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Characterization of powder properties 
is critical in developing process-structure 
relationships 

Multiple contributions to thermal conductivity 
within powder bed environments

 Packing fraction – porosity/topology

 Chemical composition

 Particle morphology – contact area

 Environment: convection and radiative

 Radial size

 Poly-disperse size distribution

Motivation

GOAL: explore relative contributions to 
thermal conductivity at the atomistic scale

Agapiou et al. J Heat Trans (1989) 
Rombouts et al. J. Appl. Phys (2005) 



Parameterization
Heat capacity: 

estimated from free electron 
density, electronic DOS 
Lin et al., Phys. Rev. B. (2008) 

Conductivity: 
Franz-Wiedemann law (electronic),
direct method MD (phonon)

Electron-phonon coupling: 
DFT calculations of electronic DOS, 
pump-probe experiments 

Damping coefficient:
frictional contributions, electron-
ion interaction, electron stopping

Material approximations:
304L SS
Inconel 718

Computational model
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Heat equation
electron-
phonon 
coupling

electron 
stopping  
energy

Rutherford and Duffy, J. Phys. Condens. Matter (2007) 
Jones R., Int. J. Num. Meth. Engin (2010) 



Thermal conductivity via the “direct” method
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 Fourier’s law of thermal 
conduction for small temperature 
gradients

 Heat flux is applied through a 
velocity renormalization method, 
conserving net linear momentum

 System undergoes Newtonian 
dynamics through an NVE 
ensemble, embedded atom 
methods 

L/ 4 3L/ 4
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Finite system size effects

 Extrapolate to bulk properties – Matthiessen rule

 Mean free path, group velocity of acoustic phonon can be 
determined under a simple model

Heino. et al, Microelectronics J. (2003) 

Phonon mean free path: ~10 nm
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Single crystal - temperature dependence

 Verification of parameterization for both 304L SS and 718 Inconel show 
agreement with experimentally determined bulk values 

 Both materials, energy transport is dominated by electronic 
contributions, behavior increases with higher temperatures

Graves, et al. Int. J. Thermophysics (1991) 
Anderson, Int. J. Machine Tools and Manuf. (2006) 
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Nanoparticle powder beds

 Packed particle configurations are 
generated from DEM simulations 

 Interstitial regions between 
particles are modeled as vacuum

 Particles are mobile, results in 
variations in contact area

Mono-disperse
16 nm dia. particles
32 particles
5.8 million atoms

Poly-disperse
5 nm +/- 1.8 dia. particles
74 particles
5.7 million atoms 

Using a similar approach to the 
determination of bulk conductivity 
properties, investigate size and 
distribution dependence on 
thermal conductivity 

15 nm
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“Ideal” example of particle contact

 Diffuse energy transmission 
within finite difference 
approach leads to linear profile 
within steady state

 Reflective phonon, phonon-
phonon, and phonon-
source/sink interactions give 
rise to topological information 
contained in profile

 MD-TTM exhibits thermal 
profile consistent with present 
topology  

20 nm

80 nm

Contact
point

Contact
point 

Sink

Source
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718 In: single crystal MD-TTM 
value with error

Mono-disperse size dependence

 Mono-disperse beds exhibit a conductivity 
nearly a factor of 1.5 less than single crystal

304L SS: single crystal MD-TTM 
value with error

300K
Exp. 11.4 (W/K/m)

Exp. 14.5 (W/K/m)

Experimental
718 In: 0.09 (W/K/m)
304L SS:  0.2 (W/K/m)

Estimate of lower bound
1.8 (W/K/m) 
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304L SS: single crystal MD-TTM 
value with error

718 In: single crystal MD-TTM 
value with error

 Poly-disperse beds exhibit a 
conductivity nearly a factor of 2 
less than single crystal

Distribution dependence

Exp. 11.4 (W/K/m)

Exp. 14.5 (W/K/m)

300K

Trending behavior?

Lots of pathways Fewer pathways



Relative density and analytical results
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 Geometry based analytical models
 contact area relative to particle size, effective 

conductivities (solidus/gas), effective porosity  
poly-disperse mono-disperse

304L SS: 300K

In 718: 300K

Maxwell (1874)

Chiew (1980) 

Gonzo (2002)

Slotwinski, J. of Research of the NIST (2014)



SLM in nanoparticle powder beds
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 ~200 W laser source

 Scan velocity: 10m/s

 Longest dimension 
~100 nm



Properties of interest
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Solute segregation

Powder size and distribution dependent melt 
pool geometries 

Defect nucleation and incomplete 
melting of powder

Scan direction:
Into page

Scan direction

Zhong Y, J. Nuclear Mat. of (2017)

Crystallographic structure

Roehling et al. Acta Materialia (2017)



Model Validation
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Powder container 
crucibles

Galvanometer 
Scanner Laser

Proton beam 
direction

Linear translational stage
Build plate

Proton beam 
direction

• Proposal to utilize LANSCE proton radiography facility at LANL
• Establish an in situ through material observation of melting and solidification
• Rapid 160 ns imaging frame rate

Clarke A., et al. Sci. Rep. (2013)



Summary
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 Multiscale MD and continuum level model is utilized to study metal 
alloy particle systems.  Determination of thermal conductivity and 
a single SLM laser pass is modeled in nano-scale powder beds. 

 Model predicts conductivity values which extrapolate to bulk 
system properties accurately. Poly/mono-disperse results showed 
conductivity values near a factor of 2 lower than single crystal 
values, lacking size dependence, with decreasing trends with 
increasing width of distribution.

 “Direct method” indicates the importance of structural topology 
when features of interest are on the order of the MFP (particle 
contacts).

 Atomistic SLM process provides opportunity to investigate defect 
nucleation, solute segregation and melt pool geometry.
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