
Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

How to configure and build Trilinos
Mark Hoemmen, 23 Oct 2017

SAND2017-????? C (UUR)

SAND2017-11532C

Outline

 Why is it so hard? Rather:
 How do Trilinos’ culture & users affect configuration & building?

 What features does Trilinos support that makes building nontrivial?

 How do I build Trilinos?
 What programs & libraries will I need?

 How do I configure (set options & prepare to build)?

 How do I link my application against Trilinos?
 Please don’t just paste in the libraries on your link line!

 For Make-based build system: Makefile.export.*

 For CMake-based build system: FIND_PACKAGE

2

Trilinos: Confederacy, not project

 Many packages, many projects

 Packages may depend on
 Each other: e.g., Ifpack on Epetra

 Third-party libraries (TPLs): e.g., BLAS, Boost

 Compilers: CUDA, MPI

 Dependencies: optional or required

 Packages may live in different repos

 Common build & test infrastructure
 TriBITS: A project in itself, used elsewhere

 Motivated by CASL VERA
 Handle software licensing & access control issues

3

“It’s not a big truck.
It’s a series of tubes” –
Sen. Ted Stevens

Why is Trilinos a confederacy?

 “Three pearls” (Τρία μαργαριτάρια)
 Aztec (iterative linear solvers)

 ML (algebraic multigrid)

 Zoltan (graph partitioning, load balancing)

 Share only repository, build, & test

 Original concept: Optional interfaces
 AztecOO (Epetra-Aztec), Isorropia (Epetra-

Zoltan), ML (Epetra)

 Fully stand-alone; take (don’t use) Epetra

 Later evolution moved away from this
 Stratimikos: Needs Teuchos, wants Epetra

 MueLu, Panzer: Long chain of required deps

 Kokkos as common programming model
4

White pearl necklace
(see Notes for attribution)

What do I need to build Trilinos?

 Minimum
 C & C++ compiler

 Many packages need C++11 / C99

 We test with GCC, Intel, Clang, NVCC, & XL (IBM)

 BLAS & LAPACK libraries

 CMake >= 2.8.11 (prefer >= 3.3.2)

 Optional (required for some packages)
 MPI, CUDA, Fortran

 Many third-party libraries (see Trilinos/TPLsList.cmake for full set)

 We recommend
 Linux, *nix, or MacOS X (Windows experience varies)

 BLAS, LAPACK, MPI (all ABI-compatible)

 Whatever else the packages you want require
5

Setting options & preparing build

 Setting options & preparing build == “configuring”
 Trilinos uses CMake for this

 Compare to running “./configure …” with GNU Autotools

 Users often turn this CMake invocation into a script

 We call this the “do-configure” script, & will show examples

 Trilinos developers also use “check-in test script”
 Python script that drives CMake, CTest, & git

 Automatically enables packages affected by your changes

 Lets Trilinos developers test multiple builds with different options

 Can do asynchronous remote test & push

6

Hints for configuring Trilinos

 Say as little as possible
 Trilinos can often detect compilers, BLAS, & LAPACK

 Best used with a “module” system

 “As little as possible” example: MPI
 TPL_ENABLE_MPI:BOOL=ON # may be enough!

 MPI_BASE_DIR:FILEPATH="…" # if not in $PATH

 What’s with :BOOL=ON vs. =ON ?
 :${TYPE} lets you specify the option’s type

 Examples: BOOL, STRING, FILEPATH

 It’s optional, e.g., Trilinos_ENABLE_OpenMP=ON

 What’s with ON / OFF, TRUE / FALSE, etc.?

 CMake lets you spell “true” & “false” in different ways

7

How do I…

 Set the install directory?
 CMAKE_INSTALL_PREFIX=${INSTALL_PATH}

 Set debug or release build?
 CMAKE_BUILD_TYPE=DEBUG (or RELEASE)

 Set C++ compiler flags? CMAKE_CXX_FLAGS="…"
 No need to add -g for debug. Release adds -O3.

 Enable C++11 support?
 Usually, automatically detected & enabled by default

 If not, set Trilinos_CXX11_FLAGS (not CMAKE_CXX_FLAGS)

 Set whether to use dynamic shared libraries?
 BUILD_SHARED_LIBS=ON (or OFF)

8

How do I…

 Tell CMake where to find MPI?
 Remember: Say as little as possible

 TPL_ENABLE_MPI=ON

 MPI_BASE_DIR=${PATH_TO_MPI_INSTALL}

 Can add nondefault mpiexec name, options, etc.

 Set compiler paths? (non-MPI, a.k.a. “serial” build)
 CMAKE_CXX_COMPILER=${PATH_TO_CXX_COMPILER}

 Analogous for C & Fortran compilers

 Enable OpenMP? Trilinos_ENABLE_OpenMP=ON

 Usually enough; no need to specify compiler flags

 Use CUDA? See Trilinos/packages/tpetra/doc/FAQ.txt

9

Package-related options

 Enable a specific package (& its required deps)?
 Trilinos_ENABLE_${PKG}=ON

 To see list of all available packages

 CMake output: “Final set of [non-]enabled packages: ”

 For TPLs: “Final set of [non-]enabled TPLs: ”

 Or, read Trilinos/{PackagesList, TPLsList}.cmake

 Enable all (optional, fwd dep) packages?
 Trilinos_ENABLE_ALL_PACKAGES=ON

 Trilinos_ENABLE_ALL_OPTIONAL_PACKAGES=ON

 Trilinos_ENABLE_ALL_FORWARD_DEP_PACKAGES=ON

10

How do I find out more?

 Read Trilinos/INSTALL.rst (it’s short & good!)

 Read examples in Trilinos/sampleScripts

 Age & quality vary

 They don’t always follow “as simple as possible”

 Beware “cargo cult configuration”

 trilinos.org/docs/files/TrilinosBuildReference.html

 Ask for help on GitHub or the e-mail list

11

Building Trilinos with Ninja

 Ninja: alternative to Make; faster, more parallel builds

 CMake can generate Ninja build files

 Add -G Ninja to cmake command-line arguments

 Some restrictions

 Needs patch to build Fortran, or turn off Fortran in Trilinos:

 Trilinos_ENABLE_Fortran:BOOL=OFF

 Does not yet work with Trilinos’ check-in test script

 Must build from top level of build directory; can’t change into
subdirectories & build there

 This mainly only affects Trilinos developers

12

Building your app with Trilinos

• Which libraries? Link order matters!

• -lnoxepetra -lnox –lepetra –lteuchos –lblas –llapack

• Optional package dependencies affect required libraries

• Using the same compilers that Trilinos used

• g++ or icc or icpc or …?

• mpiCC or mpCC or mpicxx or … ?

• Using the same libraries that Trilinos used

• Using Intel’s MKL requires a web tool to get the link line right

• Trilinos remembers this so you don’t have to

• Consistent build options and package defines:

• g++ -g –O3 –D HAVE_MPI –D _STL_CHECKED

• You don’t have to figure any of this out! Trilinos does it for you!

• Please don’t try to guess and write a Makefile by hand!

• This leads to trouble later on, which I’ve helped debug.

13

Why doesn’t “-ltrilinos” work?

 Trilinos has LOTS of packages

 Top-level packages might get new package dependencies
indirectly, without knowing it

 Build system is extensible; users can add new packages

14

NOX Amesos

EpetraExt

Epetra

Ifpack

ML SuperLU

Direct Dependencies Indirect Dependencies

New Library New Library

Building your app with Trilinos

If you are using Make:

 Makefile.export system

If you are using CMake:

 CMake FIND_PACKAGE

15

Example Makefile for your app

16

You must first set the TRILINOS_INSTALL_DIR variable.

Include Trilinos-related variables in your project. If you only want
1 package, replace “Trilinos” with the package’s name, e.g., “Epetra”.
include $(TRILINOS_INSTALL_DIR)/include/Makefile.export.Trilinos

Add the Trilinos installation directory to the library and header search paths.
LIB_PATH = $(TRILINOS_INSTALL_DIR)/lib
INCLUDE_PATH = $(TRILINOS_INSTALL_DIR)/include $(CLIENT_EXTRA_INCLUDES)

Use the same C++ compiler, flags, & libraries that Trilinos uses.
CXX = $(Trilinos_CXX_COMPILER)
CXXFLAGS = $(Trilinos_CXX_FLAGS)
LIBS = $(CLIENT_EXTRA_LIBS) $(SHARED_LIB_RPATH_COMMAND) \

$(Trilinos_LIBRARIES) \
$(Trilinos_TPL_LIBRARIES) \
$(Trilinos_EXTRA_LD_FLAGS)

Rules for building executables and objects.
%.exe : %.o $(EXTRA_OBJS)

$(CXX) -o $@ $(LDFLAGS) $(CXXFLAGS) $< $(EXTRA_OBJS) -L$(LIB_PATH) $(LIBS)

%.o : %.cpp
$(CXX) -c -o $@ $(CXXFLAGS) -I$(INCLUDE_PATH) $(EPETRA_TPL_INCLUDES) $<

Using CMake to build with Trilinos

 CMake: Cross-platform build system
 Similar function as the GNU Autotools

 Building Trilinos requires CMake

 You don’t have to use CMake to use Trilinos

 But if you do: FIND_PACKAGE(Trilinos …)

 Like Makefile.export system, this pulls variables into your
CMake environment

17

Example CMakeLists.txt for your app

18

Run “cmake -DTrilinos_PREFIX=${TRILINOS_PATH}” to configure.
SET(CMAKE_PREFIX_PATH ${Trilinos_PREFIX} ${CMAKE_PREFIX_PATH})
FIND_PACKAGE(Trilinos REQUIRED)

Show some of the CMake variables that finding Trilinos defines.
MESSAGE("\nFound Trilinos! Here are the details: ")
MESSAGE(" Trilinos_DIR = ${Trilinos_DIR}")
MESSAGE(" Trilinos_VERSION = ${Trilinos_VERSION}")
MESSAGE(" Trilinos_PACKAGE_LIST = ${Trilinos_PACKAGE_LIST}")
MESSAGE(" Trilinos_LIBRARIES = ${Trilinos_LIBRARIES}")
MESSAGE(" Trilinos_INCLUDE_DIRS = ${Trilinos_INCLUDE_DIRS}")
MESSAGE(" Trilinos_LIBRARY_DIRS = ${Trilinos_LIBRARY_DIRS}")
MESSAGE(" Trilinos_TPL_LIST = ${Trilinos_TPL_LIST}")
MESSAGE(" Trilinos_TPL_INCLUDE_DIRS = ${Trilinos_TPL_INCLUDE_DIRS}")
MESSAGE(" Trilinos_TPL_LIBRARIES = ${Trilinos_TPL_LIBRARIES}")
MESSAGE(" Trilinos_TPL_LIBRARY_DIRS = ${Trilinos_TPL_LIBRARY_DIRS}")
MESSAGE(" Trilinos_BUILD_SHARED_LIBS = ${Trilinos_BUILD_SHARED_LIBS}")

Use the same compilers and flags as Trilinos does. (No-MPI example.)
SET(CMAKE_CXX_COMPILER ${Trilinos_CXX_COMPILER})
SET(CMAKE_C_COMPILER ${Trilinos_C_COMPILER})
SET(CMAKE_Fortran_COMPILER ${Trilinos_Fortran_COMPILER})
SET(CMAKE_CXX_FLAGS "${Trilinos_CXX_COMPILER_FLAGS} ${CMAKE_CXX_FLAGS}")
SET(CMAKE_C_FLAGS "${Trilinos_C_COMPILER_FLAGS} ${CMAKE_C_FLAGS}")
SET(CMAKE_Fortran_FLAGS "${Trilinos_Fortran_COMPILER_FLAGS} ${CMAKE_Fortran_FLAGS}")

PROJECT(MyApp)
INCLUDE_DIRECTORIES(${Trilinos_INCLUDE_DIRS} ${Trilinos_TPL_INCLUDE_DIRS})
LINK_DIRECTORIES(${Trilinos_LIBRARY_DIRS} ${Trilinos_TPL_LIBRARY_DIRS})
ADD_LIBRARY(myappLib src_file.cpp src_file.hpp)
ADD_EXECUTABLE(MyApp.exe main_file.cpp)

TARGET_LINK_LIBRARIES(MyApp.exe myappLib ${Trilinos_LIBRARIES} ${Trilinos_TPL_LIBRARIES})

How do I get Trilinos?

 Current release (12.12.x) available for download (tarball)
 http://trilinos.org/download/

 Trilinos lives on Github: github.com/trilinos/Trilinos
 We use a 2-branch development model, like Kokkos
 “develop” branch is what it says (compare to “trunk”)
 “master” branch updated often; some stability requirement

 Cray packages recent releases of Trilinos
 http://www.nersc.gov/users/software/programming-libraries/math-libraries/trilinos/

 $ module load trilinos
 Cray tunes computational kernels for best performance
 If you don’t like their build options, you may also build Trilinos

yourself, but link with their optimized kernels as a TPL (CASK)

 Most packages have a BSD license; a few are LGPL
19

