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AM Modeling at SNL
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Characterization of powder properties
is critical in developing process-structure
relationships
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Multiple contributions to thermal conductivity B o A |
within powder bed environments

RELATIVE THERAMAL CONDUCTMVITY, K*
o
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= Packing fraction — porosity/topology
= Chemical composition

= Particle morphology — contact area
= Environment: convection and radiative
= Radial size

= Poly-disperse size distribution

GOAL: explore relative contributions to
thermal conductivity at the atomistic scale

Agapiou et al. J Heat Trans (1989) 3
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Computational model )

Parameterization
"Heat capacity: Ce Pe
estimated from free electt...,

density, electronic DOS
Lin et al., Phys. Rev. B. (2008)

=Conductivity: Re
Franz-Wiedemann law (electronic),
direct method MD (phonon)

=Electron-phonon coupling: Je—p
DFT calculations of electroince v S,
N | | | ) pump-probe experiments
ColTe) pe o V(ETIVTE) = geplTe = To) + 9Tl . =Damping coefficient:  ; = Yp+Vs.
~ ~N - T~ frictional contributions, electron-
electron- electron ion interaction, electron stopping

Heat equation
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Rutherford and Duffy, J. Phys. Condens. Matter (2007)
Jones R., Int. J. Num. Meth. Engin (2010) 4



Thermal conductivity via the “direct” method =
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[A\D Fourier’s law of thermal

conduction for small temperature
gradients J = —xVT

Heat flux is applied through a
velocity renormalization method,
conserving net linear momentum

__J/A AE
~ar/oL I=xaq W]

System undergoes Newtonian
dynamics through an NVE
ensemble, embedded atom
methods




Finite system size effects

Phonon mean free path:
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= Extrapolate to bulk properties — Matthiessen rule

= Mean free path, group velocity of acoustic phonon can be

1

20 30 40 50
Distance (nm)

determined under a simple model

~10 nm
0.6
05} ,D#“f
g -----—— O

©
B

O 304L Phonon
[0 718In Phonon

Thermal resistivity (W/K/m)™!

0.3 /\ 304L MD-TTM
718In MD-TTM
0.2
0.1 - A -
IAXNAZA 2N T T A
002 004 006 008 01 012 014

1/Distance (nm™')

1_ 2 (1 4

6




Single crystal - temperature dependence () e,
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= Verification of parameterization for both 304L SS and 718 Inconel show
agreement with experimentally determined bulk values

= Both materials, energy transport is dominated by electronic
contributions, behavior increases with higher temperatures

Graves, et al. Int. J. Thermophysics (1991)
Anderson, Int. J. Machine Tools and Manuf. (2006)



Nanoparticle powder beds

Mono-disperse

16 nm dia. particles
32 particles
5.8 million atoms__ail8

Poly-disperse
5 nm +/- 1.8 dia. particles
74 particles

5.7 million atoms

Packed particle configurations are
generated from DEM simulations

Interstitial regions between
particles are modeled as vacuum

Particles are mobile, results in
variations in contact area

Using a similar approach to the
determination of bulk conductivity
properties, investigate size and
distribution dependence on
thermal conductivity




“Ideal”

example of particle contact @)
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——Phonon 1
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Contact

Diffuse energy transmission
within finite difference
approach leads to linear profile
within steady state

Reflective phonon, phonon-
phonon, and phonon-
source/sink interactions give
rise to topological information
contained in profile

MD-TTM exhibits thermal
profile consistent with present
topology




Mono-disperse size dependence )

304L SS: single crystal MD-TTM
I R T value with error | Exp. 14.5 (W/K/m)
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Mono-disperse beds exhibit a conductivity
nearly a factor of 1.5 less than single crystal




Distribution dependence m

304L SS: single crystal MD-TTM
o] — FE \/-\ value with error ’_g,(p_ 14.5 (W/K/m)
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Poly-disperse beds exhibit a
conductivity nearly a factor of 2
less than single crystal

Trending behavior?
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Relative density and analytical results M)
304L SS: 300K = Geometry based analytical models

H : : ' = contact area relative to particle size, effective
o poly-disperse mono-disperse o . i .
~12 conductivities (solidus/gas), effective porosity
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Slotwinski, J. of Research of the NIST (2014) 12




=

SLM in nanoparticle powder beds

= ~200 W laser source
= Scan velocity: 10m/s

= Longest dimension
~100 nm

13



Scan direction:
Into page

Defect nucleation and incomplete
melting of powder
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Powder size and distribution dependent melt
pool geometries 14




Model Validation ()

* Proposal to utilize LANSCE proton radiography facility at LANL
e Establish an in situ through material observation of melting and solidification
 Rapid 160 ns imaging frame rate
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, Proton beam
direction

Powder container
crucibles

Clarke A., et al. Sci. Rep. (2013)

Proton beam
direction

Build plate

TS Linear transiational stage




Summary i

= Multiscale MD and continuum level model is utilized to study metal
alloy particle systems. Determination of thermal conductivity and
a single SLM laser pass is modeled in nano-scale powder beds.

= Model predicts conductivity values which extrapolate to bulk
system properties accurately. Poly/mono-disperse results showed
conductivity values near a factor of 2 lower than single crystal
values, lacking size dependence, with decreasing trends with
increasing width of distribution.

= “Direct method” indicates the importance of structural topology
when features of interest are on the order of the MFP (particle
contacts).

=  Atomistic SLM process provides opportunity to investigate defect
nucleation, solute segregation and melt pool geometry.
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