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Outline

 Why is it so hard?  Rather:
 How do Trilinos’ culture & users affect configuration & building?

 What features does Trilinos support that makes building nontrivial?

 How do I build Trilinos?
 What programs & libraries will I need?

 How do I configure (set options & prepare to build)?

 How do I link my application against Trilinos?
 Please don’t just paste in the libraries on your link line!

 For Make-based build system: Makefile.export.* 

 For CMake-based build system: FIND_PACKAGE
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Trilinos: Confederacy, not project

 Many packages, many projects

 Packages may depend on
 Each other: e.g., Ifpack on Epetra

 Third-party libraries (TPLs): e.g., BLAS, Boost

 Compilers: CUDA, MPI

 Dependencies: optional or required

 Packages may live in different repos

 Common build & test infrastructure
 TriBITS: A project in itself, used elsewhere

 Motivated by CASL VERA
 Handle software licensing & access control issues
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“It’s not a big truck. 
It’s a series of tubes” –
Sen. Ted Stevens



Why is Trilinos a confederacy?

 “Three pearls” (Τρία μαργαριτάρια)
 Aztec (iterative linear solvers)

 ML (algebraic multigrid)

 Zoltan (graph partitioning, load balancing)

 Share only repository, build, & test

 Original concept: Optional interfaces
 AztecOO (Epetra-Aztec), Isorropia (Epetra-

Zoltan), ML (Epetra)

 Fully stand-alone; take (don’t use) Epetra

 Later evolution moved away from this
 Stratimikos: Needs Teuchos, wants Epetra

 MueLu, Panzer: Long chain of required deps

 Kokkos as common programming model
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What do I need to build Trilinos?

 Minimum
 C & C++ compiler

 Many packages need C++11 / C99

 We test with GCC, Intel, Clang, NVCC, & XL (IBM)

 BLAS & LAPACK libraries

 CMake >= 2.8.11 (prefer >= 3.3.2)

 Optional (required for some packages)
 MPI, CUDA, Fortran

 Many third-party libraries (see Trilinos/TPLsList.cmake for full set)

 We recommend
 Linux, *nix, or MacOS X (Windows experience varies)

 BLAS, LAPACK, MPI (all ABI-compatible)

 Whatever else the packages you want require
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Setting options & preparing build

 Setting options & preparing build == “configuring”
 Trilinos uses CMake for this

 Compare to running “./configure …” with GNU Autotools

 Users often turn this CMake invocation into a script

 We call this the “do-configure” script, & will show examples

 Trilinos developers also use “check-in test script”
 Python script that drives CMake, CTest, & git

 Automatically enables packages affected by your changes

 Lets Trilinos developers test multiple builds with different options

 Can do asynchronous remote test & push
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Hints for configuring Trilinos

 Say as little as possible
 Trilinos can often detect compilers, BLAS, & LAPACK

 Best used with a “module” system

 “As little as possible” example: MPI
 TPL_ENABLE_MPI:BOOL=ON # may be enough!

 MPI_BASE_DIR:FILEPATH="…" # if not in $PATH

 What’s with :BOOL=ON vs. =ON ?
 :${TYPE} lets you specify the option’s type

 Examples: BOOL, STRING, FILEPATH

 It’s optional, e.g., Trilinos_ENABLE_OpenMP=ON

 What’s with ON / OFF, TRUE / FALSE, etc.?

 CMake lets you spell “true” & “false” in different ways
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How do I…

 Set the install directory?
 CMAKE_INSTALL_PREFIX=${INSTALL_PATH}

 Set debug or release build?
 CMAKE_BUILD_TYPE=DEBUG (or RELEASE)

 Set C++ compiler flags?  CMAKE_CXX_FLAGS="…"
 No need to add -g for debug.  Release adds -O3.

 Enable C++11 support?
 Usually, automatically detected & enabled by default

 If not, set Trilinos_CXX11_FLAGS (not CMAKE_CXX_FLAGS)

 Set whether to use dynamic shared libraries?
 BUILD_SHARED_LIBS=ON (or OFF)
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How do I…

 Tell CMake where to find MPI?
 Remember: Say as little as possible

 TPL_ENABLE_MPI=ON

 MPI_BASE_DIR=${PATH_TO_MPI_INSTALL}

 Can add nondefault mpiexec name, options, etc.

 Set compiler paths? (non-MPI, a.k.a. “serial” build)
 CMAKE_CXX_COMPILER=${PATH_TO_CXX_COMPILER}

 Analogous for C & Fortran compilers

 Enable OpenMP?  Trilinos_ENABLE_OpenMP=ON

 Usually enough; no need to specify compiler flags

 Use CUDA?  See Trilinos/packages/tpetra/doc/FAQ.txt
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Package-related options

 Enable a specific package (& its required deps)?
 Trilinos_ENABLE_${PKG}=ON

 To see list of all available packages

 CMake output: “Final set of [non-]enabled packages: ”

 For TPLs: “Final set of [non-]enabled TPLs: ”

 Or, read Trilinos/{PackagesList, TPLsList}.cmake

 Enable all (optional, fwd dep) packages?
 Trilinos_ENABLE_ALL_PACKAGES=ON

 Trilinos_ENABLE_ALL_OPTIONAL_PACKAGES=ON

 Trilinos_ENABLE_ALL_FORWARD_DEP_PACKAGES=ON
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How do I find out more?

 Read Trilinos/INSTALL.rst (it’s short & good!)

 Read examples in Trilinos/sampleScripts

 Age & quality vary

 They don’t always follow “as simple as possible”

 Beware “cargo cult configuration”

 trilinos.org/docs/files/TrilinosBuildReference.html

 Ask for help on GitHub or the e-mail list
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Building Trilinos with Ninja

 Ninja: alternative to Make; faster, more parallel builds

 CMake can generate Ninja build files

 Add -G Ninja to cmake command-line arguments

 Some restrictions

 Needs patch to build Fortran, or turn off Fortran in Trilinos:

 Trilinos_ENABLE_Fortran:BOOL=OFF

 Does not yet work with Trilinos’ check-in test script

 Must build from top level of build directory; can’t change into 
subdirectories & build there

 This mainly only affects Trilinos developers
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Building your app with Trilinos

• Which libraries?  Link order matters!

• -lnoxepetra -lnox –lepetra –lteuchos –lblas –llapack

• Optional package dependencies affect required libraries

• Using the same compilers that Trilinos used

• g++ or icc or icpc or …? 

• mpiCC or mpCC or mpicxx or … ?

• Using the same libraries that Trilinos used

• Using Intel’s MKL requires a web tool to get the link line right

• Trilinos remembers this so you don’t have to

• Consistent build options and package defines:

• g++ -g –O3 –D HAVE_MPI –D _STL_CHECKED

• You don’t have to figure any of this out!  Trilinos does it for you!

• Please don’t try to guess and write a Makefile by hand!

• This leads to trouble later on, which I’ve helped debug.
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Why doesn’t “-ltrilinos” work?

 Trilinos has LOTS of packages

 Top-level packages might get new package dependencies 
indirectly, without knowing it

 Build system is extensible; users can add new packages
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Building your app with Trilinos

If you are using Make:

 Makefile.export system

If you are using CMake:

 CMake FIND_PACKAGE
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Example Makefile for your app
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# You must first set the TRILINOS_INSTALL_DIR variable.

# Include Trilinos-related variables in your project.  If you only want
# 1 package, replace “Trilinos” with the package’s name, e.g., “Epetra”.
include $(TRILINOS_INSTALL_DIR)/include/Makefile.export.Trilinos

# Add the Trilinos installation directory to the library and header search paths.
LIB_PATH = $(TRILINOS_INSTALL_DIR)/lib
INCLUDE_PATH = $(TRILINOS_INSTALL_DIR)/include $(CLIENT_EXTRA_INCLUDES)

# Use the same C++ compiler, flags, & libraries that Trilinos uses.
CXX = $(Trilinos_CXX_COMPILER)
CXXFLAGS = $(Trilinos_CXX_FLAGS)
LIBS = $(CLIENT_EXTRA_LIBS) $(SHARED_LIB_RPATH_COMMAND) \

$(Trilinos_LIBRARIES) \
$(Trilinos_TPL_LIBRARIES) \
$(Trilinos_EXTRA_LD_FLAGS) 

# Rules for building executables and objects.
%.exe : %.o $(EXTRA_OBJS)

$(CXX) -o $@ $(LDFLAGS) $(CXXFLAGS) $< $(EXTRA_OBJS) -L$(LIB_PATH) $(LIBS)

%.o : %.cpp
$(CXX) -c -o $@ $(CXXFLAGS) -I$(INCLUDE_PATH) $(EPETRA_TPL_INCLUDES) $<



Using CMake to build with Trilinos

 CMake: Cross-platform build system
 Similar function as the GNU Autotools

 Building Trilinos requires CMake

 You don’t have to use CMake to use Trilinos

 But if you do: FIND_PACKAGE(Trilinos …)

 Like Makefile.export system, this pulls variables into your 
CMake environment
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Example CMakeLists.txt for your app
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# Run “cmake -DTrilinos_PREFIX=${TRILINOS_PATH}” to configure.
SET(CMAKE_PREFIX_PATH ${Trilinos_PREFIX} ${CMAKE_PREFIX_PATH})
FIND_PACKAGE(Trilinos REQUIRED)

# Show some of the CMake variables that finding Trilinos defines.
MESSAGE("\nFound Trilinos!  Here are the details: ")
MESSAGE("   Trilinos_DIR = ${Trilinos_DIR}")
MESSAGE("   Trilinos_VERSION = ${Trilinos_VERSION}")
MESSAGE("   Trilinos_PACKAGE_LIST = ${Trilinos_PACKAGE_LIST}")
MESSAGE("   Trilinos_LIBRARIES = ${Trilinos_LIBRARIES}")
MESSAGE("   Trilinos_INCLUDE_DIRS = ${Trilinos_INCLUDE_DIRS}")
MESSAGE("   Trilinos_LIBRARY_DIRS = ${Trilinos_LIBRARY_DIRS}")
MESSAGE("   Trilinos_TPL_LIST = ${Trilinos_TPL_LIST}")
MESSAGE("   Trilinos_TPL_INCLUDE_DIRS = ${Trilinos_TPL_INCLUDE_DIRS}")
MESSAGE("   Trilinos_TPL_LIBRARIES = ${Trilinos_TPL_LIBRARIES}")
MESSAGE("   Trilinos_TPL_LIBRARY_DIRS = ${Trilinos_TPL_LIBRARY_DIRS}")
MESSAGE("   Trilinos_BUILD_SHARED_LIBS = ${Trilinos_BUILD_SHARED_LIBS}")

# Use the same compilers and flags as Trilinos does.  (No-MPI example.)
SET(CMAKE_CXX_COMPILER ${Trilinos_CXX_COMPILER})
SET(CMAKE_C_COMPILER ${Trilinos_C_COMPILER})
SET(CMAKE_Fortran_COMPILER ${Trilinos_Fortran_COMPILER})
SET(CMAKE_CXX_FLAGS "${Trilinos_CXX_COMPILER_FLAGS} ${CMAKE_CXX_FLAGS}")
SET(CMAKE_C_FLAGS "${Trilinos_C_COMPILER_FLAGS} ${CMAKE_C_FLAGS}")
SET(CMAKE_Fortran_FLAGS "${Trilinos_Fortran_COMPILER_FLAGS} ${CMAKE_Fortran_FLAGS}")

PROJECT(MyApp)
INCLUDE_DIRECTORIES(${Trilinos_INCLUDE_DIRS} ${Trilinos_TPL_INCLUDE_DIRS})
LINK_DIRECTORIES(${Trilinos_LIBRARY_DIRS} ${Trilinos_TPL_LIBRARY_DIRS})
ADD_LIBRARY(myappLib src_file.cpp src_file.hpp)
ADD_EXECUTABLE(MyApp.exe main_file.cpp)

TARGET_LINK_LIBRARIES(MyApp.exe myappLib ${Trilinos_LIBRARIES} ${Trilinos_TPL_LIBRARIES})



How do I get Trilinos?

 Current release (12.12.x) available for download (tarball)
 http://trilinos.org/download/

 Trilinos lives on Github: github.com/trilinos/Trilinos
 We use a 2-branch development model, like Kokkos
 “develop” branch is what it says (compare to “trunk”)
 “master” branch updated often; some stability requirement

 Cray packages recent releases of Trilinos 
 http://www.nersc.gov/users/software/programming-libraries/math-libraries/trilinos/

 $ module load trilinos
 Cray tunes computational kernels for best performance
 If you don’t like their build options, you may also build Trilinos 

yourself, but link with their optimized kernels as a TPL (CASK)

 Most packages have a BSD license; a few are LGPL
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