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Project Goal @-

> Power electronic systems are a necessary interface
between energy storage systems and the electric grid

> Wide-bandgap semiconductors have material properties
that make them theoretically superior to silicon for power
conversion applications

« Higher switching frequency and lower conduction and switching losses
reduce the size and complexity of power conversion systems, thus
reducing overall system cost

« However, questions remain regarding the reliability of wide-bandgap
materials and devices, limiting their implementation in systems

> Program goal: Understand the performance and
reliability of wide-bandgap power switches, and how this
impacts circuit- and system-level performance and cost
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Superior Properties of WBG Materials and

their Impact on Power Conversion Systems
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Si
—SiC
-- GaN (Ec = 3 MV/cm)
—GaN (Ec =4 MV/cm)
-—-GaN (Ec = 5 MV/cm)

© Avogy

' Hosei

> Cornell

® Sandia

B SiC DMOSFETs

Baliga FOM =
VBZ/Ron,sp =
SunEC3/4

SNL GaN HEMT microinverter

Conduction losses only

400 W in 2.4 in3 > 167 W/in3

o 107

10"}

[mQ2-cm

10°
. 107
o

107 b

R

102t
102

10°
Vv, [V]

4 . .
10 SOA commercial microinverter

250 Win 59in3 2 4.2 W/in3

Huang Material FOM = E.,,%/2

Switching and
conduction losses

[}
3

g

= WBG semiconductors can have a strong

no
3

Converter Power
Density (W/in%)
g — ——

(=]

1
1
AN }

10 15 20 25 30
HMFOM (Relative to Si)

--Trend

a dc-dc Converters o 3-® Inverters
+ 1-@ Inverters « 3-@ Rectifier

impact on system size and weight due to
reduced size of passive components and
reduced thermal management requirements

= But their reliability is far less mature than
traditional Si devices

J. Y. Tsao et al., Adv. Elec. Mat. (in press); R. J. Kaplar et al., IEEE Power Elec. Mag. (March 2017) 4
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Motivation and Overview @-

for This Year’s Work

> For Si technology, most power device reliability studies focus
on the packaging and thermal management
« Devices are mature and well-understood, and manufacturing is well-controlled

> For WBG materials, devices are new and (relatively) unproven

« Materials are much newer, and manufacturing is not as well-controlled (but this
is advancing quickly)

« SiC is most mature, followed by GaN power HEMTs (cousins of RF HEMTs)

« Newest type of device is GaN vertical device, which combines the material
advantages of GaN with the high-voltage capability of a vertical architecture
(>1200 V)

> Little information on reliability characterization of vertical
GaN devices in the literature
« Especially true under realistic switching conditions

Thus, this year’s work focuses on newly developed vertical GaN devices
and continuous switching reliability testing 6




Why Vertical GaN Devices?

> Historically, GaN power devices oo
- channe
have lateral architecture L=

imi ic field
- Limits voltage hold-off to ~<650 V Current / electric fie
due to electric field management Channel / buffer

« High frequency, but no avalanche _

> Vertical GaN (v-GaN) devices
are now becoming available

- Better potential for high-voltage  Isolaion  P*  solation
operation (=>1200 V) n- drift region
« Avalanche capability Current/
T : . Electric Field
 Reliability and switching performance

are largely uncharacterized in
literature




Area Advantage of Vertical GaN

For a given on-resistance (R_,,) of 10mQ:

> Tested Avogy vertical
GaN PiN diodes
« 0.72 mm? area
« 1200V, 15 A peak
forward current

GaN-on-GaN lowers die cost
while improving R,,, xC
switching characteristic

The devices tested

_________ 1 were fabricated at
: Avogy under the
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500mQ, 50 chips 40mQ 4 chfips
Si-MOSFET aaiN-on-Si

. C. Kizilyalli et al., Micro. Rel. 55, 1654 (2015) 8
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Current-Voltage Characteristics

of v-GaN PiN Diodes

> |-V characteristics
taken in 25 °C steps
e Reverse to 125 °C '

Current (A)
=
o

« Forward to 150 °C ’
> Confirmed datasheets g s o o “i oo s
> Positive temperature S 17001
coefficient of breakdown 8 oo
« Suggests avalanche process >
» Some hysteresis observed %1660_
for 25°C breakdown g
e Burn-in effect? T 3o s %o 3k 4b0

Temperature (K)




Double-Pulse Test Circuit @-

Circuit Diagram

> DPTC is usually used to

characterize switching of v-GaN L
. . HV diode (external)
inductively-loaded power |
transistors T | e Power
- But for this work, we use a Driver rans iSOl
known good switch and
characterize the diode GND
> Two modes of operation Photo of real circuit

« Transient (double-pulse):
Traditional use, characterizes
switching behavior

« Steady-state (continuous):
New use for reliability testing




Switching Characterization

with DPTC

Diode Voltage & Current
T T

Double-pulse Lt L
Diode voltage | .
1st pulse off 2nd pulse \N
Diode current { |
-t O
N / Reverse recovery
« 1st gate pulse: Increase stored energy in if;ffi\
inductor - “charge up” to quasi-steady-state \
« Gate off: Current circulates through 2| \
diode/inductor loop - e e
« 2nd gate pulse: Characterize switching
transients " Isic schottky diode
v-GaN PiN diode
Reported last year h! : :
Time (us)
11
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Continuous Waveforms

in ldeal DPTC

v-GaN * L J

(external) /

l_l Gate || Ul —/I —
: Iswitch
Driver

Vgate

A

GND Switch gate Switch
voltage current

> ldealized analysis of the double-pulse circuit
« All elements are lossless
* Inductor causes current to increase indefinitely
« Not realistic!




Continuous Waveforms in
Realistic DPTC

(external)

HV

AL

I_I Gate
Driver

Vgate

4

Iswitch

GND Switch gate Switch

voltage current

> Realistic circuit has some lossy elements
« Represented by lumped resistance in free-wheeling loop
« Causes switch (and diode) current to saturate
« Realistic DPTC is useful for continuous reliability testing!
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Parameters for Steady-State @-

Operation of DPTC

Recirculating

off-state aﬂ}srt;tte » Switching duty cycle:
current Al L
v-GaN .
b ternal > Current in loop:
1 _R,
: T ¢ IL(t) = Imax e L
HV Ga_te Powerr > Decay time:

switch

. __L __ton'Vin
/ tofr = Rln (1 L-Imax)
GND

Frequency and duty cycle must be adjusted
based on supply voltage and device ratings
to achieve desired steady-state operation




DPTC Testing of v-GaN PiN Diodes [GJ

> Operation of circuit was
limited by thermal
dissipation of package
« Not adequately heat-sinked
« Limited voltage to 500 V,

currentto 2.2 A

» Switching times adjusted to
achieve steady-state under
these conditions
« Switching frequency = 1 kHz

Switch gate
e t,=35us voltage

* Duty = 0.35%
« L=3mH impliesR=1Q

15




-V Measured Periodically
During Switching Stress

@ __
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« Both curves show minimal
change under these stress
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v-GaN Diode Parameters During

Switching Stress
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> Electrical
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Double-Pulse Waveforms Before
and After Switching Stress

After 800 minutes of
switching stress

Initial

Switch gate Switch Diode
voltage current voltage

Conclusion: Vertical GaN diodes are robust under the
switching conditions and total stress time utilized




Summary and Continuing Work @-

> Summary of this year’s work:

« Vertical GaN power devices are at the forefront of WBG power
semiconductor device technology - great potential to further
improve system performance and reduce system cost

« Modified DPTC to perform continuous switching stress of
vertical GaN PiN diodes

 Diodes look robust under the stress conditions examined

» Work for the coming year:

 Install proper heat-sinking in the DPTC to allow for a wider
range of stress conditions (higher current and voltage)

« Install additional voltage and current monitors to record
electrical data at more points in the circuit

« Further automate testing to stress more devices, to understand
the statistics of vertical GaN device reliability

19
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