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Motivation

e Purpose: Protecting electronic parts from shock and vibration

* Achieved with thorough infiltration of encapsulants — complete coverage is key

https://www.masterbond.com/tds/ep17ht-100 Foam encapsulation

* Typical defects: Voids, cracks, delamination, fillers migration — need to detect it
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Use numerical modeling to predict the extent of infiltration

AaUNM  (h) &

Laboratories



https://www.masterbond.com/tds/ep17ht-100

Material Description — Encapsulant

H3C CHs
Epoxy resin
Epon™ 828 — Diglycydyl Ether of Bisphenol A |>\ /<|
0 0 0 0

Curing Agents
Diethanol-amine — DEA

The combination is chosen for its

desired mechanical and dielectric
properties

Filler
Glass micro-balloons — GMB

Filler is added to made the material
lighter, softer and more compressible

The material is engineered for performance and processing condition
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Curing Kinetics

e Exothermic reaction = heat of reaction can be determined with Differential
Scanning Calorimetry (DSC) during isothermal cure

e Extent of reaction is determined by integrating heat flow

e Various kinetic models fit to data (Epon™ 828 cured with DEA): SPEC model best fit
with and without added GMB  ax _ koexp(—Ea-RT)(b+xm)(l_x)n

dt (l+was,,,-f,)

n=n +n, tanh(n3 {T-n4})

Isothermal Cures
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As curing progresses toward gel point, viscosity rises
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Complex viscosity/initial viscosity

Viscosity Rise During Cure
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GMB Particles Effect

Measured vs. shear rate using AR-G2 rheometer, double gap cylinder geometry —
particle migration less of a concern than cone-on-plate geometry
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No shear-rate dependence!
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Parameters for New
Krieger model

¢max= 0°64

n= 2.2

= Tfn[l_é] |

In model n, is taken to be the curing
continuous phase viscosity
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Old data on parallel plates compared to new in the
double gap cylinder. Little if any effect of slip.
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Target of Encapsulation: Winding

Encapsulation of electronic circuits

http://www.electrolube.org/technical-articles/2013/09/27/resins-for-
potting-and-encapsulation/

e The container with the transformer to be filled with curing epoxy

e The model will not resolve flow in small features — approximate as porous
medium
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Two Proposed Processes — Model Geometry

Gravity-driven Flow Pressure-driven Flow
Epoxy in Air out
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The Model — Governing Equations

fw:o Mass Conservation
e

Vev=0
v=_0_ v=0
7///////// 7 SLSSSSLSSSY, .
é v=0 v=0 Momentum Conservation
Z
é Container region — continuous medium
Z
é ) p{%+V-VV} = pg+f, —Vp+ Vv
AV

Winding region — porous medium

ilov 11 } Ll ]
PlH—H—.VeVV = pg+f, —Vp+uJVV+i=V|
Lgﬁ.at 5 AR BTN

Brinkmann equation
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Z Interface Tracking
Z v=0
Z oF
é ~ _4+VeWF =0 Level set method
Z
é F <0 Epoxy
7
é///////////////////////////////% F>0 Air
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Interface Tracking via Level Set Equation
Osher and Sethian, J. Comp. Phys. 1988

* Fis defined as signed distant function from interface = F = 0 signifies interface position
* [ field is advected with fluid velocity

_ VF

Continuum surface force A0 2 H

fy=0(V,n)ns ~~~Approximate

Exact

Surface force = volume force
“SApproximate

Exact

Property averaging

0 0 > F
/'l(F):/uepoxy(l_H)_i_/uairH 0
P(F)=Puoy 1=H)+puH  Sharp interface = diffuse interface
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Viscosity Model of Epoxy

Viscosity rise due to curing reaction

E a,
H=Hy exp[ :|

A+Ba

RT || @ — & —Extent of reaction
Arrhenius Cure/gel point
dependence

Reaction kinetic model

dd—f:(kl+k2am)(1—a)n

No shear-rate dependence

Negligible viscoelastic effect in
early stage of curing
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Model Summary

Pressure-driven Gravity-driven Mass Conservation

Vev=0
p=p,+pgh

Momentum Conservation
Cup region — continuous medium
p[%-f— v-Vv} =pg+f, —Vp+uviv

Winding region — porous medium
1ov

1 ]
— 4+ VWV |= pg+f, —Vp+ pu,VV+E v
» p[(/mt 7 }pg s = VP g ”

Interface Tracking

a—F+V-VF =0
ot

Viscosity Model

A+Ba
- o] £][
#=Ho RT a,—a

» Unknowns: Velocity, pressure, level set field, and d—a—(kl+k2am)(l—a)”

dt
extent of reaction

» Solved with finite element method via Goma 6.0
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Result — Gravity Driven Flow

I, = 100 Poise — GMB Content < 20%

Time: 0.010000

I, = 1000 Poise — GMB Content ~ 39%

B e 0010000

e Top surface gets filled first due to impingement
* Resistance from winding leads to buckling instability of the liquid jet

* Flow instability of air is a challenge

th
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Result — Pressure Driven Flow
= 100 Poise, Q = 2 cm?/s 1= 100 Poise, Q = 10 cm?/s

Time: 0.001000 Time: 0.001000

* Higher flow rate fills up cup faster but need to wait for imbibition
* Porous infiltration is about the same
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Future Work

More experimental characterization of epoxy wicking in the winding region 2>
capillary pressure — saturation relationship

Better handle on air flow

Faster curing — more appreciable viscosity rise
 Non-isothermal curing

More realistic permeability model
e Anisotropic permeability

e Curing-dependent permeability

=
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https://goma.github.io/
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