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ABSTRACT

Graph algorithms are a new class of applications for neuromorphic
hardware. Rather than adapting deep learning and standard neural
network approaches to a low-precision spiking environment, we use
spiking neurons to analyze undirected graphs (e.g., the underlying
modular structure). While fully connected spin glass implementa-
tions of spiking label propagation have shown promising results on
graphs with dense communities, identifying sparse communities
remains difficult. This work focuses on steps towards an adaptive
spike-based implementations of label propagation, utilizing sparse
embeddings and synaptic plasticity. Sparser embeddings reduce the
number of inhibitory connections, and synaptic plasticity is used
to simultaneously amplify spike responses between neurons in the
same community, while impeding spike responses across different
communities. We present results on identifying communities in
sparse graphs with very small communities.
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1 INTRODUCTION

Neuromorphic computing is commonly referred to as “brain-inspired”
computing, utilizing hardware that executes processes similar to
how the mammalian brain executes cognitive function. These sys-
tems have predominantly been used to accelerate deep learning
algorithms [5, 14] but there has been growing interest in adapting
non-deep learning algorithms and applications to these systems.
For example, a spike-based implementation of simulated annealing
has been used to solve various constraint satisfaction problems on
the SpiNNaker system [3, 12].

Neuromorphic hardware is developed to mimic the biological
processes of the mammalian brain, and one important element is
synaptic plasticity. Recent hardware developments have focused
on building neuromorphic systems that can update and change
the weights associated with individual synapses (e.g., Intel’s Loihi
chip [2]). In this work we present an adaptation of spiking label
propagation [7, 8], which was previously implemented with static
synapses and fully connected spiking neural networks (SNNs). Our
adapted algorithm is deployed on larger, sparser networks and
utilizes plastic synapses and a sparse embedding of a network into
a spiking neuron system.

The previous studies of spiking label propagation (7, 8, 15, 16]
have demonstrated that communities can be identified on graphs
from spiking output. In [15, 16] the use of global driving and global
control lead to synchronization over large populations of neurons,
which was used to infer graph communities. In [7, 8], local driving
and localized spike responses were used to identify communities,
based on similarities in the local spike responses.

The label propagation method introduced in [7] was inspired by
spin glass physics, where local interactions can lead to localized
patterns without influencing global behavior. Similar approaches
for spin-glass inspired community detection, implemented with
interacting spins [10, 17], have been shown to avoid the resolution
limit which is common in other modality-based measures [1]. How-
ever, when implemented with spiking neurons and homogeneous,
static synapses, it was seen in [7] that the method has difficulty
identifying small communities in sparse graphs.

Spiking label propagation is dependent on localized spiking be-
havior. Driving a single neuron must only cause a bounded number
of neurons in close proximity to fire spikes in response. Addition-
ally, the spike responses of neurons that are in the same community
should overlap significantly. In previous studies this locality con-
straint was enforced only by the addition of inhibitory synapses
[7], but is also dependent on the underlying graph connectivity [9].
Very sparse graphs can have localized spike responses without the
addition of inhibitory synapses. While this indicates that sparser
embeddings are possible, there still remains the challenge of how
to generate spike responses with sufficient overlap.
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We modify spiking label propagation to address two challenges:
generating a local spike response that can sufficiently cover a sparse
community, and efficiently embedding a graph in a spiking neuron
system with minimal synaptic connections. We use synaptic con-
nections that are now able to implement plasticity-based learning
rules, and the embedding of a graph into a SNN is made sparser
by reducing the number of inhibitory synapses. The goal of these
modifications is to allow for the localized spike response to grow
larger as more neurons in a community are driven without causing
spiking cascades that spread throughout the network.

These modifications are designed to overcome challenges faced
when analyzing real world networks. Real world networks can
contain millions, if not billions of vertices. Embedding them into
a fully connected spin glass will lead to prohibitively large sys-
tems. In many real-world networks the communities may contain a
large number of vertexes, yet have relatively low mean degree. The
relative sparseness of these communities means that it cannot be
assumed that the local response from one neuron can significantly
overlap with a large fraction of the remainder of the community.

2 DEFINITIONS

We construct our spiking neuron systems out of leaky integrate and
fire neurons and only apply our approach to identifying groups of
vertices in simple graphs: no self-loops, multiple edges, or weighted
edges. For spiking label propagation, driving a single neuron needs
to generate a localized response and the network must be designed
to inhibit the large-scale growth of a spike response.

Graphs G = G(V,E) are fully defined by a vertex set V(G) =
{vi} and a set of symmetric edges (E(G) = {eij}, eij = eji =
(vi,vj)). Graph sparsity is quantified by the ratio of edges in G, to
the maximum number of edges possible on |V(G)| vertices: o =
2lE@)|/(IV(@)I(IV(G)| —1)). A SNN is defined similarly as an edge-
weighted network S = S(N, W, syy) using a neuron set (N = {n}),
a set of symmetric connections (W = {w;;}, wij = wj; = (nj, nj))
called synapses. Associated with each synapse is an edge weight
(sw) which may be positive or negative, and self-connections (w;; =
(ni,ni) ¢ W) are not allowed. For all embeddings, each graph vertex
is mapped to a leaky integrate and fire neuron n; € N(S)
v; € V(G), and each graph edge is mapped to an excitatory synapse
wij € W(S),syy > 0 & e;j € E(G). The initial value of the
inhibitory synapses can vary. For studies with static synapses, we
choose the inhibitory weight to be equal and opposite the excitatory
weight.

The dynamics of the leaky integrate and fire neurons are con-
trolled by the dynamical system of equations:

ﬁ (Vext(t) - V](t))

a - @
Vext(t) = Lext (R + ), wijo(t — ). ©)
l;;,

In this work, the external current I.x; used to generate spiking
dynamics is replaced by a discrete set of n input spikes, spaced at
uniform intervals t1, and sent to a single neuron. Each of these
input spikes arrives with a synaptic weight that exceeds the firing
threshold of the neuron being driven, ensuring that each input
spike fed to a neuron causes that neuron to fire. We define the

K. Hamilton et al.

Table 1: Benchmark graphs.

Graph |[V(G)| |E@)| HQi}l D &

Go 128 256 16 4 0.032
G 128 1024 4 16 0.126
Gs 256 1014 16 7.9 0.031

Figure 1: The benchmark graph on 128 vertices with 16
unique communities. Many communities can be discon-
nected from the graph by removing 2 edges, but to discon-
nect a single vertex from a community requires the removal
of > 2 edges.

time during which input spikes are sent to an individual neuron as
AgxT, and the time between individual neuron driving is sufficient
to ensure that any incurred charge on a neuron has dissipated.
The spiking dynamics are simulated with the following neuron
parameters: v, = 0.8V, v9 = vg = 0.0V, 7 = 25 ms, tg = 20 ms,
and synaptic weight amplitude s, |o = 0.75V. Driving is done by
sending 10 spikes to a neuron, spaced at 0.21 ms intervals.

We define three different benchmark graphs to test various em-
beddings and investigate the effects of synaptic plasticity (see Table
1). The graphs were generated using the software available at [4],
and converted to spiking neural systems. The graph Gy (shown
in Fig. 1) is the sparsest network analyzed in [7], the graph G is
the standard Girvan-Newman benchmark graph, and G, is a large
graph with a sparsity similar to G, but twice as many vertices, and
with a mean degree D(G2) ~ 2D(Gy).

Our custom spiking neural network simulation software frame-
work is written in C++ and utilizes a discrete-event simulation
approach for rapid network evaluation. The simulator framework
can be run in either serialized or parallel mode and can scale to
utilize a distributed memory supercomputer or cluster in order to
simulate the activity in larger networks (>1000 neurons with dense
connectivity) more rapidly than on a single processor [18]. The
software framework is modular and allows for different neuron
models and synapse models to be easily implemented and evaluated
using the simulation engine.

Once the full spike raster was generated, the label propagation
algorithm of [7] was applied. Each spike train was decoded into
a binary vector x; using a time bin width of At = 0.03 sec, and
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the Hamming metric H(x;, x;j) defined in [11] was used to quantify
the degree of similarity between pairs of decoded spike trains. A
threshold value hg for the Hamming similarity was chosen and fixed,
and each neuron of S was initialized with a unique label. Labels
propagate through the system based on the degree of similarity
between pairs of neuron spike trains; if H(x;,x;) > ho then the
label of x; is applied to x;. For a driven neuron (ng), the size of the
spike response was calculated by counting the number of unique
neurons that fired while (ng) was being actively driven.

With each benchmark graph in Table 1, we also have a set of
known labels that act as the ground truth. This known distribution
of labels over the original vertex set (Ly) is compared to the label
propagation output, which returns a predicted label distribution
(L"). The difference between two graph partitionings is quantified
using the variance of information VI(Ly, L") [13], which vanishes
when two partitionings are identical: VI(Lg, L") = 0. The variance
of information is maximum when every vertex on the graph is
assigned a unique label. We are most interesting in finding for which
threshold similarity does the minimum variance of information
(MVI) vanish. For reference we include the values of VI for the two
trivial solutions: all vertices classified in the same community:

VI(Lo, {1})(g,) = 4.0,
VI(Lo, {1})(g,) = 2.0, 3)
VI(Lo, {1})(g,) = 6.0;
and all vertices classified with unique labels:
VI(Lo, {1,128})g,) = 3.0,
VI(Lo, {1,128})(g,) = 5.0, o
VI((Lo. {1,256})(g,) = 4.0.

3 SNN CONSTRUCTION

In the following sections we investigate how the size of spiking
responses in an SNN and the ability to recover a known label dis-
tribution, is affected by: synapse plasticity and the sparsity of the
SNN.

3.1 Sparse embedding of local spin glass
networks

Fully connected spin glass models have been used to demonstrate
proof-of-concept results that spiking neuron systems can be used
to implement label propagation. However fully connected systems
will be dominated by inhibitory synaptic connections for most real-
world networks, which tend to be sparse. The embedding discussed
in this section is used for spiking label propagation, where the
generation of a localized response from a driving a single neuron is
needed. For the sparse graphs we consider in this work, embedding
into a fully connected spin glass will result in a graph dominated
by inhibitory synapses. This leads to very sparse spike rasters and
as seen in Fig. 2 loss of distinction between small communities. We
now define a spiking neuron systems which has excitatory synapses
for any edge on the original graph, but inhibitory synapses are only
added between small localized regions on the graph, identified from
the graph adjacency matrix.

The design of our spiking neuron systems for label propagation
require that two spikes must arrive from a driven neuron in order
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Figure 2: The comparison between binary decoded spikes
trains generated under the fully connected spin glass model.
Individual communities are not significantly different and
similarity within individual communities is not signifi-

cantly high.

Table 2: Embedding sizes for each of the benchmark graphs.

WS)-I  [W(S)-| [W(S)-| [W(S)-]

Graph |[W(S)+| (fullglass) ap=1 ap =2 ap =3
Go 256 7872 456 238 66
G1 1024 7104 4022 840 116
G 1014 31626 3124 536 542

to cause a neuron to fire in response. A neuron can fire when it
is directly connected to a driven neuron, or if there are a number
of short paths (length 2 paths) connecting to the driven neuron.
Inhibitory connections are only added if there are ag length 2 paths
between two neurons, and neurons that are far apart on the graph
are left disconnected. On a sparse graph, there may be few neurons
connected by multiple length-2 paths, as a result the choice of ag
can lead to a SNN with very few inhibitory connections. For the
full spin glass embedding, an inhibitory synapse is added to the
SNN for every edge that is absent on the original graph, resulting
in a SNN which is fully connected. To design sparser embeddings,
we choose to only attach inhibitory synapses between neurons that
have a certain number of length-2 paths between them:

wij <0 € W) (Az)ij = qy. (5)

In Table 2 we compare the number of inhibitory, and excitatory con-
nections for various values of ag. A set of sparse embeddings were
generated for Gy, and the spiking dynamics were generated using
only static synapses. Reducing the number of inhibitory synapses
in the SNN results in a larger spike response from driving a single
neuron. This can be quantified by simply counting the number of
neurons that are active when one neuron is driven (see Fig. 3). In
Fig. 4 the sparse embeddings on Gy lead to an increased degree of
dissimilarity between different communities when ap = 1 or ap = 3.
Label propagation is run on the decoded spike output for each
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Figure 3: The number of neurons that fire when a single neu-
ron is driven for a SNN generated from Gy under several
embeddings. For the full spin-glass embedding, the spike re-
sponse is limited to just nearest neighbors. Under sparser
embeddings, the number of spiking neurons can grow to be
very large.

sparse embedding shows that for Gy the variance of information
vanishes with ap = 1 and ag = 3.

In an alternate study on Gy, a sparse embedding was simulated
using Brian2 [6] with added inhibitory synapses between neurons
that satisfy (A?); j < ap. This led to denser embeddings (|W(S)-| =
456,a0 < 1|W(S)-| = 694,a9 < 2, |[W(S)-| = 760,ap < 3) and
while the variance of information was reduced, it only vanished for
ap =11[9].

3.2 Synapse plasticity

We implement spike timing dependent plasticity using Hebbian
learning. Only one neuron fires spikes due to driving by an external
source, while any other neuron that fires during the active driving
of a neuron will fire due to “internal firing,” firing a spike because
of the arrival of multiple spikes from a neighboring neurons. We
define the learning rule according to the total output of the neurons
n;, nj during the time that neuron n; is driven by an external source
A(t).

We implement plasticity and synaptic learning through a simple
update rule: after the external driving of a neuron (n;) ends, a subset
of synaptic weights are updated based upon their spiking behavior
during the external driving. Only synapses which terminate at n;
(have n; as a post-synaptic neuron) will update: {wj;} € W(S).
We define n(nj) over the entire period of external driving Apx:
n(nj) = 1if nj fires a spike during Agxt and 5(nj) = 0 if nj does
not fire at all during Agxr.

sl = sy — Ag(=1)10%), (6)

If nj does not fire, then s}, < s,. If nj does fire, then s;, > s,,. We
used two sets of learning rates: in Sec. 3.2.1 the learning rate was
homogeneous and chosen to be As = |s,,| for all synapses, in Sec.
3.2.2 the learning rate was dependent on the local connectivity of
the underlying graph.

K. Hamilton et al.

3.2.1 Homogeneous plastic synapses. If n; fires in response to
n; being driven, then the excitatory synapse s;; is increased to
sji = 2|sy|, which exceeds the spiking threshold 2|s,,| > vyp,.
This ensures that when n; is driven, the strengthened synapse is
able to immediately cause response spiking in n;. While excitatory
synapses are increased, inhibitory synapses are further depressed: if
n;j does not fire when n; then the inhibitory synapse is depressed to
s]fi = —2|sy|. This is necessary to prevent runaway spike cascades
from spreading through the entire system. Additionally, there are
inhibitory synapses that are reduced in magnitude, but do not
become excitatory: for neurons that are densely connected (e.g a
large number of length-2 paths exist between n; and n;) but not
directly connected, the fact that n; will still spike when n; is driven
will reduce the strength of the inhibitory synapse sj; and depending
on the initial value of s;; this synapse may be effectively removed
(s, = 0).

Incorporating synapse plasticity leads to a system with dynamic
spiking behavior: the local spike response of a single neuron is
not just determined by the local connectivity but is also dependent
on whether or not a neighboring neuron has been driven recently.
The benchmark graph shown in Fig. 1, has 128 vertices, 256 edges
and is degree regular with all vertices having degree k = 4. When
it is embedded into a spiking neuron system as a fully connected
spin glass, this translates to a system with 256 symmetric pairs
of excitatory synapses, and 7872 symmetric pairs of inhibitory
synapses. This leads to extremely localized spike responses when
driving individual neurons. Introducing plasticity to the synapses
will lead to more varied spike responses, but it can lead to runaway
spike cascades (see Fig. 5).

3.2.2  Heterogeneous plastic synapses. The final network design
we considered combined multiple sparse embedding with plastic
synapses, where now the initial weight of the inhibitory synapses
was dependent on the local connectivity of the original graph, and
the synapses are plastic. Rather than choose a single value of ao,
we use ap = 1,2,3 to add inhibitory synapses of different initial
weights.

wij € W(S), s, = =075V = (A%); =1
Wij € W(S), Sw = —05V (Az)l] =2 (7)
wij € W(S), sw =025V & (A%);; =3

Thus the strongest inhibitory weights are added between neurons
with the sparsest connections. For this embedding, the learning rate
was reduced to Ag = 0.25 V. This learning rate is large enough to
ensure that excitatory synapses increase to a weight that surpasses
the spike threshold.

The heterogeneous SNN has dynamic spiking behavior, but does
not lead to cascades. In Fig. 6 we show the size of spike responses
generated in graphs Gy and G-, for static synapses, homogeneous
plastic synapses, and heterogeneous synapses.

The spiking output generated under the different sparse embed-
dings were incorporated into our label propagation analysis. In
previous studies [7] we have quantified the performance of spiking
label propagation in terms of: vanishing variance of information,
and the existence of a “plateau” over the choice of threshold value
for hy. We summarize the results for static synapses in Table 3 and
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Figure 4: The degree of similarity between binary decoded spike trains for a benchmark graph with 16 communities each
with 8 vertices using the adjacency defined embedding and static synapses. (a) shows the similarity between spike trains with
inhibitory connections added only to pairs of disconnected neurons which have 1 length-2 paths between them (ap = 1), (b)
shows the similarity between spike trains generated under the sparser embedding, with inhibitory connections added only to
pairs of disconnected neurons which have 2 length-2 paths between them (a9 = 2), (c) shows the similarity between spike trains
generated under the sparser embedding, with inhibitory connections added only to pairs of disconnected neurons which have
3 length-2 paths between them (ap = 3). connections weighted according to Eq. 6.

120

100

40

Number of unique spiking neurons

Figure 5: The number of neurons that fire when a single neu-
ron is driven for a SNN generated from G, under several em-
beddings and the addition of plasticity. Under sparser em-
beddings, the number of spiking neurons can grow to be
very large and with the addition of synaptic plasticity, can
lead to spike responses that cover the entire network (e.g.
ap = 2,a0 = 3 embeddings). The solid lines are generated
using static synapses, the dashed lines are generated using
plastic synapses.

plastic synapses in Table 4. To compare the performance of each
embedding, we use the MVI and the width of the plateau if the MVI
vanishes.

Table 3: Minimum information of variance for SNN with
static synapses

Graph Embed MVI {hg} Ahg
Go full 0.583 © @

Go ay=1 0.000 {0.9796} 0

Go ag =2 1.11 @ (%]

Go ap =3 0.000 {0.9755} 0

G1 full 0.000 {0.9143,0.9388} 0.0245
G1 ap=1 0.000 {0.8204,0.9837} 0.1633
G1 ap =2 0.000 {0.8122,0.9714} 0.1592
G1 a =3 2.000 @ (%]

G2 full 0.062 @ @

G2 ap=1 0.000 {0.9755,0.9837} 0.0082
G a=2 0381 @ ]

G a =3 0245 @ (]

4 DISCUSSION

Previous implementations of spiking label propagation used fully
connected spin glass systems with static and homogeneous synap-
tic weights [7, 8]. While these systems could generate spiking re-
sponses that could accurately identify large, densely-connected
communities, locating and isolating small, sparse communities is
difficult. The results in Secs. 3.1, 3.2.1 and 3.2.2 indicate that perfor-
mance on sparse graphs with small communities can be improved
by implementing synapse plasticity or sparse embeddings. We com-
pare these results to a graph on which the original iteration of label
propagation performed very well, the standard Girvan-Newman
benchmark (G1).

Our primary motivation in adding synapse plasticity and sparser
embedding is to increase the size of spike responses. For all the three
graphs studied, sparser embeddings lead to larger spike responses.
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Figure 6: (Top) The number of neurons that spike during ex-
ternal driving for Gy under the full spin glass embedding
with static synapses or plastic synapses (black solid, black
dashed), the ap = 1 sparse embedding with static synapses
or homogeneous plastic synapses (red solid, red dashed),
and the heterogeneous system (magenta solid).(Bottom) The
number of neurons that spike during external driving for
G2 under the full spin glass embedding with static synapses
or plastic synapses (black solid, black dashed), the ay =
1 sparse embedding with static synapses or homogeneous
plastic synapses (blue solid, blue dashed), and the heteroge-
neous system (magenta solid).

However, simply generating larger (yet bounded) spike responses
was not sufficient to find the minimum variance of information
(MVI). The addition of synapse plasticity was not guaranteed to
increase spike responses. If the spike response was less than the
mean degree of the graph, meaning that not all neighbors of a
driven neuron fired, we identify that as a significantly suppressed
spike response (SSR). For each of the three graphs studied we will
discuss how the various embeddings and synaptic types affected
the spike response sizes, the MVI, and the width of the ho-plateau
(if the MVI vanishes).

First, we discuss the spike responses on graph instance Gy (see
Fig. 6); the sparsest graph, with the smallest communities and the
lowest mean degree. With static synapses, all three sparse embed-
dings lead to larger spike responses yet only ap = 1 and ap = 3

K. Hamilton et al.
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Figure 7: The number of neurons that fire when a sin-
gle neuron is driven in Gi. Under the full spin-glass or
ap = 1 embedding with static synapses (solid black, red) the
spike response is bounded. This localized response is main-
tained with plastic synapses (dashed black, dashed red) and
with the heterogeneous embedding (magenta, solid), though
there is significant variance in the spike response size under
the spin glass embedding with plastic synapses.

Table 4: Minimum information of variance for SNN with
plastic synapses

Graph Embed MVI  [ho] Ahy
Go full 1.601 @ 2

Go ap=1 0.069 @ [%)

Go ap =2 1.935 © (%)

Go ap =3 0.608 @ [%)

Go heterogeneous 0.497 @ @

Gi full 0.000 [0.9388] 0

G ag =1 0.000  [0.8,0.9387] 0.1387
G ap =2 0.250 @ (%)

G ap =3 2.000 @ [%)

G1 heterogeneous 0.000 [0.8,0.9878] 0.1878
Go full 1.685 @ 2

Go ap =1 0.000 [0.9551,0.9918] 0.0367
G ag =2 0.888 @ (%)

Go ap=3 0.926 @ %)

Go heterogeneous 0.000 [0.9673,0.9755] 0.0082

showed a complete vanishing of the variance of information (re-
turned the ground truth partitioning). With plastic synapses, the
spike responses became unstable for the sparsest embeddings; both
ap = 2 and ap = 3 embeddings exhibited runaway spike cascades,
which lead to an increase in MVL. Of the three embeddings with
plastic synapses that had bounded spike responses (the full spin
glass, ap = 1, and the heterogeneous embeddings), all showed SSR.
This SSR is most prominent for the full spin glass embedding, which
also had the largest increase in MVI. For the ag = 1 embedding and
for the heterogeneous embedding, 3 neurons exhibited SSR and an
increase in MVL
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Next, we discuss the spike responses on graph instance Gz (see
Fig. 6); this was the largest graph, but with a degree of sparsity close
to Gy. With static synapses, only the full glass embedding and the
ap = 1 embedding result in bounded spike responses, and the larger
response in the ap = 1 embedding was sufficient to cause the MVI
to vanish. While not full spike cascades, ap = 2 and ap = 3 both lead
to very large spike responses that nearly covered the entire graph
and their respective MVI did not vanish. With the addition of plastic
synapses, the full glass embedding exhibited SSR and an increase
in MVI, the a9 = 1 embedding only exhibited SSR for 2 neurons
and its MVI still vanished. For Gz, the plastic synapses and the
sparse ap = 1 embedding also showed an increase in plateau width
over which the ground truth partitioning was returned. Finally, the
heterogeneous embedding with plastic synapses showed a bounded,
larger spike response without any SSR. For this embedding the MVI
vanished over a range of hy values of plateau width Ahy = 0.0082.

Of all three graphs studied, only G1, the densest graph, exhibited
significant SSR yet also had a MVI that vanished (see Fig. 7). How-
ever the plateau of hy over which the MVI vanished was reduced
to just a single value. With the addition of plasticity, the sparse
embedding ag = 1 did not exhibit any SSR, but the spike response
sizes were smaller than that of the static synapse embedding. While
both ag = 1 embeddings exhibited a plateau over which the MVI
vanished, the static synapse embedding had a wider plateau. With
the addition of plasticity, the sparse embedding ag = 2 showed
spike cascades for 2 neurons and a non-vanishing MVI. The sparse
embedding ap = 3, with static or plastic synapses, showed spike cas-
cades for all neurons. Finally, the heterogeneous embedding showed
the largest plateau over which the MVI vanished: Ahy = 0.1878.

Finally, for all of the graphs studied there was at least one sparse
embedding, either using static or plastic synapses, that led to neu-
rons driving a spike response from the entire system. For the sparser
graphs Go, G, this occurred for sparse embeddings with plastic
synapses while on the denser graph G; this occurred for sparse
embeddings with either synapse type. Spike cascades on sparser
graphs only occurred after a significant number of neurons were
driven (e.g. in Fig. 3 the spike response on Gy gradually grows
in size), while for G, cascades could be triggered by driving only
one neuron. Of all three graphs studied, only G returned a trivial
solution with all vertices being assigned the same community.

5 CONCLUSIONS

We have presented preliminary results on improving the perfor-
mance of spiking label propagation on sparse graphs. Spiking label
propagation depends on localized spike responses and the spike
responses between neurons in the same community must have
significant overlap. Depending on the sparsity of the graph under
analysis, a fully connected spin glass may lead to spike responses
which are localized to just nearest neuron neighbors, whereas a
sparse embedding applied to a dense graph may lead to runaway
spike cascades. Thurs, we have made modifications to the spin-glass
SNNs used for spiking label propagation in order to increase the
size of spike responses on sparse graphs: using sparser embeddings
via the reduction of inhibitory synapses, and the introduction of
plasticity in the synaptic connections.
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Designing sparse embeddings to suppress specific degrees of
connectivity requires a significant amount of information about
the graph connectivity, and is not guaranteed to improve perfor-
mance. Relying on only the graph connectivity to define a sparse
embedding is difficult to do without making assumptions about
the connectivity within communities. For all graphs, the ap = 1
embedding with static synapses led to a consistent vanishing MVI,
which is likely due to our assumption that graph communities are
at least 2-connected, meaning that at least 2 edges must be removed
in order to disconnect an entire community from the rest of the
graph. However, this does not guarantee that any two neurons
within the same community have at multiple length-2 paths con-
necting them. On Gy there are multiple neurons which only have
a single length-2 path between, but on denser graphs it is likely
that two neurons with only a single length-2 path between them
contain an edge that connects two different communities. Adding
inhibitory synapses according to the condition (A%);; = 1 will pre-
vent neurons in different communities from firing at the same time.
Predicting a threshold for sparser embedding becomes difficult for
denser graphs; on G there are more connections between com-
munities and a larger number of inhibitory synapses are needed
to prevent runaway spike cascades. Thus the ap = 3 embedding
performs poorly for G; but returns the correct partitioning for Gy.

Likewise, our initial implementation of homogeneous synaptic
learning did not significantly improve performance to systems with
uniform synaptic weights, and by introducing the possibility of
SSR actually reduced the accuracy. For example, on Gy the three
sparse embeddings ag = 1, ap = 2 or a3 = 0 all showed increased
spike responses, but only ap = 1 and ap = 3 showed vanishing MVI.
This vanishing MVI was lost after the addition of synapse plasticity
with homogeneous learning. While a sparse embedding with plastic
synapses was not found for Gy that lead to vanishing MVI, a more
general embedding that utilizes heterogeneous synaptic values and
heterogeneous learning rates improved performance on G; and
Go. This embedding, which added differently weighted inhibitory
synapses with different learning rates between neurons that sat-
isfied (Az)ij =1, (Az)ij = 2or (Az)ij = 3 was able to generate
larger yet still localized spike responses and improved the stability
of non-trivial partitioning solutions. It resulted in the largest stable
plateau for G;.

Overall, the preliminary results we have obtained so far indicate
that simply increasing the size of spike responses of relying on
knowledge of graph connectivity to design a sparse embedding is
insufficient to ensure that the modular structure of a graph can
be fully described, and is of limited applicability to graphs with
unknown ground truths. Also, the full control of spike cascades
remains an open question, but our results indicate that if spike
cascades can be limited to a few neurons this can mitigate the cat-
astrophic effects on label propagation and avoid trivial partition
results. This leads us to conclude that a fully adaptable implemen-
tation of spiking label propagation will be a system with hetero-
geneous synapses and learning rates. In such a system we believe
that the current implementation of spiking label propagation will
need to be fully integrated into the spike generation. Instead of
executing label propagation after a full spike raster is generated,
future implementations will focus on using label assignments to
drive the synaptic learning.
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