SAND2017-11532C

Mark Hoemmen, 23 Oct 2017
SAND2017-????? C (UUR)

U.8. DEPARTMENT OF V' VAT =
ENERGY W'A’& Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly
Natlonal | \dministration

Muchenr Secesby A owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Outline) 2=

= Whyisitso hard? Rather:

= How do Trilinos’ culture & users affect configuration & building?

= What features does Trilinos support that makes building nontrivial?
= How do | build Trilinos?

= What programs & libraries will | need?

= How do | configure (set options & prepare to build)?
= How do | link my application against Trilinos?

= Please don’t just paste in the libraries on your link line!

= For Make-based build system: Makefile.export.*
= For CMake-based build system: FIND PACKAGE

Trilinos: Confederacy, not project @&

= Many packages, many projects

= Packages may depend on
= Each other: e.g., Ifpack on Epetra
= Third-party libraries (TPLs): e.g., BLAS, Boost
= Compilers: CUDA, MPI

= Dependencies: optional or required

= Packages may live in different repos

“It’s not a big truck.
= Common build & test infrastructure It’s a series of tubes” —

= TriBITS: A project in itself, used elsewhere Sen. Ted Stevens
= Motivated by CASL VERA

= Handle software licensing & access control issues

3

Why is Trilinos a confederacy? .

= “Three pearls” (Tpla popyopttapLa)
= Aztec (iterative linear solvers)
= ML (algebraic multigrid)
= Zoltan (graph partitioning, load balancing)

= Share only repository, build, & test

= QOriginal concept: Optional interfaces

= AztecOO (Epetra-Aztec), Isorropia (Epetra-
Zoltan), ML (Epetra)

= Fully stand-alone; take (don’t use) Epetra

= Later evolution moved away from this White pearl necklace

. f ibuti

= Stratimikos: Needs Teuchos, wants Epetra (see Notes for attribution)
= Muelu, Panzer: Long chain of required deps

= Kokkos as common programming model

What do | need to build Trilinos? @&

= Minimum
" C & C++ compiler

= Many packages need C++11 / C99
= We test with GCC, Intel, Clang, NVCC, & XL (IBM)

= BLAS & LAPACK libraries

= CMake >=2.8.11 (prefer >= 3.3.2)
= Optional (required for some packages)

= MPI, CUDA, Fortran

= Many third-party libraries (see Trilinos/TPLsList.cmake for full set)
= We recommend

= Linux, *nix, or MacOS X (Windows experience varies)
= BLAS, LAPACK, MPI (all ABI-compatible)
= Whatever else the packages you want require

Setting options & preparing build @&

= Setting options & preparing build == “configuring”
" Trilinos uses CMake for this

= Compare to running “./configure ...” with GNU Autotools
= Users often turn this CMake invocation into a script

= We call this the “do-configure” script, & will show examples
= Trilinos developers also use “check-in test script”
= Python script that drives CMake, CTest, & git

= Automatically enables packages affected by your changes

= Lets Trilinos developers test multiple builds with different options
= Can do asynchronous remote test & push

Hints for configuring Trilinos UL

= Say as little as possible
= Trilinos can often detect compilers, BLAS, & LAPACK
= Best used with a “module” system

= “As little as possible” example: MPI

= TPL ENABLE MPI:BOOL=ON # may be enough!

= MPI BASE DIR:FILEPATH=".." #if notin SPATH
= What's with : BOOL=0ON vs. =0N ?

= :S{TYPE} lets you specify the option’s type

= Examples: BOOL, STRING, FILEPATH

= |t's optional, e.g.,, Trilinos ENABLE OpenMP=0ON
= What’s with ON / OFF, TRUE / FALSE, etc.?

= CMake lets you spell “true” & “false” in different ways

How do I... (]

= Set the install directory?
= CMAKE INSTALL PREFIX=S${INSTALL PATH}

= Set debug or release build?
= CMAKE BUILD TYPE=DEBUG (or RELEASE)

= Set C++ compiler flags? CMAKE CXX FLAGS=".."
= No need to add —g for debug. Release adds -03.

= Enable C++11 support?
= Usually, automatically detected & enabled by default
= |fnot,set Trilinos CXX11 FLAGS (not CMAKE CXX FLAGS)

= Set whether to use dynamic shared libraries?
= BUILD SHARED LIBS=ON (or OFF)

How do |I...) 2=

= Tell CMake where to find MPI?

= Remember: Say as little as possible

" TPL ENABLE MPI=ON

= MPI BASE DIR=${PATH TO MPI INSTALL}
= Can add nondefault mpiexec name, options, etc.

= Set compiler paths? (non-MPI, a.k.a. “serial” build)
= CMAKE CXX COMPILER=${PATH TO CXX COMPILER}
= Analogous for C & Fortran compilers

" Enable OpenMP? Trilinos ENABLE OpenMP=ON

= Usually enough; no need to specify compiler flags

= Use CUDA? See Trilinos/packages/tpetra/doc/FAQ.txt

Package-related options) S,

" Enable a specific package (& its required deps)?
" Trilinos ENABLE ${PKG}=0ON
" To see list of all available packages
= CMake output: “Final set of [non-]enabled packages:’
= For TPLs: “Final set of [non-]enabled TPLs: ”
= Or, read Trilinos/{PackagesList, TPLsList}.cmake
= Enable all (optional, fwd dep) packages?
u TrilinoS_ENABLE_ALL_PACKAGES=ON

= Trilinos ENABLE ALL OPTIONAL PACKAGES=ON
= Trilinos ENABLE ALL FORWARD DEP PACKAGES=ON

4

10

How do | find out more? e,

Read Trilinos/INSTALL.rst (it’s short & good!)

Read examples in Trilinos/sampleScripts

= Age & quality vary

" They don’t always follow “as simple as possible”
= Beware “cargo cult configuration”

trilinos.org/docs/files/TrilinosBuildReference.html|

Ask for help on GitHub or the e-mail list

Building Trilinos with Ninja h

= Ninja: alternative to Make; faster, more parallel builds

= CMake can generate Ninja build files
" Add -G Nin7ja to cmake command-line arguments

= Some restrictions
= Needs patch to build Fortran, or turn off Fortran in Trilinos:
" Trilinos ENABLE Fortran:BOOL=OFF
= Does not yet work with Trilinos’ check-in test script

= Must build from top level of build directory; can’t change into
subdirectories & build there

= This mainly only affects Trilinos developers

Building your app with Trilinos UL

* Which libraries? Link order matters!
* -Inoxepetra -Inox —lepetra —lteuchos —lblas —llapack
e Optional package dependencies affect required libraries
e Using the same compilers that Trilinos used
e g++ oriccoricpcor...?
* mpiCC or mpCC or mpicxx or ... ?
* Using the same libraries that Trilinos used
e Using Intel’s MKL requires a web tool to get the link line right
* Trilinos remembers this so you don’t have to
* Consistent build options and package defines:
e g++-g—-03 -D HAVE_MPI-D _STL CHECKED
* You don’t have to figure any of this out! Trilinos does it for you!
* Please don’t try to guess and write a Makefile by hand!
* This leads to trouble later on, which I’'ve helped debug.

13
-

Why doesn’t “-Itrilinos” work? Glj=m

= Trilinos has LOTS of packages

= Top-level packages might get new package dependencies
indirectly, without knowing it

NOX

> ML

Build system is extensible; users can add new packages

Epetra

EpetraExt

¢

> »| Amesos
prack\

New Library New Library

J N—

Y

Direct Dependencies

~—

Indirect Dependencies

Building your app with Trilinos B

If you are using Make: If you are using CMake:
= Makefile.export system = CMake FIND _PACKAGE

Example Makefile for your app =

You must first set the TRILINOS_INSTALL_DIR variable.

Include Trilinos-related variables in your project. If you only want
1 package, replace “Trilinos” with the package’s name, e.g., “Epetra”.
include $(TRILINOS_INSTALL_DIR)/include/Makefile.export.Trilinos

Add the Trilinos installation directory to the library and header search paths.
LIB_PATH = $(TRILINOS_INSTALL_DIR)/lib
INCLUDE_PATH = $(TRILINOS_INSTALL_DIR)/include $(CLIENT_EXTRA_INCLUDES)

Use the same C++ compiler, flags, & libraries that Trilinos uses.

CXX = $(Trilinos_CXX_COMPILER)

CXXFLAGS = $(Trilinos_CXX_FLAGS)

LIBS = $(CLIENT_EXTRA_LIBS) $(SHARED_LIB_RPATH_COMMAND) \
$(Trilinos_LIBRARIES) \
$(Trilinos_TPL_LIBRARIES)\
$(Trilinos_EXTRA_LD_FLAGS)

Rules for building executables and objects.
%.exe : %.0 $(EXTRA_OBJS)
$(CXX) -0 $@ $(LDFLAGS) $(CXXFLAGS) $< $(EXTRA_OBJS) -L$(LIB_PATH) $(LIBS)

%.0 : %.cpp
$(CXX) -c -0 $@ $(CXXFLAGS) -I$(INCLUDE_PATH) $(EPETRA_TPL_INCLUDES) $<

16

Using CMake to build with Trilinos @&

= CMake: Cross-platform build system

= Similar function as the GNU Autotools

= Building Trilinos requires CMake

= You don’t have to use CMake to use Trilinos
= Butif you do: FIND PACKAGE(Trilinos ...)

= Like Makefile.export system, this pulls variables into your
CMake environment

Example CMakelists.txt for your app® -

Run “cmake -DTrilinos_ PREFIX=${TRILINOS_PATH}" to configure.
SET(CMAKE_PREFIX_PATH ${Trilinos_PREFIX} ${CMAKE_PREFIX_PATH})
FIND_PACKAGE(Trilinos REQUIRED)

Show some of the CMake variables that finding Trilinos defines.
MESSAGE("\nFound Trilinos! Here are the details: ")

MESSAGE(" Trilinos_DIR = ${Trilinos_DIR}")

MESSAGE(" Trilinos_VERSION = ${Trilinos_VERSION}")

MESSAGE(" Trilinos_ PACKAGE_LIST = ${Trilinos_ PACKAGE_LIST}")
MESSAGE(" Trilinos_LIBRARIES = ${Trilinos_LIBRARIES}")

MESSAGE(" Trilinos_INCLUDE_DIRS = ${Trilinos_INCLUDE_DIRS}")
MESSAGE(" Trilinos_LIBRARY_DIRS = ${Trilinos_LIBRARY_DIRS}")
MESSAGE(" Trilinos_TPL_LIST = ${Trilinos_TPL_LIST}")

MESSAGE(" Trilinos_TPL_INCLUDE_DIRS = ${Trilinos_TPL_INCLUDE_DIRS}")
MESSAGE(" Trilinos_TPL_LIBRARIES = ${Trilinos_TPL_LIBRARIES}")
MESSAGE(" Trilinos_TPL_LIBRARY_DIRS = ${Trilinos_TPL_LIBRARY_DIRS}")
MESSAGE(" Trilinos_BUILD_SHARED_LIBS = ${Trilinos_BUILD_SHARED_LIBS}")

Use the same compilers and flags as Trilinos does. (No-MPI example.)
SET(CMAKE_CXX_COMPILER ${Trilinos_CXX_COMPILER})

SET(CMAKE_C_COMPILER ${Trilinos_C_COMPILERY})

SET(CMAKE_Fortran_COMPILER ${Trilinos_Fortran_COMPILERY})

SET(CMAKE_CXX_FLAGS "${Trilinos_CXX_COMPILER_FLAGS} ${CMAKE_CXX_FLAGS}")
SET(CMAKE_C_FLAGS "${Trilinos_C_COMPILER_FLAGS} ${CMAKE_C_FLAGS}")
SET(CMAKE_Fortran_FLAGS "${Trilinos_Fortran_COMPILER_FLAGS} ${CMAKE_Fortran_FLAGS}")

PROJECT(MyApp)

INCLUDE_DIRECTORIES(${Trilinos_INCLUDE_DIRS} ${Trilinos_TPL_INCLUDE_DIRS})
LINK_DIRECTORIES(${Trilinos_LIBRARY_DIRS} ${Trilinos_TPL_LIBRARY_DIRS})

ADD_LIBRARY (myappLib src_file.cpp src_file.hpp)

ADD_EXECUTABLE(MyApp.exe main_file.cpp)

TARGET_LINK_LIBRARIES(MyApp.exe myappLib ${Trilinos_LIBRARIES} ${Trilinos_TPL_LIBRARIES})

18
-

How do | get Trilinos? .

= Current release (12.12.x) available for download (tarball)
= http://trilinos.org/download/

= Trilinos lives on Github: github.com/trilinos/Trilinos
= We use a 2-branch development model, like Kokkos
= “develop” branch is what it says (compare to “trunk”)
= “master” branch updated often; some stability requirement

= Cray packages recent releases of Trilinos

= http://www.nersc.gov/users/software/programming-libraries/math-libraries/trilinos/
" S module load trilinos
= Cray tunes computational kernels for best performance

= |f you don’t like their build options, you may also build Trilinos
yourself, but link with their optimized kernels as a TPL (CASK)

= Most packages have a BSD license; a few are LGPL
19

