matrix for the force
transducer assembly so that the corrected response from a shaker test matches more accurately the
hammer test response. Such a calibration procedure will then garner more confidence when applying
the correction for the same transducer assembly used on more complicated test structures.

5 Conclusions and Future Work

The objective of this paper was to correct for the force transducer mass and inertia effects during
shaker tests. Utilizing concepts in experimental modal substructuring, this method relies on constrain-
ing the translation measurements on a local section of the test structure containing the transducer to



Table 3: Modal frequency comparison between the baseline case without the attached transducer and
the cases with the attached transducer, both uncorrected and corrected.
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(b) Experimental CMIF with the measured (solid) and synthesized (dashed) values shown.

Figure 7: Frequency response for the two test configurations: the hammer test (blue) used as the
truth baseline, and the shaker test with the attached force transducer assembly, both uncorrected

(red) and corrected using the proposed approach (green).
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an analytical model of this same section. Such constraints then enabled an estimation of the mode
shapes for all degrees of freedom, including translations and rotations, at the transducer connection
point. Knowledge of these connection point mode shapes allowed for the immediate removal of an
analytical rigid body model of the transducer from the system, thus correcting the system dynamics.
In the modal equations of motion, the removal of transducer mass and inertia at the connection point
manifests itself as removal of an equivalent mass distributed across the measurement locations. Both
numerical and experimental analysis on a T-Beam structure showed the feasibility of the proposed
approach in correcting for both the modal frequency estimates, as well as the forced response.

Although the scope of the paper focused on the removal of the force transducer, the proposed
approach may also be extended to remove the effects of other attached transducers, such as ac-
celerometers, if necessary. If an analytical model for the entire test structure is known, e.g., when
performing a modal test for model correlation, the proposed approach can enable full mode shape
estimations at each transducer connection point allowing for the removal of all transducers simultane-
ously. Furthermore, it is imperative the analytical model of the local section forms a sufficient modal
basis for estimating the transducer connection point mode shapes. The proposed approach does not
rely on knowledge of the frequencies of the analytical model, so if an accurate model does not exist
and is unable to be developed, one method to bypass this issue may be to estimate the mode shapes
by curve-fitting polynomials through the measurement locations.
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