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/S Il-Pra rchical modeling of molecular energies using a deep neural network
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USA

2 Department of Chemistry, University of Florida, Gainesville, Florida 32611,

USA

We introduce the Hierarchically Interacting Particle Neural Network (HIP-NN) to model molecular properties
from datasets of quantum calculations. Inspired by a many-body expansion, HIP-NN decomposes properties,

such as energy, as a sum over hierarchical terms.

These terms are gengrated from a neural network—a

composition of many nonlinear transformations—acting on a representation of the molecule. HIP-NN achieves
state-of-the-art performance on a dataset of 131k ground state orgamic molecules, and predicts energies
with 0.26 kcal/mol mean absolute error. With minimal tuning, our gnodeljis alsovcompetitive on a dataset

of molecular dynamics trajectories.

In addition to enabling accuratésenergy predictions, the hierarchical

structure of HIP-NN helps to identify regions of model uncertainty.

I. INTRODUCTION

Models of chemical properties have wide-ranging ap-
plications in fields such as materials science, chem-
istry, molecular biology, and drug design. Commonly,
one treats the nuclei positions as fixed (the Born-
Oppenheimer approximation), and molecular properties
follow from the quantum-mechanical state of electrons:
The many-body Schrédinger equation is extremely diffi-
cult to solve fully, and in practice computational gquan-
tum chemistry involves some level of approximation.
Common choices are, e.g., Coupled Cluster (GC)!12 and
Density Functional Theory (DFT).>* Such ap initio
methods typically exhibit cubic or worse gcaling il the
number of electrons. Faster calculations arg ‘egucial in
contexts such as molecular dynamics (MD), simulation or
high-throughput molecular screening.

To improve efficiency, one may sacrifice aceuracy. For
example, the effective interactions“begween nuclei may
be modeled with local classical*potentials of fixed form.
Such potentials may be parapieterized to match given ex-
perimental data or quantum caléulatioms. Classical po-
tentials are extremely fagt, and enable MD simulations
of systems with 10%-10 ‘agoms. “However, the parame-
terization process isempirical and the resulting poten-
tials may not trangfer t@ new systems or new dynam-
ical processes. For example, it is notoriously difficult
to model the ghergetic barriers of bond breaking in a
transferrable way,’+® Forge fields are also known to lack
transferability“to chemical environments that differ from
those used'in the fitting process.” One may also compro-
mise betweenwab initio and empirical methodologies; e.g.,
Densify Functional Tight Binding®? enables MD simula-
tions of 103-16° atoms,'? but brings its own challenges
in' paranieterization and transferability.

Recently there has been tremendous interest in us-
ing madchine learning (ML) to automatically construct
potentials based upon large datasets of quantum calcu-

a)Electronic mail: nlubbers@lanl.gov

lations.'' 2> This“approach aims for the best of both
worldg: the acewracy of full quantum calculations and
efficiency comfparable to empirical classical potentials.
An espeeially promising direction builds upon recent ad-
vancesin computer vision.?326 Convolutional neural nets
are.designed for translation-invariant processing of an im-
age plane via convolutional filters. Similar architectural
pringiples allow us to design neural nets that process
molecules while respecting translation, rotation, and per-
musation invariances.?”2° Modern neural net architec-
tures automatically learn representations of local atomic
environments without requiring any feature engineering,
and achieve state of the art performance in predictions
of molecular properties.?®-33 An advantage of neural nets
(compared to, e.g., kernel ridge regression and Gaussian
process regression®3%) is that the training time scales
linearly in the number of data points, making it practical
to learn from databases of millions of quantum calcula-
tions.?®

In this paper, we introduce the Hierarchically Inter-
acting Particle Neural Network (HIP-NN), which takes
inspiration from the many-body expansion (MBE). Fol-
lowing common practice,?*3537 we assume that the ab
initio total energy F of a molecule may be modeled as a
sum over local contributions at each atom ¢,

Natom

ExE= ) FE. (1)
=1

HIP-NN further decomposes the local energy model E;
in contributions over orders n,

Ninteraction

E;= Y  Ep (2)

i
n=0

The MBE, commonly employed in classical poten-
tials,?®3% would use E™ to represent (n + 1)-body con-
tributions to the energy, i.e., interactions between atom
1 and up to n of its neighbors. Integration of the MBE
into ML featurizations and models of molecular energies
has recently been explored.'619:35:40-42 For example, in
Ref. 42, a separate deep neural network was employed at
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Xpansion order n. In contrast, a key aspect of HIP-

is that a single network produces E? at all orders,
PUbI|§ bﬂ& these terms to be 51mu1taneously learned in co-
herent way. Furthermore, the HIP-NN ansatz is more
general than the MBE, in that each term E}' may in-
corporate many-body interactions at higher order than
n. The hierarchical decomposition is non-unique, but
should be designed such that E}' rapidly vanishes with
increasing order n. To encourage this, we’ve developed a
hierarchical regularization scheme (see Ref. 41 for related
work). After training HIP-NN, if decay of E with n is
not observed for a given input molecule, then the energy
prediction is less likely to be accurate. That is, HIP-NN
can estimate the reliability of its own energy predictions.
We detail the HIP-NN architecture and training pro-
cedure in the next section. Section ITI demonstrates that
HIP-NN effectively learns molecular energies for various
benchmark datasets. On the QM9 dataset of organic
molecules,*®> HIP-NN predicts energies with a ground-
breaking mean absolute error of 0.26 kcal/mol. HIP-NN
also performs well on datasets of MD trajectories with
minimal tuning. Variants of HIP-NN achieve good per-
formance with parameter counts ranging from ~ 10% to

10°. In addition to enabling robust predictions, the h
erarchical structure of HIP-NN provides a built-in
t

sure of model uncertainty. In Sec. IV we further dlscus
and interpret our numerical results, and we conc
Sec. V.

<
Il. HIP-NN METHODOLOGY \
Figure 1 illustrates HIP-NN, our ne Mork for
predicting molecular properties and energiesThe molec-
ular configuration is input on thed sing a simple rep-
resentation, discussed below, tHat is symunetric with re-
spect to translation, rotationgfand permutation of atoms.
As the molecule is process froyl left“o right, HIP-NN
builds consecutive sets o ato .C featt){res to characterize
the chemical environm, f eachwatom. Blue boxes de-
note hierarchical contributiong to the total energy—the
final output of HIE: N reen boxes denote interaction
layers, which mj I atlon between pairs of atoms
within some r ated for a single carbon atom
using green cir oxes denote on-site layers,
which procgSs<he a i¢ features of a single atom. These
componentg are de cr1 d mathematically in the subsec-
tions below.

&Qkpresentatlon

1ole\lar configuration C = {(Z;,r;)} is defined by

the atomic numbers Z; and coordinates r; of atoms i =

1... Natom- We seek a representation of C suitable for
input to HIP-NN.

To achieve a representation of the molecular geometry

that is invariant under rigid transformations (i.e., trans-

s. This processing occurs through interaction

1
{(Lfm-site ayers (green and red boxes, respectively). Inter-
acCtion la%és transmit information between atoms within a

cal n@ orhood of each other (green circles). The total
ular energy E includes contributions EP at all sites i
ierarchical levels n. Note that the effective interaction
h-scale between atoms (not shown) grows with n.

eﬁ&\

lations, rotations, and reflections) we work with pairwise
distances 1;; = |r; — r;| rather than coordinates r;. Fur-
thermore, we keep only distances satisfying r;; < Rcut-
In our energy model, we apply a smooth radial cutoff to
ensure smoothness with respect to atomic positions.

We represent the atomic numbers Z; using a one-hot
encoding, i.e.,

200 =062, 2(a)> (3)

where 0;; is the Kronecker delta and Z enumerates the
atomic numbers under consideration. We benchmark on
datasets of organic molecules containing atomic species
[H, C, N, O, F] for which Z =[1,6,7,8,9]. By construc-
tion, HIP-NN will sum over atomic and feature indices (i
and a), and is thus invariant to their permutation.

B. Atomic features and energies

HIP-NN generalizes 20

atomic features z{ , (i.e., neural network activations) over

layers indexed by £ = 0. .. Njayer-2" Suppressing the fea-
ture index a = 1... Nf .., we call z{ the feature vec-
tor. The input feature vector 2! represents the species
of atom i. At subsequent layers, HIP-NN generates suc-
cessively more abstract, “dressed” representations zf“ of
the chemical environment of atom ¢ based upon informa-

tion (zfmij) from neighboring atoms j.

o, to real-valued, dimensionless
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‘ s I Pe koy challenge in HIP-NN is to learn good features

that faithfully capture the chemical environment of

Pu b|l$ﬁxlx[l1g Jnce known, HIP-NN uses linear regression (blue

boxes in Fig. 1) on the features of atom 7 to model the
local hierarchical energies,

Nrteature

Bl = ) wis 0, (4)

[ a1,
a=1
where w and b™ are learned parameters with dimensions
of energy. The total HIP-NN energy E is then given by
Egs. (1) and (2). Note that only certain network layers
{,, contribute to the energy.

C. On-site layers

The on- site layers (red squares in Fig. 1) operate on
the features z . of a single atom,

~e+1 _ B[
Zl’a on- 51te (Z bZZ b + ) (5)

where Wf,b and B! are learned parameters. Varigus
choices of activation function f(x) are possible. Recti~
fiers (i.e., functions saturating for x — —oo and inercas=
ing indefinitely when x — c0) are often preferred becaise
they help mitigate the so-called vanishing gradient“prob-
lem.***> For HIP-NN, we select the softplis actiyation
function,33-46

f(z)

To obtain the final atomic features at layeg ¢ + 1, we
apply a residual network (ResNet) transformation,?%

= log(1 + €%). (6)

At =3 (Wha + )+ B ()
b

where W¥,, MY,, and B’ awe againtlearned parameters.
Followmg the suggestioniof the'\ResNet authors, if layers
¢ and £+ 1 have thessame number of features, we instead
make M,, unleafnablejand fix M’ b = Oab. Emplrlcally,
the ResNet archltecture further mitigates the vanishing
gradients preblemyallowing training of deeper networks.

D. Interaction.layers

The geraction layers (green boxes in Fig. 1) operate
similacly to'on-site layers, Eq. (5), and additionally trans-
mitinfermagion between atoms. The transformation rule
for interaction layers is

~f,:1 = Z%b Tij)z Jb+ZW£bZ +B ], (8

1nter

1.0

0.5 1

Sensitivities

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Distance r;; (Bohr)

Figure 2. Within am interaction layer, the spatial sensitiv-
ity functions s, (1) modulate communication between pairs
of atoms separated by distance r;;. Blue curves: The initial
sensitivities s, () for m= 1...20. Dashed black curve: All
sensitivities are scaled by the factor ycut(ri;), which intro-
duces a hard spatial cuteff of 15 Bohr.

where| v%, (r;;) Collects information from neighboring
atoms Y that are sufficiently close to ¢, i.e., that satisfy
ni; < Reut-“Lhe weights W and the biases B appear iden-
tigally indnteraction layers (Eq 8) and the on-site layers
(Eq 5), but we do not use weight-tying across HIP-NN
layers.““We expand the r;; dependence in the basis of
sensttivity functions,

o(ria) = D Vi

with learned parameters V* b We propose spatial sensi-
tivities parametrized as a Gaussum in inverse distance,

abs rw 9)

Oeut (T)- (10)

The distances p, ¢ and o, are learned parameters. We
modulate the sensitivities with the cutoff function,

2
[cos (g R;ﬁ)} r < Reut _ (11)
0 r > Rcut

Peut (T) =

Figure 2 illustrates the sensitivity and cutoff functions

for the initial parameters described in Sec. I1F.
Interaction and on-site layers use the same activation

function, Eq. (6), and ResNet transformation, Eq. (7).

E. Training

1. Loss function

The goal is to accurately predict molecular properties.
We evaluate both the Mean Absolute Error and Root-
Mean-Square Error,

MAE = (|E — E|)p, (12)

RMSE =/ ((E — E)?)p. (13)
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brackets (-)p denote an average over molecules

.within a dataset D, F is the molecular ener redicted
Publishifg); i

, and E is the true ab ¢nitio energy.
We optnnize the HIP-NN model parameters to mini-
mize both MAE and RMSE. That is, we wish to minimize
a loss function,

1
L=—(MAE+RMSE) + L2+ Lkg. (14)
OFE
In this context, we select D = Diyain to be the training
dataset. The natural energy scale for MAE and RMSE
is the standard deviation of molecular energies,

(B —=(E)*)p- (15)

Importantly, the loss function includes two regulariza-
tion terms. The first is a Ly regularization on weight ten-
sors appearing in the equations for energy regression (4),
on-site layers (5), interaction layers (8), (9), and ResNet
transformation (7):

Ofp —

[[wl|3
Lra = ALs ( —2 2 HIWIE+[[VIE + W5 + || M]3

E
(16
We find that a sufficiently small hyperparameter A\psis
effective at reducing outlier HIP-NN predictionswhile
introducing minimal bias to the model.
To encourage hierarchical energy terms, weginclude“a
second regularization term,

Lr = Ar(R)p, (17)

that penalizes the non-hierarchicality Regfenergy contri-
butions,

Ninteraction Natom

R (ETK

BB}

18
n=1 =1 ( ( )

When HIP-NN is functioning'properlys we commonly ob-
serve that E” decays rapidly in n' A darge value of R thus
indicates malfunctlon of HIP<NNN for the given molecular
input.

2. Stochastic optimization

We use the AdapgiveMoment Estimation (Adam) algo-
rithm,*” a variant of stochastic gradient descent (SGD)
to train HIP-NNwket U = {w,b, W, B,V,o,u, W, B, M}
denoté the full set of model parameters, Eqs. (4)- (10)
The goaljithent is to evolve U to minimize the loss E’D,
Eqy (14), evaluated on the dataset D = Dypaip of training
molegules.

In SGD, one partitions the training data into random
disjoint sets of mini-batches, D = D1 UDy---UDy. For
each mini-batch D, one evolves U in the direction of the
negative gradient —VU£’ 5+ Which is a stochastic approx-

imation to VU£| p» the gradient evaluated on the full

dataset. Training time is measured in epochs. Each epoch
corresponds to a pass through all mini-batches D;. After
each epoch, the mini-batch partition is re-randomized.
Compared to plain SGD, Adam speeds convergence by
selecting its updates as a function of a decaying aver-
age of previous gradients. The Adam parameters are its
learning rate 1 and exponential decay factors 5, and fs.

To reduce overfitting, we use an early stopping pro-
cedure to terminate thedearning process when the MAE
on a validation dataset Dyalidate (Separate from the train-
ing data Diay,) stops improving.*® The Adam learning
rate 7 is initialized tow,ir and annealed as follows. We
train the networkywhile tracking best_score, the best
validation MA®¥,_ yet ‘ebserved, and corresponding model
parameters UU. The learning rate is fixed to ;¢ for the
first tiniy @pochis. Afterwards, if best_score plateaus
(does not degpffora period of tpatience €pochs) then the
learnin@g-rate 7uis multiplied by qdecay, causing the gra-
dient 'descent procedure to take finer steps. Training is
terminated if n)decreases twice without any improvement
40 best_score. Training is forcefully terminated if ¢;,ax
epochs-elapse. The final parameter set U is taken to be
the one which produced the lowest validation error.

Fi._Implementation details

Here we discuss hyperparameters, initialization of
model parameters, and our numerical implementation

As illustrated in Fig. (1) we use n = 0. .. Ningeraction hi-
erarchical contributions to the energy model. We choose
Ninteraction = 2 interaction layers, a number comparable
to previous studies.?8-31733 Each interaction layer is fol-
lowed by Nynsite On-site layers. Thus the total number
of nonlinear layers is Ninteraction X (1 + Non-site)- We fix
the feature vector size to a constant Niearure = |27 for all
layers ¢ > 0. Recall that the input feature vector z? is a
one-hot encoding of the atomic species. In our numeri-
cal studies, we consider models with varying Nyp_gite and
Nreature hyperparameters. ~ _

The initial network weights w, W, V, W, and M from
Eqgs. (4)—(9) are drawn from a uniform distribution ac-
cording to the Glorot initialization §cherne.49 We initial-
ize the network biases b, B, and B to zero. Next, we
set the zeroth-order energy model £"=Y to minimize the
least squares error on the training data. The correspond-
ing linear regression parameters w? and b° are held fixed
for the duration of training. For subsequent orders n > 0
we rescale the Glorot initialized weights w] by a factor
or/1072" to impose the expected energy scale and hier-
archical decay. During training, we factorize w)} = cgw}
and treat w; as the learnable, dimensionless parameters.

We employ Nyensitivity = 20 sensitivity functions s’ (r)
as given by Eq. (10). Initially, the sensitivities are
independent of layer £. We select initial inverse dis-
tances p,, ; with uniform separation between R, ! and

Rhigh for v = 1... Ngensitivity- 1he lower and upper dis-
tances are Rioy = 1.7 Bohr and Ryjzn = 10 Bohr. The

low
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IEP pé rameterq o0, are initialized to the constant value
sensitivity Ltow, Which allows moderate overlap between

nsi
PUb“(&h { sensitivity functions, as shown in Fig. 2. The

sensitivities are modulated by a cutoff R.yiop = 15 Bohr.

The loss function regularization terms are weighted by
A2 = 107% and Ap = 1072, The training data mini-
batches each contain 30 molecules. An additional valida-
tion dataset of 1000 molecules (separate from both train-
ing and test data) is used to determine the early stopping
time. The Adam decay hyperparameters are 51 = 0.9,
B2 = 0.999, and the initial learning rate is 9y = 1073,
The learning rate decay factor is agecay = 0.5. The pa-
tience is tpatience = D0 epochs, the initial training time
before annealing is ¢;,;; = 100, and the maximum train-
ing time is t,,x = 2000.

We implemented HIP-NN using the Theano frame-
work®® and Lasagne neural network library®! with cus-
tom layers. Theano calculates gradients of the loss func-
tion using backpropagation (also known as reverse-mode
automatic differentiation®?). Theano also compiles the
model for high performance execution on GPU hardware.
A single Nvidia Tesla P100 GPU requires about 1 minute
to complete one training epoch for the full QM9 dataset
(discussed below) with Nopsite = 3 and Npeature = S0k
The full training procedure typically completes in 1900
to 2000 epochs.

IIl. RESULTS
A. QM9 dataset

The QM9 dataset*3®% is comprised ‘of abeut 134k
organic molecules containing H and nine og_fewer C,
N, O, and F atoms. Properfies“were calculated at
the B3LYP/6-31G(2df,p) level“ef quangum chemistry.
About 3k molecules within QM9 fail a/geometric con-
sistency check®® and are dommdnly removed from the
dataset.?0-31:33 The authdrs of \QM9 hiad difficulty in the
energy-minimization piocedure fond1 more molecules,*?
which we also remoye.. Our“pruned dataset thus con-
tains about 131k miolecules. This dataset is then ran-
domly partitioned inte training, validation, and testing
datasets, Dall = Dtrain @] Dvalidate UDtest~ We benchmark
on varying amoutmt$ of training data, |Dirain| = Nirain-
The validagtion«dataset fcontrols early stopping and has
fixed size |Pyalidated= 1000. All remaining molecules are
included in the testing dataset Diest. Every HIP-NN er-
ror statistic S reported below (e.g., MAE and RMSE over
Diest) s actually a sample average pg over Npodel = 8
mfodels, each With a differently randomized split of the
traipingy/ yalidation /testing data. We calculate error bars
as 08/ Nmodel, Where og is the sample standard devia-
tion over the Ny oqe models.

Table I benchmarks HIP-NN against recent state-of-
the-art models reported in the literature. The HIP-NN
models contain Ny site = 3 on-site layers and Nieature =
80 atomic features per layer. Following previous work,

v,
Probability p ¢ .
— e 099 “ .
o = 0.9 *
£ . .
§ ’0 [ 1]
- n
= 2 "0 [ |
U n
S oot " o o
*® ‘0: Luut ........ )
04 a2 ll_‘li.i'o==ooooio°‘°..' M-
102 10! 100

Nonzhierarchicality R

Figure 3. Larger n@u-hierarchicality R, Eq. (18), indicates
a breakdown ofithe emergy hierarchy assumption, Eq. (2),
and correlates withlarger ezror in the HIP-NN predictions, as
observed indquangile fungtions Qerr(p, R) from Eq. (19). The
gray backgreund/shows the rescaled probability distribution
of log R: The'scatter of Qerr at very small and large values
of R is likely due t@ a lack of data.

we reportythe mean absolute error (MAE) using training
sets of three different sizes. HIP-NN achieves an MAE of
0:2¢ kcal/mol when trained on the largest datasets and,
to our knowledge, outperforms all existing models.

Table IT shows HIP-NN performance as a function
of model complexity. We fix Nysite = 3 on-site lay-
ers and allow the number of atomic features Nieature tO
vary between 5 and 80. The HIP-NN parameter count
grows roughly as N2, .. For each complexity level we
calculate three error statistics: (1) MAE, (2) RMSE,
and (3) the percentage of molecules in the testing set
whose predicted energy has an absolute error that ex-
ceeds 1 keal/mol (a common standard of chemical accu-
racy). In the last two rows we report the performance
of HIP-NN trained without hierarchical energy contribu-
tions [i.e., fixing w™ = " = 0 for n = {0,1} in Eq. (4),
so that only E"=2 contributes to ], and without hier-
archical regularization, Eq. (17). With these limitations,
the MAE performance degrades by =~ 9%, the fraction
of errors above 1 kcal/mol increases by =~ 22%, but the
RMSE values are comparable.

Note that with only 5 atomic features (corresponding
to 1.6k parameters) the MAE of 1.2 kcal/mol already
approaches chemical accuracy. This performance is re-
markable, given that the parameter count is roughly two
orders of magnitude smaller than the QM9 dataset size.
For reference, the standard deviation of energies in QM9
is op ~ 238 kcal/mol. We observe that the HIP-NN er-
ror tends to decrease with increasing Neature, but the
non-hierarchical HIP-NN model with Ngeagure = 80 per-
forms worse than that with Neature = 60, possibly due
to overfitting.

Even though our best MAE of 0.26 kcal/mol is well
under 1 kcal/mol, approximately 2.3% of the predicted
molecular energies have an error that exceeds 1 kcal /mol;
there is still room for improved ML models with fewer
outliers in the energy predictions.
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Table I. QM9 performance (MAE in kcal/mol) for various models reported in the literature.

Nirain + Nyatidate HIP-NN MTM?? SchNet®® MPNN®! HDAD+KRR2?® DTNN>?
110426 0.256 + 0.003 - 0.31 0.42 0.58 -
100000 0.261 +0.002 - 0.34 - - 0.84
50000 0.354+0.004 0.41 0.49 - - 0.94

Table II. QM9 performance for HIP-NN models with varying complexity.

Nieature Parameter count MAE (kcal/mol) RMSE (kcal/mol) Erxors above 1 kcal/mol (%)
5 1.6k 1.177 £0.014 1.851 £0.019 42.18, 4 0.58

10 4.9k 0.653 = 0.007 1.077 £0.015 18.95 £409.37

20 17k 0.398 + 0.005 0.706 + 0.025 6.00 + 0.16

40 61k 0.274 + 0.003 0.539 +0.014 2.65 + 0.06

60 134k 0.261 + 0.004 0.552 +0.024 2.37 £+ 0.09

80 234k 0.256 + 0.003 0.527 + 0.020 2.26 +0.07

60 (no hierarchy) 134k 0.278 + 0.008 0.522 + 0013 2.7 1+ 0.21

80 (no hierarchy) 234k 0.293 + 0.008 0.539 + 0.0%3 3.10 £ 0.21

Figure 3 shows that the non-hierarchicality R is an in-
dicator of inaccurate HIP-NN energy predictions. This
is reasonable because large R indicates breakdown of the
energy hierarchy assumption, i.e., non-decaying contri-
butions E} in Eq. (2). We quantify this correspondencé
by considering the distribution of absolute error |E —4E|
over the testing dataset Dyes. In Fig. 3 we visualize the
quantile function Qer(p, R) defined to satisfy

P(‘E - E| < Qerr‘R) =D, (19)

for various cumulative probabilities ps and" non-
hierarchicalities R, combined over 8 random%splits of
the QM9 data using HIP-NN gith Nesaiure = 80. In
the background of the plot, we shew the]distribution of
molecules using a histogram in log R, fThe bin width
is Alog,;o R = 0.066. The erorf of agrandom molecule,
drawn from a given bid of R, falls‘below the quantile
Qerr (p, R) with probability py thus I'— p gives the empir-
ical probability thatfa melecular error will exceed Qepr.

We observe that, among the vast majority of the
dataset (R 243 x M0~2)Nincreasing R corresponds to
larger error_quantiles. An other words, if the energy
contributions E* areésmiore hierarchical in n for a given
molecule, then HIR-NN is more likely to be accurate.
This ig“tzue both for the typical (p = 0.5) and outlier
(p = 0.99) quantiles Qe

A concretestatistic illustrates the practical signifi-
cance: “On the entire set of test data, the rate of er-
rors greater than 1 kcal/mol is 2.26%. If one examines
only mlecules falling below the 95th percentile of the
non-hierarchicality R, the rate of errors greater than 1
kcal/mol drops to 1.27%. Put another way, 40.6% of the
predictions that are not chemically accurate reside above
the 95th percentile of the non-hierarchicality R.

B... MD\Irajectories

Here, we demonstrate that HIP-NN also performs well
when trained on energies obtained from molecular dy-
namies (MD) trajectories. We use datasets generated
bySchiitt et al>? consisting of MD trajectories for four
molecules in vacuum: benzene, malonaldehyde, salicylic
acid, and toluene. The temperature is T'= 500 K. Ener-
gies and forces were calculated using density-functional
theory with the PBE exchange-correlation potential.®*
Previous studies on the Gradient Domain Machine Learn-
ing (GDML)% and SchNet?** models have also bench-
marked on this dataset.

We use training datasets of two sizes, Nipan = 1k
and 50k, randomly sampled from the full MD trajec-
tory data. We use an additional Nyajdate = 1k random
conformations for early stopping. The remaining con-
formations from each MD trajectory comprise the test
data. For the case with Niain = 1k conformers, we
use a very simple HIP-NN model with Ny _gite = 0 and
Nreature = 20, which corresponds to about 10k model pa-
rameters. When training on Ny, = 50k conformers,
we instead use Ngpsite = 3 and Nieagure = 40, which
corresponds to about 59k model parameters. The re-
sulting MAE benchmarks are shown in Table III. When
restricted to training on only energies, HIP-NN is com-
parable to or better than the other models included in
this benchmark. However, our current implementation
of HIP-NN does not train on forces. When SchNet and
GDML are trained with force data, they outperform HIP-
NN. Extending our model to force training is straightfor-
ward and will be reported in future work.

Finally, we note that the energies in this dataset are
only expressed with a precision of 0.1 kcal /mol,?¢ which
is comparable to many MAEs in Table ITI. This suggests
that lower MAEs may be possible with a more precise
dataset, especially with training set size Nipain = 50k.
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Publihirio

nredicfinns.

s training set sizes, model types, and molecule types. Including forces in the training data significantly improves the
Best results for each training category are shown in bold.

Ntrain =1k Ntrain = 50k
Training on energy |On energy & forces Training on energy On energy & forces
HIP-NN  SchNet**|SchNet GDML®” HIP-NN  SchNet DTNN SchNet
Benzene 0.162 +0.002 1.19 0.08 0.07 0.064 +0.002 0.08 0.04 0.07
Malonaldehyde 0.970 +£0.019  2.03 0.13 0.16 0.094 £0.001 0.13 0.19 0.08
Salicylic acid  1.444 +0.024  3.27 0.20 0.12 0.195 £0.002 0.25 0.41 0.10
Toluene 0.880 £0.019 2.95 0.12 0.12 0.144 £0.004 0.16 0.18 0.09

IV. DISCUSSION

a lower failure rate.

Another important research direc-

HIP-NN achieves state-of-the-art performance on both
QM9 and MD trajectory datasets, with MAEs well un-
der 1 kcal/mol. We show that HIP-NN continues to per-
form well even when the parameter count is drastically
reduced. We attribute the success of HIP-NN to a com-
bination of design decisions. One is the use of sensitivity
functions?832:33 with an inverse-distance parameteriza-
tion.!2:15:30:55 Thyg we achieve finer sensitivity at shorter
ranges and coarser sensitivity at longer ranges. Another
effective design decision is the use of the ResNet trans=
formation, Eq. (7), a now-common technique to improye
deep neural networks.263% A small amount of L regular-
ization, Eq. (16), is very helpful for stabilizing thergot-
mean-squared error, but has little effect on ghe MAE.
Annealing the learning rate when the validatign sgore
plateaus improves optimization of the model paramefers.

The physically motivated hierarchical energy decom-
position, Eq. (2), and corresponding regularization,
Eq. (17), noticeably improve HIP-NNy performance.
Without this decomposition, the MAE increases by 9%
and the fraction of errors under 4 keal/mol increases by
22%. This improvement is intriguing, given that the en-
ergy decomposition negligiblyfincreases the total parame-
ter count. Also, the lower ofder efiergys¢ontributions are
formally redundant given'that the lidlear pass-throughs
(MY, = 0ap) of the ResNetsgransforafation, Eq. (7), could
allow features to propagate tmchanged through the net-
work.

We interpret the “hierarchical energy terms as fol-
lows. At zerothorder, E” 0 corresponds to the dressed
atom approx1mat10n.15 Next, EP=! captures informa-
tion about fistancessbetween atom ¢ and its local neigh-
bors, but goes beyond' traditional pairwise-interactions
by combiningdocal pairwise information. The final term,
E=2{ captures more detailed geometric information such
as angles between atom triples. For our best performing
ndodels with fixed Niggeraction = 2 we find that the trun-
cated model energy EF = 3. 5% EP has an MAE
that'décays exponentially with k.

Despite achieving state-of-the-art MAEs, we still find
that the HIP-NN energy predictions on QM9 have an er-
ror exceeding 1 kcal /mol about 2.3% of the time. For cer-
tain applications this error rate may not be acceptable.
Future work may focus on developing models that have

tion is to develep methods for inferring when the model
prediction igsunreliable. 'We provide a step in this direc-
tion by shéwing that large R (which indicates failure of
the hierarchical energy decomposition) implies that the
HIP-NN"energy«prediction is less reliable.

As methodology improves, the machine learning com-
munity has roem to study increasingly challenging and
varied.datasets (e.g. Refs. 33 and 57) in pursuit of
improved jaccuracy and transferability. Other interest-
ing regearch directions include using active learning to
consgruct diverse datasets that cover unusual regions of
chemical space,?2°860 and using machine learning to im-

preve chemical and physical insight.5!

V. CONCLUSION

This paper introduces and pedagogically describes
HIP-NN, a machine learning technique for modeling
molecular energies. By using an appropriate molecular
representation, HIP-NN naturally encodes permutation,
rotation and translation invariances. Inspired by the
many-body expansion, HIP-NN also encodes locality and
hierarchical properties that one would expect of molecu-
lar energies from physical principles. HIP-NN improves
significantly upon the state-of-the-art in predicting ener-
gies on the QM9 dataset, a standard benchmark of or-
ganic molecules. HIP-NN also shows promise on datasets
of finite-temperature molecular trajectories. The HIP-
NN energy function is smooth, and thus can potentially
drive MD simulations. In addition to enhancing perfor-
mance, the hierarchical decomposition of energy yields an
empirical measure of model uncertainty: If the energy hi-
erarchy produced by HIP-NN does not decay sufficiently
fast, the corresponding molecular energy prediction is less
likely to be accurate.
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