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= Efficient and Compact Power Conversion -
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T Enabled by WBG Semiconductors

' "'-!ﬁiif
EAIS

SNL GaN HEMT “Coin Converter”
90 V, 90 mA - 215 W/in3

SNL SiC hybrid switched-capacitor boost converter (ARPA-E)

*  First prototype: 0.5 kV - 10.1 kV (gain = 16.8) at 2.6

KW. 95.3% efficient. 410 in® SNL GaN HEMT microinverter
’ /0 y)

400 W in 2.4 in3 > 167 W/in3

* Second prototype: +2% efficiency, 55% volume

Over an Order of Magnitude
Improvement in Power Density is

Enabled by WBG and UWBG <:| SOA commercial microinverter
Semiconductors Compared to Si 250 W in 59 in3 2 4.2 W/in3
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WZEE Ultra-High-Voltage Applications —

TRAWIDE BANDGAP
POWER ELECTRONICS

Pulsed power
Conservative but

critically important
power device markets

P P ENTEAY A B

B = e
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10’s of kV semiconductor
switches are possible
using WBG

semiconductors! Long-distance transmission

;’ U.S. DEPARTMENT OF Jin "' DV
(@) ENERGY| NLSA -

Nathonaf Nuclear.



= llI-Nitride Semiconductors Are -
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B R Outstanding WBG and UWBG Materials

Fundamental Materials Capabilities Conventional
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Bandgap (eV) Breakdown voltage (V)

Unipolar FOM = Vg2/R,, ., = ep,EZ3/4

Hudgins et al., IEEE Trans. Pwr. Elec. 18, 907 (2003); J. Y. Tsao et al., Adv. Elec. Mat. (in press)
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Power Density Scaling with Semiconductor -
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R Material Properties

Conventional WBG UWBG
Properties Property Silicon 6H-SiC 4H-SiC GaN AloaGao7sN Aloss Gaos AIN
Bandgap (eV) 11 3.0 33 3.4 4.1 Sy 6.2
s(cm?/Vs) 1,400 500 800 1,000 150 150 425
Diel constant 11.9 9.7 10.1 10.4 10.3 10.2 10.1
Ec (MV/em) 03 25 22 4.0 5.9 13.4% 16.6*
ath (W/cmK) 1.5 4.9 49 1.4 0.4 0.5 2.9
FOMs vUFOM (rel) 1 168 191 1,480 705 8,100 43,650
HMFOM (rel) 1 5.0 55 11.3 6.4 14.6 30.5

*Calculated using the method in [18].

Relative Figures of Merit:

. 600 i i —
gc | | | i
&5 a0fl 1 aeN | * Vertical UFOM =g E3
g ! arsic1 - : : - 1/2
TP : « Huang Material FOM = E Y/
33 s g AIN'!
O 0 Y T i ] i f
0 5 10 15 20 25 30
HMFOM (Relative to Si) HM-FOM seems to be a good

a dc-dc Converters o 3-@ Inverters . H H

¢ 1-@ Inverters = 3-@ Rectifier prEdICtor Of power denSIty Ina

-~ Trend variety of power converter types

R. J. Kaplar, J. C. Neely, et al., IEEE Power Electronics Magazine (March 2017)
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wws  \WBG/UWBG Device Optimization .

TRAWIDE BANDGAP
OWER ELECTRONICS

» Developed optimization tool to demonstrate
device/material favorability for given

application area
* Treatment for 2-terminal devices
* Focused on traditional power conversion
applications
* Neglects non-idealities and parasitics
* Ideal materials comparison
» Given application parameters:
* reverse (V)
Jforward (A/sz)
* Frequency (Hz)
e Duty cycle (%)
 Temperature (K)
» Determines optimal thickness and doping
* Function of material and device type
» Materials: SiC, GaN, Al,Ga,,N
» Devices: PiN, SBD, JBS, and MPS diodes Optimal material and device type

Based on Morisette and Cooper, TED 49(9), 1657 (2002); fO r glve n Vrevl Jfl freq, d Uty, T
Details to be presented at WiPDA 2017 next month

I, freq, duty, T

FEV’

Minimize Power dissipation
by altering:

lterate over d, Np
application such that Vbreakdown 2 2*Vrev

space

U.S. DEPARTMENT OF

@ENERGY | NISA




= WBG/UWBG Preferred

O\
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Application Ranges

SiC Thinner drift layers
~2 MV/cm for increasing E.
GaN
~5 MV/cm AIN

~13 MV/cm

GaN and AIN preferred at high
voltages over mid-frequency range
* Benefit of higher E,
* Not as beneficial at low and

high frequency (low
conductivity modulation and
10 1,000 100,000 increasing reverse recovery)
Frequency (Hz) - Examined PiN diodes since peak

field is buried below surface
* Part of more advanced devices
* Also must consider Schottky

300 K, 50% duty cycle, 500 A/cm?

Details to be presented at WiPDA 2017 next month

NYSA



Outline

» Quasi-Vertical AlIGaN PiN diodes




Prior AlGaN PiN Diode Results

(o]
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b D (Nishikawa, NTT, 2007)

Al,Ga, N vertical PiN diode (0 < x,, < 0.57) Drift region

Pd/Au

[
p-GaN Vertical

mm) [ -ALGa N | injection
= « N ~ 16 '3
° Drlft Layer. 0.2 um, NO ZX10 cm conducting n-Al Ga, N
0 SiC substrate n-Al Ga, N buffer
* N-SiC substrates, R, ;, = 1.45 mQ-cm? (x, = 0.22) Y T
LA REET AR EARERTER AT
Ti/Au
Reverse breakdown E.~ 8 MV/cm Higher forward turn-on for
<200V (2x GaN) __ increasing Al %
0.01 — 10 )
— r - = T 7 I 1200
— i-Al Ga, N S / o o« i-AlGa, N (a)
£ 46% 34% > _ Alca N g 1000 | -
S Or 171 I = 1} Hudginsetal |pp A= % ix > 0% | |l 29%, {46% 52% | 57%
é 579 i £ i 2904 0 ) E oc(E )25 This work = sl
2 oot} § ’ 2 co Gaps E.<(E)* = /]
QC) : E 0.1 InAs e ;&; 600 ’I._.
-‘2 002F 3 % GaSb O a00f ;.-'
e $ w 001 E—‘ 200 /"
=5 O ju—
O 003} ! = InSb = —
- . $ . O 0.001 e N O 0 1 : ) ) ]
200  -150  -100  -50 0 0.1 1 10 0 10 20 30 40 50
Reverse voltage (V) Bandgap energy (eV) Forward voltage (V)

» Breakdown voltage increases with larger bandgap

> Critical electric field scales as E;2’

U.S. DEPARTMENT OF ' l' D
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e rtical PiN Diode o
LIWB&E
ULTEANIDE Sanoch? res

Device Type #1 Device Type #2 (a-d)

: : Implanted -
Al, 5Ga, ;N Homojunction ITE Al.Ga, N /Al,,Ga, ;N PiN
PiN Quasi-Vertical Structure Quasi-Vertical Structure

-M PdAu SiN

O
r— p-Al Ga, N Al = x

PdAu SiN

AI=03  paomivarsmsar) <—

- n-Aly ;Gag ;N Drift Layer
Al=0.3 (c.c. ¥ 2E16 cm3)

Insulating

Al =0.7

TiAIMoAu TiAIMoAu
Al,Ga, N Buffer Layers Al,Ga, N Buffer Layers
Sapphire Substrate Sapphire Substrate

> Critical design parameters:
* Drift layer thickness and doping level
* Electric field management using junction termination extensions (JTEs)
e p-type material conductivity

NYSA
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ULTRAWIDE BANDGAP
POWER ELECTRONICS

Critical Electric Field Scaling and

Thicker Drift Regions for Higher V;

Critical Electric Field vs. Bandgap

T 16 | ]
&  lI-Nitrides + AIN
> 14— ;
€ ,, | ---Hudgins, 2003 ! Egi ™ 5.9 MV/cm
3 (Eg*2.5) 2 (scaling as E_25)
= 10 , g
L g 4 57%AlGaN?
o ’ ‘
2 6 % 30%AIGaN? ;
.‘_3 4 4- GaN!
T 2 ®
QO InSh GaAs 4H-SiC
0 ‘e ® |
0 2 4 6 8

Bandgap (eV)

SNL 30% Al homojunction PiN
diodes show breakdown scaling
with drift region thickness

Current (A)

* 4.3 um Al ;Ga, ;N drift region is
punched-through at breakdown

* Punch-through analysis indicates E. =
5.9 MV/cm, consistent with E.~E;2°

scaling
Equipment
/ Limited
o.o_' l' L] v L] L] L] L]
-2.0E-74 —5.5um i
—T7.5um
9 um
'4.0E'7‘ 11 um -
-6.0E-7 - -
-8.0E-7 - -
-1.0E-6

-3000 -2500 -2000 -1500 -1000 -500 0
Voltage (V)

1 - ArmstrongEL 2016; 2 — Allerman EL 2016; 3 — Nishikawa et al. JJAP 46 (4B), 2316 (2007)
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% Comparison of Breakdown Voltages L
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L Reported for 11I-N PiN Diodes

. Bre?ll((c;) wn No (cm-3) Drift (um) Material Group Ref
GaN diode
. 4.7 2-16e15 33 GaN Hosei Univ. EDL 36 p1180 (2015)
(Vertical)
R —— 4.0 2-5e15 40 GaN Avogy EDL 36 p1073 (2015)
N-contact 3-9 3815 30 GaN Sa ndia EL 52 p1170 (2016)
3.7 5el5 >30 GaN Avogy EDL 35 p247 (2014)
| P Contact
AlGaN di p-30%AlGaN 3.5 1-12e15 32 GaN Hosei Univ. IEDM15-237 (2015)
(Quasi-ver >3 0.8-3el16 11 30%-AGaN Sandia This work
» 3.0 0.8-3¢16 9 30%-AGaN Sandia This work
N+ 30%AlGaN (Contact) . . Jon J Appl Phys 52
o 3.0 1-10e15 20 GaN Hitachi 0028007 (2013)
Sapphire
Advantages of Ultra-Wide-Bandgap AlIGaN
GaN Al, ;Ga, ;N
-3 15 16
N, (cm) low 10 low 10 Larger
Drift (um) 20-30 ~10 E-&E;
TDD (cm) <106 low 10° €@ Impact?

U.S. DEPARTMENT OF ' l' D
@ ENERGY| VX




Approaches to 70%

(o]

LIWB&E

T AlGaN PiN Diodes

p-type doping very challenging with c o
increasing Al: kT~ 0.026 eV
E,(GaN)~180meV | | e, M Thermal activation of holes
E, (AIN) ~ 500 meV f 8 not viable for high-Al alloys
N ~
Homojunction Heterojunction Polarization-doped p-Superlattice
p-GaN p-GaN p-GaN p-GaN
Graded Al composition p-AIN/AIGaN
p-Aly 70Ga 30N ‘ ‘ p-Al 30Ga 70N ‘ | . ‘ ‘ superlattice
“Quasi-vertical” on n-Alg 70Gag 30N
sapphire: Common _ g 'Si&mcm% Vertical on n-GaN:
design except for p- ultimate goal
L TR
AIN
Sapphire 50-350 um diameter

U.S. DEPARTMENT OF ' l' D
@ ENERGY | VLS




S AlGaN Homojunction

LIWB&E

ULTRAWIDE BANDGAP 4 4
POWER ELECTRONICS I IO es

Homojunction s s s s T
- —2o I AE6 .
1E-05 - —— 12,0711 i
PN il | —Fi
R 1E-06 ' 10.07.04 1268 F2
p-Aly 70Gag 3N g 107 Reverse IV |- 9587 | Forward IV ]
Aly 70Gag 30N g i
N-Alo.70530.30 5 1508
5-8um o '5
n =2-5e16 cm™ ﬂEm3
1E-10 4 >
AIN | |
: 1E-A1 +— ! ! W
Sapphire 3000 -2500 -2000 -1500 -1000 -500 O

Voltage (V)

» Robust to 2.6 kV (10 pA leakage) with no clear breakdown
* Currently investigating possible transport mechanisms
» Extremely resistive forward IV: ~1 yA @ ~130 V
* Likely due to low hole concentration in p-Al,,Ga, ;N

U.S. DEPARTMENT OF ' l' D
@ ENERGY| VX




° 70% AlGaN Heterojunction B

s -
PiN Diodes
p-GaN
“ p-Al, 1,Gag N ” > Much lower turn-on > ZW: distinct re.ve-rsed
Heterojuncti R voltage than 70% ehaviors, majority do
n - :;30 h uncti not show abrupt
n=2-5e16 cm’? omou:mc lon . breakdown up to 10 pA
* Consistent with (~50 A/cm?)
. improved conductivity

» Not achieving the
breakdown voltages
predicted by E_ scaling

Sapphire of p-Iayer

Reverse IV :
‘ 1 * Excess leakage current
3.0E-3- . 2
v \ 5.5 um drift region | may mask 70% Al
! K\ n~3-3.5e16 cm 3 | : performance potential
. < 1E-07 \ J
Z2053 i ~ : T \ \  30% Al p-layer may
“?;g P g 1E-08+ | \ impact breakdown
| =1 ]
3 O 1E-094
1.8E-3 - 1 . .
50 um 1E-10 Polarization charge

present at
heterojunction

1E-11+

B J A S Forward IV | ;.5 | | |
e -1600 -1200 -800 -400 0

Voltage (V)

U.S. DEPARTMENT OF ' l' D
@ ENERGY | VLS




= 70% AlGaN Polarization-

LIWB&E

ULTRAWIDE BANDGAP

Doped PiN Diodes

K ; br : : '\ Log Scale P
) ’ = 8x107 4 i
p-GaN '"“"""'"";"-—';?;.;i;;;;;';;;;.i;; """ N X 1 | 1E-8
Gl’a d e d Al Smooth valence band for enhanced vertical transport Energy-band Diagram v - : [ .
composition Simon, Science 327, 60 (2010) < 6x107 |‘ ___________ L 1E9 §
(0'709 0) Temperature (K) g ‘ é
A 300 200P 100 5 4x107 4 Y F1E-10 5
-Aly 70Gag 30N © ¥
n-Aly 70Gag 30 gmd(,d AlGaN ff)ﬁ ] L 1E-11
== @[ T s 240 Linear Scale
n=2-5e16 cm? ; g-;'"" e | 1E-12
= [ &
O — | {E13
g o, Polaration -1400 -1200 -1000 -800 -600 -400 -200 O
: A o ] Voltage (V)
AI N S o ."AGH.NZ\[;{ o
§°F A |3 : 0.06 .
Sapphire - R4 1 Ry~ 6mQcm? /_i:-om
i W 0.054 F1E-3
3 4 5 6 7 8 9 10 5
1000/T (K1) - Log L 1E-4
< | Scale [1E5 <
» 150 nm grade from Al ,,Ga, 3,N to Al, ,:Ga, 5N = 0s. s
» Similar reverse voltages for heterostructure PiNs 3 1 FIET 3
. . . . . . 0.02 - i =
and polarization-doped PiNs for similar drift layer _ / Linear 1E8
. : Scale L 1E-9
thickness 0011 L 1E-10
* May be due to interaction of implanted JTE oo AL . |
. e . . i 0 5 s | Forward IV
with polarization-induced charge in p-layer

Voltage (V)
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ULTRAWIDE BANDGAP
POWER ELECTRONICS

p-Superlattice

p-GaN

p-AIN/AlIGaN
superlattice

n-Aly 70Gag 30N
5-8um
n=2-5e16 cm>

ﬁ—ﬂ

Sapphlre

> p-type superlattice design*
* Barriers: AIN (10 A)
*  Wells: Al ,.Ga, ;5N
160 pairs, total thickness 3200 A
» Higher breakdown voltage for similar drift region
thickness and doping — better JTE?
> Higher R, — due to hetero-barriers?

* Allermanet al., JCG 2010

NDSA

Field ionization

Current (A)

70% AlGaN Superlattice
PiN Diodes

Reverse IV |,
Log Scale e
F1E-8

Irev < 1nA I
—————————————— - 1E-9
- 1E-10
Linear L 1E11

0 .
-2500

-2000  -1500  -1000 -500

Current (A)

Voltage (V)
0.0030 s
oo = 14 MQ cm? 1 piER
0.0025 T L1E-4
0.0020- = L=
£ Log Scale i pEs S
0.0015{  § i E 4E7 %
&
0.0010- . r1E-8
_ Linear Scale Ee
0.0005- 10
0.0000 r——
0 5 10 15 20 25 Forward IV
Voltage (V)




Outline

» Al-Rich AlGaN High Electron Mobility
Transistors
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TRAWIDE BANDGAP

OWERE ECTRONICS

Gate

AN

/

Direction
of current
flow

Lateral Power Device
Figure of Merit

Drain

v

P
<«

\

n

Ron,sp = RonWL =

FOM =

S

Vg = EcL

L
Wq.uchns

OTl

LZ

qUchNs

Vs
= q.uchnsEg

R on,sp

Not as widely known as the vertical UFOM

1
‘“A 10 F T T T T AN R | l T
£ s —y.2 - 2
o [ FOM = VB /Ron,sp B c”'lchnsEC
% GaN and AlGaN curves
el expected to show more
) 100 | | separationat higherT
(&) F | © GaN pdominated by
% phonon scattering
o * AlGaN p dominated by
2 I alloy scattering
8 X
GaN vertical
Z 10"} ~ . _
o - GaN lateral 7 Alo.55G30.15N
(S) - CAA13 S Y e vertical
= L (n, =103 cm?) . :
/
8 b Al, 3-Ga, ;N lateral |
o 9 (ng =102 cm??)
@ 10- 2 — 3 I — P 4
10 10 10

Breakdown voltage (V)

Proportional to E.2 rather than E.,
but high n_ can result in high FOM
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Benefits and Challenges of

Higher Al Content

Breakdown voltage of AlGaN
HEMTs vs. G-D spacing

Nanjo, IEDM 2007

3
()]
O
% 1200 f ; ;
> . 39% / 16%
g Rm;_ ..................... T— ...._?-_;___'_'__i_-_______
S 5 T
= J00f 2T 7 16% / GaN
© f 5 R
m :__ _! | EECEEL .- -‘-":" '-'

¥ 2 4 6 " 11} 12

-~ Gate-Drain Spacing (um)

Electron mobility vs. AIGaN

channel composition
2000 [ i i il
[& 1- Nango, TED 2014} -
.—a)m 2- Hashimoto, PSSC 201
21500 \ b aprz0na, e 20
‘%} S-Taniusa, APL2006 .
E‘;m -\ Alloy scattering
% - limits mobility  s4ia
S 00 L 100/85
= Sandia 85/70 : /
0 X il X il (1 i X 1 i
1
00 02 04 06 08 10

Al Mole Fraction ™= x, >85%

Higher Al compositions:

» Higher breakdown voltages

Highest Al compositions:
» Higher mobility is predicted

O
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gy Previous Result: AIN/Al, ;:Ga, ;N HEMT

ULTRAWIDE BANDGAP
POWER ELECTRONICS

43V — V(i _ 10 - Vy=10V Drain Current
£
E
3 <
.E +2V g
< k= lon/loge > 107
£ g
E Hv 8 Subthreshold slope:
‘5 % 10.5 75 mV/decade
3 I
£ o s
© c
a” el £ -
2V g
0 Gate Current
0 -3V | |
0 5 10 15 20 25 -10 -5 0 5
Drain Voltage (V) Gate Voltage (V)
> Recessed, re-grown Ohmic contacts —
» Some aspects of performance are good AIN GaN
* Good gate control 2DEG
* Low gate and drain leakage, steep sub-threshold slope (~ 75 mV/decade) Al, ¢:Ga, N

* Breakdown voltage ~810 V for 10 um G-D device (81 V/um = 0.8 MV/cm)
* Excellent I,/ ratio >107

> But current density is limited by high resistance of quasi-Ohmic contacts (< 40x expected)

U.S. DEPARTMENT OF ' l' D
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Second-Generation HEMT: o

e Al, g:Gag 1sN/Al, 50Gag 50N Structure

ULTRAWIDE BANDGAP
POWER ELECTRONICS

CV Characterization

VMNAS5909a (series) VNAS5909a (series)
B0 - & — VNAS90%a - s Hoea - # = WMAS309a - Flat
7.0E-10 Flat /“',,..uﬂ"‘ I — & — VNAS909a - Center
; .
Al, ;-Ga, 5N barrier 6.0E-10 =@ ~VNAS30%a- ¢ - — E

| . . Center "u .ﬂ-‘ ,..E-,, I :'
T 50610 ! " = &*
g | h 3-__; o‘

AI0.70Ga0.30N channel E 4.0E-10 ? " E 1.0E+17 \
g I S Yo
g 30810 s ! S 106416 AN
AIN nucleation and buffer layer 5 0610 ! $ b . So
A i -~
[ 1.0E+15 ool
. 1.0E-10 f * Trea
Sapphire substrate o
0.0E100 #0sEEBESIEIIIRIERORRS” 1.0E+14
100 80 6.0 4.0 2.0 0.0 0.0 01 02 03 0.4
Voltage (V) Depth (um)
Process Steps:
. . . . ° i :
1. Photolithography, ohmic metal deposition, litoff, RTA Sheet resistance: 2200 Q2/C
® Pinch-off voltage: -4.5 V (center)

2. SiN deposition, photolithography, SiN etch (gate stem)

3. Gate photolithography, evaporation, liftoff .
P graphy, evap ® Sheet charge density: 6x1012 cm

® Inferred mobility: 250 cm?/Vs

Planar source and drain contacts

U.S. DEPARTMENT OF ' l' D
@ ENERGY | VLS
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LWEE Ohmic Contact Development

ULTRAWIDE BANDGAP
POWER ELECTRONICS

Aly 45Gag 5sN/Aly 30Gag 70N 10 A|0_85Ga0_15N/A|0_70Gao_oN
’ 6 Au 50 nm
4
. j Ni 15 nm
2 —_
% é ; Al 100 nm
§ ’ % 2 :?owpnm : Ti 25 nm
3 —= . —pn |
2 i . B || AlGaN/Substrate
3 —im| 1 o e x|
4 i) 1 E A 1. 900°C anneal
5 . . . M= 2 7 0 1 2 3 1 5
3 2 -1 o 1 2 3 WVoltage (V)
Waltage (V)
25 nm Aly ;-Gag ,:N
50 nm Alp 45Gag 5N 400 nm Al, ,Ga, ;N
Observations:
4.15 mm Aly 3Gag N Graded Layer 50 nm
1.6 mm AIN 2.9 mm AIN * Conventional planar contacts
Sapphire Substrate Saphire Substrate work well for Al, ;Ga, ;N
h I id-10° Q cm?
Q channels (p_ mi cm

* Quasi-Schottky for Al ,Ga, ;N
channels, but still have > 20x

B . ) i

Green = Al-Ga-N (high Al] higher currents than 1% gen

Blue = Au (some Ti) HEMTs

TEM cross-section: (P. Kotula, M. Miller) )
Magenta = Ni-Al

Red = Al-Ga-N (low Al
B. Klein et al., planar contact development ( )

@ ENERGY NIS2 25
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Electrical Characteristics of

LIWB&E

A Aly g5Gag 7oN/Aly 70Gag 3oN HEMT

Linear Scale Log Scale
SGU 5
Ret:(10,11)GL2D10C2 SGD-5GU SGD 10 . .
50 mpmz===c=======
Vg=—5.~4. 3,-2,-1,0,1,2, 3.4V — o | et T T T T T T
. £ 10
a0 [ -: 46 mA/mm S | Ammm e =
30} = 102l TN N e
—— : -
E ot ---Drain current
e -4
% 20 S 10 —Gate current
el o
o
10} @ 10"
o
c e
0 -E ’]D_S -"ﬁ-‘}'_
D 1
10 0 p, 4 6 g 10

vd (V) Drain Voltage (V)

> Better Ohmic contacts

* Current density of 46 mA/mm > 20x better than first generation, but still < 2x expected
* Due to remaining rectifying behavior in source and drain contacts

e Again have low gate and drain leakage current

» Sub-threshold slope comparable to first generation ~ 75 mV/decade

U.S. DEPARTMENT OF ' l' D
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Breakdown Voltage of

LIWB&E

SIS Aly g5Gag ;0N/Alg 70Gag 30N HEMT

25 nm Al, .-:Ga, ,N

400 nm Al, ;Gag ;N

Graded Layer 50 nm

i 2.9 mm AIN

Sapphire Substrate

» Field plate with SiN dielectric

1 » Misalignment with a circular gate leads to
Lsp (actual) < Ly, (drawn)

> V, =511V

Drain or Gate Current (A)
=

" * Lgp =1.6-5.4 um (single device with
10 v Drain Current | | misalignment)
- Gate Current > Breakdown field = 95-320 V/um (= 0.8-3.2
10 , , , , , MV/cm)
0 100 200 300 400 500 600 * Exceeds previous generation device
Drain Voltage (V) (81 V/um)
* GaN HEMT typical breakdown field =
100 V/um
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: Advantages of UWBGs for o

TN

LIWB&E

AT Radio-Frequency Devices

Johnson FOM:

1000 -
s 1 =E.v./
©100 {
g 60 —
>° i ’>'\50 _ JFOM I?ased on Brennan /
c 104 N Bellotti Monte Carlo
% f SSTOSEET | E 40 _ ca'lculation* for v, cozuspled
o 1 SinAsHEMT = | with Hudgens E. ~ Eg%° rule
ﬁ 1 =mpHeEMT =
E mGaN FET | L] ™ 830'
m 1 j oscMEsFET c |
i asiceHBT o 20
1 icaAasHBT UC’ s
. Alnl'-':HBT: | 'S 10F
0-1 1 T T LI T lI T rorrry L] L T LI B I B ﬁ [
0 " 1 " 1 " 1 " 1 "
1 10 100 1000 10000 0.0 0.2 0.4 0.6 0.8 1.0

f; (GHz) Al% in AlGaN

Al-rich AlGaN yields better JFOM than
GaN due to higher E. and comparable v,

* M. Farahmand et al., TED 48(3), 535 (2001)
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o R Summary

» The UWBG semiconductor AlGaN has potential to push
the state-of-the-art in power electronics

. Strong scaling of critical electric field with bandgap

> Demonstrated kV-class vertical AIGaN PiN diodes

. 30% Al diodes show good behavior
. Several approaches to p-side of 70% Al diodes examined

» Demonstrated Al-rich Al,Ga, ,N/Al Ga, N HEMTs

. Second-generation device has planar source and drain contacts
. Higher current density and breakdown field achieved
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