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Abstract—Random graph models are important constructs
for data analytic applications as well as pure mathematical
developments, as they provide capabilities for network synthesis
and principled analysis. Several models have been developed with
the aim of faithfully preserving important graph metrics and
substructures. With the goal of capturing degree distribution,
clustering coefficient, and communities in a single random graph
model, we propose a new model to address shortcomings in a
progression of network modeling capabilities. The Block Two-
Level Erdős-Rényi (BTER) model (of Seshadhri et al.), designed
to allow prescription of expected degree and clustering coefficient
distributions, neglects community modeling, while the General-
ized BTER (GBTER) model (of Bridges et al.), designed to add
community modeling capabilities to BTER, struggles to faithfully
represent all three characteristics simultaneously. In this work,
we fit BTER and two GBTER configurations to several real-world
networks and compare the results with that of our new model,
the Extended GBTER (EGBTER) model. Our results support
that EBGTER adds a community-modeling flexibility to BTER,
while retaining a satisfactory level of accuracy in terms of degree
and clustering coefficient. Our insights and empirical testing of
previous models as well as the new model are novel contributions
to the literature.

I. INTRODUCTION

Graphs provide natural representations of objects and their
relationships, and are now a prevalent tool in the applied
sciences, including biology, physics, and computer science [1–
12]. Random graph models, which prescribe probability distri-
butions over a set of graphs, have become a mainstay for both
applied and pure graph theory [13–20]. They give probabilistic
machinery admitting principled network simulation capabili-
ties that facilitate statistical analysis in the face of data that is
scarce, time-consuming, or impractical to apprehend. Complex
networks, especially those arising from natural representations
of real world data, exhibit structural idiosyncrasies, which are
measured and deduced using many heterogeneous graph met-
rics, e.g., distributions of degrees, clustering coefficients, and
motifs as well as measures of size, centrality, and modularity,
to name a few. Consequently, a major focus in random graph
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models has been on identifying those graph metrics that are
important in real-world graph representations and developing
models that preserve these metrics [14, 17, 18, 21–30].

This paper identifies and addresses gaps in a progression
of graph models presented recently in the research litera-
ture. Building on the famous Erdös-Rényi (ER) and Chung-
Lu (CL) models, the Block Two-Level Erdös-Rényi (BTER)
introduced by Seshadhri et al. (2012) [17] was designed
to allow specification of degree distribution and clustering
coefficient per degree. For understanding social networks,
clustering coefficient is an important metric as it is driven
by the nature of real-world relationships. Initial tests show
accurate modeling of clustering coefficients per degree as well
as the degree distribution by BTER. Further work of Kolda et
al. [25] discuss scalable implementations of BTER.

Similarly, understanding community structure (number, size,
within- and between-community densities) and membership
(who i.e., which nodes, interacts with whom) is important for
network analysis, as it shows important relationships and their
changes. As BTER does not allow specification of commu-
nities, Bridges et al. (2015) introduced a Generalized BTER
model, (GBTER) [19, 20] adding user flexibility to prescribe
community membership and community edge densities, while
retaining the flexibility to also prescribe (most) degree distribu-
tions in expectation. As initial efforts with GBTER focused on
aiding anomaly detection algorithms (specifically, GBTER’s
probabilistic formulation allowed p-value computations, which
were used for identifying anomalous changes in node de-
gree and community membership in time-varying graphs),
GBTER’s efficacy in modeling communities while preserving
degree or clustering coefficient properties is unknown. In this
work we investigate how well GBTER configurations model
many real world networks. We identify shortcomings of this
model and provide quantitative results and explanations for
why the model fails to preserve desired characteristics.

In light of these findings, we introduce an improved model,
the Extended GBTER (EGBTER), and exhibit it’s modeling
capabilities on the same set of networks. An advantage of the
GBTER and EGBTER contributions (as well as Stochastic
Block Model [16]) is that one can model not just community
structure (in terms of number of communities, size and density
of each, and interactions between communities) but also
specify membership.
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Our contributions provide qualitative comparisons of the
BTER model and two configurations of the GBTER model,
as well as quantifiable head-to-head results by using three
graph metrics that reflect edge, clustering, and community
structure statistics on several real-world networks. Our testing
gives insight to the modeling capabilities of these relatively
new models, and, broadly speaking, shows that BTER often
succeeds in faithfully reproducing clustering metrics at the
expense of community structure, while GBTER performs
conversely.

Informed by our analysis of BTER and GBTER, we in-
troduce the EGBTER model, a natural combination of BTER
and GBTER, addressing the limitations of both. More specif-
ically, EGBTER is crafted to circumvent degree distribution
problems within user-defined communities that are caused by
the simplicity of the ER process used in the GBTER model,
but retains the ability to specify community membership
and density. We compare EGBTER both qualitatively and
quantitatively to the previous two models. Our results suggest
that EGBTER provides more balanced modeling of degree
distribution, clustering coefficient, and community structure.

We note that many other random graph models seek to pre-
serve similar characteristics. E.g., the Stochastic Block Model
[16] seeks to faithfully preserve density between specified
nodes. The dK-Orbis models [18] prescribe distribution of
edges between d-tuples of node degrees and have exhibited
preservation of community structure and degree distribution
for large enough d (but do not allow specification of which
nodes constitute each community). Comparison of EGBTER
against other models besides BTER and GBTER is necessary
for greater understanding, but is outside of scope for this work.

II. NOTATION & PREVIOUS MODELS

We use classical terms and notation except in the case of
clustering coefficient, where we use average local clustering
coefficient in place of clustering coefficient of a node. We shall
deal exclusively with simple graphs. See Table I for notation
and definitions used throughout. We use density to refer to
the percentage of total possible edges present in a network.
A triangle refers to a complete graph on three nodes. In
the literature, notions of community and community structure
vary. In this work, we use the algorithm of Louvain et al. [31]
to produce a partition of V . We refer to each set of nodes in
this partition as a community and the partition itself as the
community structure.

Next, we describe the previous models, BTER and GBTER.
Both are built on combinations of two influential and historical
models, ER and CL, which are described in the Appendix.

BTER Model: The BTER model uses a two-step edge
insertion process. In the first stage, nodes are partitioned
based on the given expected degree sequence, and an ER
model is sampled in the subgroups with parameter chosen to
preserve the clustering coefficient per degree (CCPD). Next a
CL model is applied to ensure the expected degree sequence
is attained.
Inputs: (1) Expected degree distribution {d}, (2) Expected

TABLE I: Notation and metrics used throughout.

Notation Description

vi ith vertex
G[X] vertex induced subgraph of G on

X ⊂ V
di or degG(vi) degree of vi in graph G
{d} degree distribution
nd number of nodes of degree d
RMSE{d} root mean squared error of degree

distribution
cc(vi) =

2Li
di(di−1)

vi local clustering coefficient (CC)1

ccd = 1
nd

∑
di=d cc(vi) average local CC for nodes of de-

gree d
{ccd} = {(d, ccd)} CC per degree (CCPD) distribution2

{ccd,Ck
} ccd of G[Ck]

RMSE{ccd} root mean squared error of CCPD
distribution

{ccd,Ck
} G[Ck] CCPD distribution3

CL(wi, wj) =
∑

k
wiwj∑

wk
Chung-Lu probability of adding
edge vivj

Ck kth community of G
Q =

∑
i(eii − a2i ) modularity4

AL Lth grouping formed by BTER
model

εi = max{0, di−(|Ck|−1)pk} vi ∈ Ck expected excess degree
after ER process5

Ei = Di − di vi expected excess degree after
within-Ck CL process

1 Li is the number of links among neighbors of vi. Quantity cc(vi) is
the average probability that two neighbors of vi are also neighbors of one
another.
2 CCPD distribution is the set of tuples (d, ccd). If there are no nodes of
degree d then ccd = 0.
3 This is the CCPD distribution of the induced subgraph G[Ck].
4 Note that eij is the fraction of total egdes that connect nodes in community
Ci to community Cj and ai =

∑
j eij .

5 With di the expected degree of vi, εi is the remaining expected degree of
vi after generating edges from the internal ER process on Ck .

CCPD {ccd}.

Generative process:
1) Node groupings are implicitly assigned by putting nodes

of degree d into groups of size d+1 and denoted by AL.
2) Build an ER graph in each AL of size d + 1 nodes with

pAL
= cc

1/3
d .

3) Build a CL graph on the entire network with node weights
wi := max{0, di − cc1/3d (|Ck| − 1)}.

See Fig. 1 for a visual depiction of the edge generation process.
For a more detailed description, see the works of Kolda et al.
and Seshadhri et al. [17, 25].

Fig. 1: BTER process depicted, (Left to right) node groupings, within-group
ER process, CL process. Figure from Seshadhri et al. [17].

GBTER Model: The Generalized BTER (GBTER) model
was introduced by Bridges et al. [19, 20] and arose with a
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Fig. 2: Particular within-community degree distribution compari-
son using a Facebook ego network[32], GBTER (modeling within-
community CC), and the corresponding ER process from the GBTER
within-community simulation.

goal of detecting multi-level anomalies in a sequence of time-
varying graphs. It generalizes the BTER model by giving the
user flexibility to partition the nodes into groupings (to model
communities if desired, and specifically which nodes partic-
ipate in each community) and to specify the ER-density pa-
rameter of each community (e.g., to model within-community
density or within-community clustering coefficient). Both are
implicitly defined in the first two stages of the BTER gener-
ation process, but explicitly prescribed as inputs for GBTER.
GBTER then uses a CL model to attain the expected degree
sequence. The edge generation below combines both steps (ER
then CL) into a single probability for each edge. Setting the
GBTER partition and ER density parameter to be that of BTER
reduces the GBTER configuration to that of BTER.
Inputs:
1) Expected degree distribution, {di : vi ∈ G}
2) A community partition P =

⋃̇
kCk (community member-

ship specified)
3) Expected density parameter, pk for each community

Ck (modeling within-community density or within-
community CCPD)

Generative process:
1) Each edge is added with probability

P (vivj ∈ E) =

{
pk + (1− pk)CL(εi, εj), ifvi, vj ∈ Ck

CL(εi, εj), otherwise,
(1)

where εi = max {0, di − pk(|Ck| − 1)}.

III. EXTENDED GBTER (EGBTER) MODEL

With the goal of capturing degree distribution,
CCPD, and community membership and density in a sin-

gle graph model, we propose the EGBTER model. Unlike
the previous two models, which use ER generation within
groupings of nodes (to fulfill CCPD or community density
expectations) and CL generation across all nodes (to fulfill the
expected degree distribution), the EGBTER model exchanges
the within-community ER process (used in the GBTER model)

for a BTER analogue. The motivation for doing so is to
achieve greater overall accuracy by addressing the deficien-
cies that may occur at the within-community stage. While
GBTER allows modeling of dense sub-regions (communities),
the ER processes poorly model within-community degree
distributions, as well as clustering coefficients; for example,
see Figs. 2, 3, 4. The critical insight is that (a) degree
distribution and CCPD is important in modeling graphs and
these metrics are heavily influenced by edge generation within
tight-knit communities, (b) neither are modeled well by ER
(and therefore not by GBTER), but (c) both are modeled
well by BTER at the graph level; hence, we hypothesize
that using a BTER process inside each specified community
(and CL process between communities) will give better overall
modeling of degrees, CCPD, and community membership and
density. Explicit details are given below.
Inputs:
1) A vertex partition P =

⋃̇
kCk (community membership

specified)
2) Expected within-community degree of each node, di
3) Expected global degree of each node, Di, with di ≤ Di

4) Within-community CCPD distribution {ccd,Ck
} for all Ck

Generative process:
1) For each community, Ck, place nodes of global degree D

into within-community groupings of size D + 1.
2) For each within-community grouping, store p = 3

√
ccd

for ER process. Here, ccd is the average CCPD of nodes
of degree d, where d is the minimum within-community
degree of the grouping.

3) Compute and store the expected within-
community and between-community excess degrees,
εi = max{0, di − pL(D)} and Ei = Di−di, respectively.
Community density, pL, is the ER probability, and D is
the number of neighbors of vi in this grouping.

4) Within each community Ck run a BTER process—ER
with parameter pk and CL with node weight εi for all
nodes i ∈ Ck.

5) For all nodes vi ∈ V , run global CL process with node
weight Ei.

IV. EXPERIMENT

We compare the BTER, GBTER and EGBTER models on
faithful preservation of degree distribution, CCPD distribution
community structure for seven real-world networks, all of
which are briefly described in the Appendix. For degree
distribution and CCPD evaluation, the root mean squared error
is computed against the original graph’s corresponding feature
sequence. For community structure, we compare modularity
and present a few telling visualizations of real and simulated
graphs. Modularity is a graph metric taking values in [−0.5, 1]
with higher scores indicating stronger community structure in
relation to the given partition; i.e, high modularity indicates
high density of edges within communities and sparse edges
across communities. Borrowing vocabulary from the clustering
literature [33] modularity is internal validation, i.e., unsu-
pervised, metric. Modularity is computed after designating
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the community structure of the simulated network using the
algorithm of Louvain et al. [31]. See Table I for metric for-
mulas. For each metric, we macro-averaged results across 100
simulations for each model using the same input parameters.

BTER model generation: For the BTER model, we use the
online Matlab implementation [34] provided by BTER authors,
Kolda et al. [17, 25, 28]. Step-by-step instructions for fitting
BTER to real-world networks are provided online [34]. The
supplied code measures/estimates degree and CCPD distribu-
tions before sampling edges for the ER and CL processes.
We use the default value of any additional parameters. The
edge list of each network was exported to Python where graph
metrics were computed using the Networkx package [35].

GBTER model generation: By design, GBTER admits
ample flexibility of configuration, in particular, in defining
communities members and prescribing within-community ER
probabilities. Bridges et al. configured the model by learning
pk as within-community density of community Ck, but also
mentioned that within-community CC could be modeled by
setting pk = cc

1/3
K . We configure GBTER with each of the

above two possibilities. To partition vertices into communities
(for GBTER and EGBTER fitting), community assignments
are determined by using the Louvain community detection
algorithm [31] in Python [36].

For each real-world network, a Networkx graph object G
is created. We find {Ck} with Louvain’s algorithm, and for
each Ck we measure/compute density and average local CC on
G[Ck]. We also computed εi = max{0, di−pk(|Ck|−1)} for
each node vi. For edge insertion, we iterate over all possible
edges and add the edge with probability given by Eqn. 1.

EGBTER model generation: To generate an EGBTER net-
work, we measure inputs from the original network, and
for each Ck we generate and store the BTER community
groupings, AL, using global degrees, Di, to determine AL. In
each AL we use pL = 3

√
ccd of the node with lowest within-

community degree ({di}) in AL to compute {εi} (Refer to
Sec III). We then sample edges as done in the scalable BTER
model implementation [25].

For each edge, we sample from a trinomial distribution to
determine which process generated the edge (ER, within-Ck

CL, or global CL process). Weights for each CL process are
given by the sum of the excess expected degree sequence di-
vided by total weight for all three processes. In the ER process,
sampling gives rise to duplicates so in each grouping AL, if
we wish to add

(|AL|
2

)
pL distinct edges, we must perform

w(AL) =
(|AL|

2

)
log{(1−pL)−1} samples in expectation. See

the work of Kolda et al. [25] for a proof. The ER process total
weight is

∑
AL

w(AL) divided by total weight across all three
processes.

Once we determine which process generated the edge, we
proceed to sample edge endpoints according to the correspond-
ing edge criteria for that process. We repeat the weighted
calculation above but on the level of AL, Ck or globally de-
pending on predetermined edge process. For example, suppose

TABLE II: Color hierarchy (best to worst) is blue ,
light blue , light red , red , for each network & metric.

Across all networks, BTER is usually first or second for degree
& CC distributions, yet usually poor in modularity; EGBTER
is usually best or second in all three metrics. All metrics
are macro-averaged across 100 random realizations for each
model.

Model RMSE{d} Q RMSE{ccd}

bi
o-

dm
el

a true NA 0.4530 NA
bter 59.3526 0.3445 0.0113
gbter 112.1429 0.4335 0.0105

gbterCC 127.8613 0.7087 0.0118
egbter 61.7373 0.4620 0.0181

fa
ce

bo
ok

true NA 0.8350 NA
bter 2.4670 0.7160 0.0973
gbter 10.2906 0.6648 0.2021

gbterCC 16.7792 0.8728 0.2617
egbter 3.9274 0.8448 0.1748

bn
-fl

y

true NA 0.4188 NA
bter 5.1272 0.5565 0.0358
gbter 15.7820 0.4497 0.0464

gbterCC 18.4049 0.6520 0.0799
egbter 7.4551 0.5149 0.0307

ca
-G

rQ
c

true NA 0.8628 NA
bter 75.9245 0.8093 0.3202
gbter 84.0651 0.6567 0.4004

gbterCC 111.2112 0.9237 0.4688
egbter 82.4652 0.8617 0.3476

in
f-

po
w

er

true NA 0.9357 NA
bter 151.1312 0.7322 0.0461
gbter 184.9929 0.7711 0.0755

gbterCC 236.2863 0.9266 0.1990
egbter 190.5787 0.9399 0.0346

w
eb

-s
pa

m

true NA 0.5002 NA
bter 21.3190 0.5310 0.0590
gbter 48.7568 0.4529 0.0984

gbterCC 57.9175 0.7656 0.2235
egbter 29.1909 0.5693 0.0566

w
eb

ba
se

-2
00

1 true NA 0.9354 NA
bter 126.9450 0.7437 0.0494
gbter 178.8203 0.7868 0.0600

gbterCC 225.2118 0.4467 0.2136
egbter 134.7270 0.9367 0.0340

in the first step we determine that our edge is generated in
some ER process. Next we sample AL (a group of nodes) with
P (AL) ∝ w(AL). Once AL is determined, we sample two
endpoints, without replacement, uniformly from {vi ∈ AL}
since the ER process has uniform edge insertion probability.

V. RESULTS

Table II summarizes the numerical output of our simula-
tions.
Degree Distribution Results: We see that the BTER model
performs the best in RMSE{d} across all seven networks
and the EGBTER model performs second best in six of seven
networks. Configuring GBTER to model within-community
CC in each community produces the worst error across all
networks. This is because for the networks used, within-
community CC exceeded within-community density, causing
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(a) Comparison of web-spam [37], BTER and EGBTER degree
distributions.

(b) Comparison of web-spam and GBTER models degree
distributions.

Fig. 3: Note the similar fit of the BTER and EGBTER model in
matching the degree distribution for this particular network. GBTER
(CC) model’s degree distribution is dominated by within-community
ER models causing unrealistic fit.

the model to overstate the number of edges in each community
in the ER process. When this happens, the local surplus in
each community translates to a global degree distribution that
is a superposition of the overstated ER degree distributions
from each of the communities. This arise from the implicit
assumption in GBTER that communities are well-modeled
internally by an ER model. See Fig. 2 and Fig. 3b for
visualizations of GBTER degree distributions when within-
community CC exceeds within-community density.

Clustering Coefficient per Degree Distribution Results:
EGBTER does the best in four of seven networks on mini-
mizing RMSE{ccd} (global CCPD distribution). This is to
be expected as we incorporate an analog of the BTER process
on the community level to adhere to the within-community
CCPD distribution. Despite incorporating community structure

(a) Comparison of web-spam [37], BTER and EGBTER CCPD
distributions.

(b) Comparison of web-spam and GBTER models’ CCPD
distributions.

Fig. 4: Visual depiction of web-spam [37] degree distribution vs.
simulated analogs.

into our model, we gain a slight advantage in {ccd}. This is not
quite clear from Fig. 4a, however is evident from the numerical
computation (Table II).

The deficiency of GBTER in modeling {ccd} can be seen in
Fig. 4b. The CCPD of high degree nodes is grossly overstated.
As with the previously observed edge surplus (Fig. 3b), we
attribute this to the ER process used within communities in
the GBTER model.
Community Structure Results:
On modularity, EGBTER performed the best in five of seven
networks with GBTER (modeling within-community density)
coming in second. This indicates that EGBTER does better
in preserving the overall level of community structure in the
network than the other models.

Note that when modeling within-community CC, GBTER
tends to overstate the overall level of network division while
modeling within-community density tends to have the op-
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(a) Original FB
network.

(b) EGBTER FB
simulation.

(c) BTER FB
simulation.

(d) GBTER FB
simulation (fitting
model to
within-community
CC).

(e) GBTER FB
simulation (fitting
model to
within-community
density).

(f) bio-dmela BTER
visualization.

Fig. 5: Visualizations of FB network and simulated networks according to model. Following quantitative modularity results, EGBTER
qualitatively simulates community structure best. We also include a BTER visualization of a biological protein interaction network (f), as
BTER tended to exhibit either a star pattern (c) or a dense core (f). All visualizations were produced in Gephi [38].

posite effect. This agrees with previous discussion on edge
metrics where we saw that the degree distribution was a
superposition of ER degree distributions from each community
when modeling within-community CC. See Fig. 5 for network
visualizations.

The BTER model does not perform as well as EGBTER
and GBTER in preserving modularity, only performing better
than the GBTER model when modeling within-community
CC. This is unsurprising as it does not allow user prescription
of community structure. Visualizations (using the software
Gephi [38]) of the outputs generated by the BTER model
tend to exhibit an organized star-shaped collection of dense
ER graphs together with, in some cases, a large dense core
(see Fig. 5c and Fig. 5f). The visualization BTER produced
depended heavily on which subprocess generated the majority
of edges in the underlying simulated network. The star-shaped
collection arose when the ER process was the dominant edge
generation process, while the dense core arose when the
CL model was the dominant edge generation process. Each
distinct type of visualization agrees with previous work on
both the BTER model [17] and on average distances in CL
graphs [14, 39].

VI. CONCLUSION

The EGBTER model presented here showed strong overall
performance across metrics measuring degree distribution,
clustering coefficients, and community structure. The BTER
model uses an automated grouping process that does well to
match both degree and CCPD distribution but fails to preserve
community structure at the coarsest scale. This problem is
addressed in the GBTER model which imposes community
membership and size. However, this comes at a cost to CCPD,
as was found to be the case in both configurations of GBTER
tested here.

This work was concerned with simultaneous faithful preser-
vation of particular graph characteristics. Performance and
scalability are out of the scope of our consideration. Testing
showed that in networks with high modularity, internal and
global degree and clustering coefficients were nearly identical,
except for high degree nodes. Recent work [28, 40] has
shown CCPD distribution can be estimated via sampling and

scales to large networks. Future research is needed to uncover
explicit relationships and network properties that would allow
for autonomous and scalable generation of EGBTER graphs
without the direct reliance on the measured inputs from a seed
graph. Overall, we hope our contributions will enhance the
modeling and analysis capabilities graph theory brings to the
many diverse applications.

APPENDIX (SUPPLEMENTARY MATERIAL)

Here we describe the metrics used to describe how
well different graph models preserve important network
characteristics. The three metrics we use are root mean
squared error (RMSE) of both degree distribution and CCPD
distribution, as well as modularity as a measure of community
structure.

Degree Distribution: To measure how well the degree dis-
tribution of a simulated network fits the degree distribution
of the original network, we use the root mean squared error
(RMSE) applied to the simulated degree distribution using the
degree distribution of the original network as a baseline.
CCPD Distribution: We apply the RMSE of the CCPD distri-
bution in the same fashion as above. This measure implicitly
depends on the set of all degrees produced in the simulated
network as we measure the error from the set of ordered pairs
{(d, ccd)} in the simulated network to the original network.
Modularity: To evaluate how well a particular vertex clus-
tering (or in our case a partition) captures the community
structure of a network, we shall primarily use the modularity
metric formulated by Newman [41]. Modularity, denoted Q,
is given by,

Q =
∑
i

eii − a2i , (2)

where eij is the fraction of total edges that connect nodes
in community Ci to community Cj and ai =

∑
j eij . We

use this metric because it considers the vertex partition as a
whole and allows us to compare different partitions of the
same network. Modularity gives a sense of the overall level of
community structure present in a network relative to the given
partition. This is not to say that higher modularity means better
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community structure but that higher modularity indicates more
overall division into communities with respect to the partition
used.
ER Model: The Erdős-Rényi (ER) model [42] was one of the
first random graph models. The ER model takes as input, the
desired number of nodes n and an edge insertion probability p.
Then a graph on n nodes is generated by inserting each of the(
n
2

)
possible edges with probability p. This graph is denoted

as ER(n, p). As a result of this simple insertion process, in
expectation we have network density, ccvi and CCPD equal to
p. We also have

(
n
2

)
p edges in expectation and

P (di = k) =

(
n− 1

k

)
pk(1− p)n−1−k. (3)

This produces a roughly Gaussian shaped degree distribution,
counter to that observed in real world networks [22].

CL Model: The Chung-Lu (CL) model [43] arose as an
attempt to model graphs with a power law degree distribution.
In the CL model, each node vi is assigned a weight, wi.
The CL model takes as input, the list of corresponding vertex
weights {wi}. The probability of inserting edge vivj is given
by

P (vivj ∈ E) =
wiwj∑
vk∈V wk

, (4)

which we shall denote by CL(wi, wj). For this probability
to be well defined we require that wiwj ≤

∑
vk∈V wk for all

vi, vj ∈ V . It is possible that the RHS of Eqn. 4 is greater than
1. For our purposes, if this occurs we set P (vivj ∈ E) = 1.
A common adaptation is to use wi = di for all vi ∈ V . When
wi = di, this is referred to as a null model. CL generalizes
ER and retains independent edge insertion while being able to
match di in expectation. However, this process rarely closes
triangles [25] and the average distance is relatively small [14,
39]. This makes this model a bad fit for CC and community
structure but laid a foundation for capturing network degree
distribution in expectation. See Fig. 5f for BTER visualization
of a biological network. This visualization looks very similar
to those of CL models.
Real World Networks Description: All networks used in this
work for model evaluation can be found online either from
the Network Repository [44] or from the Stanford Network
Analysis Project (SNAP) [45]. Two networks come from
biology (a protein interaction network [46] and a fly brain
network), two are social networks (a Facebook friend network
[32] and physics collaboration network [47]), two are web
networks [37, 48, 49] and one is an infrastructure network
[15]. Only the two social networks come from SNAP.
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