
Understanding Selection and Diversity for Evolution

of Spiking Recurrent Neural Networks

Catherine D. Schuman

Computational Data Analytics

Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831–6085

Email: schumancd@ornl.gov

Grant Bruer, Aaron Young, Mark Dean, and James S. Plank

Department of Electrical Engineering and Computer Science

University of Tennessee

Knoxville, Tennessee 37996

Email: [gbruer, ayoung48, markdean, jplank]@utk.edu

Abstract—Evolutionary optimization or genetic algorithms
have been used to optimize a variety of neural network types,
including spiking recurrent neural networks, and are attractive
for many reasons. However, a key impediment to their widespread
use is the potential for slow training times and failure to converge
to a good fitness value in a reasonable amount of time. In this
work, we evaluate the effect of different selection algorithms
on the performance of an evolutionary optimization method for
designing spiking recurrent neural networks, including those
that are meant to be deployed in a neuromorphic system. We
propose a selection approach that utilizes a richer understanding
of the fitness of an individual network to inform the selection
process and to promote diversity in the population. We show
that including this feature can provide a significant increase in
performance over utilizing a standard selection approach.

I. INTRODUCTION

Spiking recurrent neural networks (SRNNs) are known to

be a theoretically powerful computational tool [1], [2]. More-

over, they are an increasingly popular computational model

implemented in neuromorphic hardware [3]. Perhaps the most

intriguing question associated with these types of neural

networks is how to design and train them effectively to solve

real problems. A variety of approaches have been proposed for

determining the weights of spiking neural networks, including

back-propagation [4], [5] and spike-timing dependent plastic-

ity or other biologically-inspired plasticity mechanisms [6],

[7], but those approaches do not give guidance on determining

various aspects of the network (e.g., network topology or

delays), nor are they necessarily customized for neuromorphic

hardware.

One approach for training neural networks is evolutionary

optimization or evolutionary algorithms, an approach that is

sometimes called neuroevolution [8], [9]. There are a variety

of attractive reasons for using evolutionary approaches for

Notice: This manuscript has been authored in part by UT-Battelle, LLC
under Contract No. DE-AC05-00OR22725 with the U.S. Department of
Energy. The United States Government retains and the publisher, by accepting
the article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others to do so, for
United States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance
with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-
access-plan).

training spiking recurrent neural networks: there are no restric-

tions on the topology of the networks or functionality of the

network, they are applicable to a wide variety of applications,

they can operate within the characteristics and constraints of

neuromorphic systems, and they can define all aspects of the

network, including network topology and parameters such as

synaptic weights and delays. Evolutionary optimization and

genetic algorithms have not been widely applied to spiking

neural network in the past because of a few key issues.

First and most importantly, they can be slow to converge for

some applications and may get stuck in local minima, further

delaying convergence, and second, it can be difficult to define

how the evolutionary optimization or genetic algorithm will

operate on the particular spiking neural network structure.

In this work, we seek to address the first issue and improve

the performance of an evolutionary optimization method as

applied to SRNNs for neuromorphic systems by examining

the role of selection algorithms and population diversity in

training performance, with the goal of finding the selection

approach or approaches that are most likely to help with

training convergence. We restrict our view to the selection

aspect of EO because any improvements or alterations that

occur in defining how selection operates are applicable to

any application and any neuromorphic model. Furthermore,

any insight gained in how selection should be implemented

can be extended to other neuroevolution methods as well.

In the following sections, we discuss previous work done on

evolutionary optimization for SRNNs and note both the key

advantages and disadvantages of utilizing them for SRNNs

and neuromorphic networks. In Section III, we briefly describe

the two SRNN models used in this work, noting the key

differences in the two models that can result in significant

differences in training performance. In Section IV, we discuss

our overall evolutionary optimization approach for training

SRNNs and note the role of selection and diversity in that

process. We present the results for both SRNN models on

two different applications in Section V, specifically noting the

difference in performance for different selection algorithms

and how diversity in the population and final performance are

correlated. We also present an approach for utilizing a richer

definition of fitness to improve the selection procedure. We

conclude with discussion of the results and of potential future



directions for this work.

II. BACKGROUND AND RELATED WORK

Evolutionary optimization (EO) and/or genetic algorithm

(GA) approaches for training neural networks have been used

for the last three decades and are sometimes referred to as

neuroevolution [10], [9]. EO and GAs have been used simply

for weight training of fixed structures networks [11], for

determining network topology and weights [12], [8], [13], or

for topology or hyperparameters while traditional algorithms

such as back-propagation are used for weight training [14],

[15].

Spiking neural networks in general, and spiking recurrent

neural networks (SRNNs) in particular, present an intriguing

issue for training, as they add an additional dimension beyond

topology and parameters to optimize in the form of the time

dimension. There are a variety of proposed ways to train

SRNNs, including back-propagation, spike timing dependent

plasticity, and liquid state machines, but none of these methods

define a satisfactory approach for determining all aspects of an

SRNN. Back-propagation based methods will require certain

restrictions on the topology for the network structure, but

it is not clear how many layers, layer types (if utilizing

convolutional neural network-based structures), number of

neurons per layer, and connectivity between layers should be

used for a given task. Certain topologies have been useful

for utilizing STDP, but for general applications, it is not

clear how to determine the topology. Reservoir computing or

liquid state machines overcome this approach by providing

certain rules for the structure of the reservoir and leaving the

weights of the reservoir untrained [16], [17]. However, there

are restricted use cases for reservoir computing and the size

of the reservoir required can be quite large, which may not be

suitable for some neuromorphic implementations. In addition

to those methods, EO and GAs have been applied to SRNNs

successfully in the past in a variety of works [18], [19], [20],

[21]. EO and GAs have also been used to construct spiking

neural networks and SRNNs for neuromorphic systems [21],

[22], [23], [24].

There are a variety of reasons for using EO and GAs for

designing SRNNs. EO and GAs provide the flexibility to

optimize all aspects of SRNNs, which is a great advantage

for these relatively complex models. They can optimize and

customize the topology, parameters, and hyper-parameters of

the network for both the particular application and for a par-

ticular neuromorphic architecture. For neuromorphic systems

in particular, in addition to optimizing topology, parameters,

and hyper-parameters of the SRNNs, the training method must

work within the constraints of the neuromorphic device, which

typically include restrictions on all aspects of the network. Yao

notes several key properties of EO and GAs that make them

useful for training neural networks, including: they do not rely

on gradient information (which may be difficult or impossible

to calculate), they can be applied to any neural network

architecture or model, they are much less sensitive to initial

conditions (though there is still sensitivity to the initialization),

and they always search for global optima, though they may

also get stuck in local optima [10]. EO and GAs are very

flexible with respect to the applications to which they can

be applied, because they rely on a fitness score rather than

an error calculation. As such, they can be applied to design

networks for control applications, where error information may

not be readily available.

Though there are many advantages to utilizing EO and GAs

for SRNN training, there are several issues that may prevent

researchers from utilizing them. The first is that a representa-

tion of the network in the population must be defined, which

is a non-trivial issue for spiking neural networks. We utilize

a direct representation, which means that every aspect of the

network is defined in the representation. As discussed further

below, this means that there are typically a tremendously

large of potential solution networks that are representable in

the population. Moreover, the solution space itself is very

complex, as tweaking of single elements in the representation

can result in changes in topology or parameters that will

radically affect the performance of the network. We have also

observed the tendency for our EO approach to become stuck in

a local minima because the population becomes dominated by

one particular style of solution network, which is exacerbated

by the competing conventions problem, in which many differ-

ent networks are functionally but not structurally equivalent.

Thus, though our network representations are distinct, they

produce the same or very similar behavior, often resulting in

a relatively homogeneous population. One way to mitigate

this issue is to adjust the selection algorithms utilized for

determining which networks in the population to select to

produce offspring. Though selection algorithms themselves

have been studied extensively with respect to EO and GAs as

a whole [25], [26], it is not clear which selection algorithms

will actually perform best in producing the complex network

solutions required for evolving SRNNs, nor is it clear what the

relationship is between population diversity and performance

for this particular type use case of EO.

III. SPIKING RECURRENT NEURAL NETWORKS

In this work, we examine selection approaches for evo-

lutionary algorithms as applied to spiking recurrent neural

networks. In particular, we examine the effect of selection and

diversity on the performance of evolution-based training for

spiking recurrent neural networks. Throughout, we utilize two

spiking recurrent neural network frameworks: neuroscience-

inspired dynamic architecture (NIDA) networks [27] and

dynamic adaptive neural network array (DANNA) networks

[28]. Both NIDA and DANNA are bounded spiking neural

networks (there are a maximum number of neurons for each)

that utilize integrate-and-fire neurons and synapses with delays

and plasticity mechanisms. The key differences between NIDA

and DANNA are that NIDA is a software-based spiking archi-

tecture and has fairly unlimited connectivity between neurons,

while DANNA is a hardware-based spiking architecture that

has relatively strict limits on network topology. As such, these

two architecture types give a nice spectrum of how selection



algorithms operate in both more restricted (DANNA) and more

unrestricted (NIDA) environments.

IV. EVOLUTIONARY OPTIMIZATION FOR NEUROMORPHIC

SYSTEMS (EONS)

Our evolutionary approach for designing spiking recur-

rent neural networks for neuromorphic implementation is

called Evolutionary Optimization for Neuromorphic Systems

(EONS). For any given instance of EONS, the goal is to

produce a spiking recurrent neural network (SRNN) to be

deployed on a particular neuromorphic implementation that

performs well on a particular application. In particular, the

goal is to design all aspects of the SRNN, including the

topology (number of neurons and synapses and connectivity

between them) and parameters of the network and its elements

(weights of the synapses, threshold of the neurons, etc.) To

achieve this, the first step of EONS is to initialize a population

of networks. This is followed by evaluation, selection, and

reproduction operations that operate on the population to

produce a new population, which will replace the old one

(Figure 1). The evaluation procedure of EONS is dependent

upon the application for which a network is being optimized.

There are many such applications, including those in control,

classification and anomaly detection, and the way evaluation

is done can vary significantly from application to application.

Though there is innovation to be done in the evaluation, this

innovation is likely limited to a relatively small subset of appli-

cations. The reproduction procedure depends on the particular

neuromorphic model on which the network will be deployed;

once again, any innovation to be made here will likely be

relatively specific to the particular neuromorphic model or

device. In previous works we have discussed a variety of

applications and their associated evaluation procedures [29],

[30], [31], as well as particular models and their associated

reproduction operations [21]. In this work, we focus on the

selection portion of the EONS method, which is generic to

both the application and the neuromorphic model. Selection

algorithms are used in genetic and evolutionary algorithms to

produce a “survival of the fittest” effect. There are a variety

of selection algorithms to choose from, some of which have

one or more parameters. Though there has been work done

to analyze the performance of different selection algorithms

(as noted in Section II), it is not clear which ones will

be most appropriate for EONS, because EONS is a non-

traditional evolutionary approach, as described below. Since

the selection procedure is application and model-agnostic,

innovation in the selection algorithm has the potential to

improve performance for a variety of applications, as well as a

variety of neuromorphic models. Moreover, because we have

implemented a software stack that allows for separate models

and applications to be easily compiled with our full software

stack [31], these improvements are immediately applicable to

different models and applications.

EONS optimizes over a non-traditional genomic represen-

tation for members of the population. EONS utilizes a direct

representation of the network, meaning that every parameter

Fig. 1. Overall view of the operation of EONS. This work focuses on the
selection portion of the EONS workflow.

and aspect of the network is explicitly accounted for in the

genome representation. For example, for one of the neuro-

morphic models explored in this work (NIDA), the network

representation is that of a graph, where the nodes are the

neurons and the edges are the synapses. EONS determines

how many nodes and edges are required in the graph, as well

as their associated parameters. Since we are concerned with

neuromorphic hardware implementations, all of our neuromor-

phic models have physical limits on the maximum number

of neurons and synapses that are allowed. In addition, every

parameter has a fixed number of values that can be attained.

However, there is still a tremendously large solution space

over which EONS is searching to find a particular network.

For example, for another neuromorphic model explored in this

work (DANNA), each DANNA device has a fixed number of

elements, where each element is set as unused, a neuron, or a

synapse. As such for a DANNA with 100 elements, there are

on the order of 3100 different topologies that can be attained

(though some of those are not legal topologies). This number

does not take into account the parameters that are associated

with each element, each of which can take on a variety of

values (up to 256 different values for some parameters). With

this level of complexity, as well as the large number of local

minima that we expect in the fitness landscape, it is not clear

which selection algorithm will perform best in maintaining

enough diversity in the population or which one will be most

useful in mitigating getting stuck in local optima.

V. RESULTS

A. Applications

In this work, we focus our attention on two applications:

the canonical pole balancing task that we have previously

described in [27] and playing the Atari game Pong. For

pole balancing, the SRNN is given information about the

current state of the cart and pole: the cart’s position and

velocity and the pole’s position and velocity. The output of

the SRNN is calculated every 0.02 seconds, and gives a

decision as to whether the cart should move to the left or

to the right. As in many control applications, we evaluate



the SRNN’s ability on the task in several different test cases,

which usually corresponds to different starting conditions. In

the case of pole balancing, we evaluate six different starting

conditions (different initial positions of the cart and the pole).

We measure fitness by how many time steps the SRNN is able

to successfully keep the pole from falling and the cart from

hitting the two endpoints of the track. We cap the maximum

number of time steps for each test case at 15,000. The fitness

for each test case is calculated as follows:

fi =
number of hits for test case i

15000
(1)

The overall fitness for the SRNN for the pole balancing task

is then:

f =

∑
6

i=1
fi

6
(2)

For Pong, the SRNN is given information about the current

state of the game: position and velocity of the player’s paddle,

horizontal and vertical distance to the ball, horizontal and

vertical velocity of the ball, and the position and velocity of the

opponent’s paddle. The output of the SRNN is calculated every

0.02 seconds, and gives a decision as to whether the player’s

paddle should be moved up or down or to stay in the same

position. Similar to the pole balancing task, we evaluate the

SRNN’s ability on the task in multiple test cases. In the case of

Pong, these different starting conditions are different starting

angles of the ball. Unlike several other control applications that

we have evaluated, including the pole balancing task, Flappy

Bird [32], and robotic navigation [30], we have found that

when training SRNNs for Pong, EONS is very likely to get

stuck in a local optima. In particular, we observed that EONS

was likely to optimize to do very well on one or two of the test

cases we have selected, and perform relatively poorly on the

other examples, indicating that the test cases actually require

very different performance from the neuromorphic system

and indicating that the problem is non-trivial for SRNNs

(especially those that are restricted) to solve. As such, Pong

served as an excellent test case for observing the effect of

selection and diversity on overall performance of EONS. In the

Pong application, we use four test cases. We measure fitness by

how many times the player (the SRNN) is able to successfully

hit the ball back to the “ideal” player, which calculates where

the ball is going and moves its paddle to that spot accordingly.

For each of the test cases, we cap the maximum number of hits

at 55. The fitness for each test case is calculated as follows:

fi =
number of hits for test case i

55
(3)

Then the overall fitness for the SRNN is then:

f =

∑
4

i=1
fi

4
(4)

For both applications, in addition to the fitness value of

f for each network, we also return to EONS the various fi
values. Initially, we however, we only utilize f as part of the

training mechanism, though we track full fitness information.

B. Selection Algorithm Performance

The first major question associated with selection and diver-

sity for EONS is how different selection algorithms perform,

both in terms of overall performance and in terms of diversity

in the population. We examined four different types of selec-

tion algorithms: tournament, roulette, truncation, and random.

Tournament selection has two parameters: n, the tournament

size, and p, the likelihood that the best performing network in

the population is chosen. In tournament selection, 0 < n ≤ N

networks are randomly chosen from the population, where

N is the population size. The best performing network in

the tournament is chosen with probability p, the second best

network is chosen with probability p(1 − p), the third best

network is chosen with probability p(1 − p)2, and so on.

Roulette (or fitness proportionate) selection chooses networks

to serve as parents based on their fitness functions; in partic-

ular, the higher the fitness value of a network with respect to

other networks in the population, the more likely that network

is to be chosen. Truncation selection has one parameter, a

population fraction p, where 0 < p ≤ 1. In truncation

selection, the top p ∗ N networks are chosen, and then a

network from those p ∗ N networks is randomly chosen to

serve as a parent. For random selection, a network is randomly

selected from the population to serve as a parent. Random

selection is included to provide a baseline of performance.

In all tests, we used a population size (N ) of 100. In

generating a child population from the previous generation’s

population, we include 10 random networks and the top

10 best networks from the previous population. We set the

crossover and mutation rates to 0.9 each. Each run of EONS

was allowed to train for 200 epochs or until a fitness value

of 1 was reached. We include 10 random networks in each

generation to help with diversity, but we also include the

top 10 best networks to guarantee a non-decreasing fitness

over the course of evolution. The inclusion of the top 10 best

networks also allows us to maintain relatively high crossover

and mutation rates in producing the remaining children. We

performed 100 tests for each of the selection algorithms, and

the same 100 random number generator seeds were used for

all selection algorithms; thus, the difference in performance is

entirely an effect of the different selection algorithms and not

an artifact of different initial populations.

Figure 2 shows the final fitness performance for both NIDA

and DANNA on Pong and pole balancing. We can note that

for Pong, the top three selection algorithms for both NIDA and

DANNA are roulette, truncation and then tournament, though

the parameter for truncation differs for NIDA and DANNA.

Truncation with p = 0.75 performed well for both applications

for DANNA, but p = 0.75 for truncation had very poor

performance for NIDA in both cases. For pole balancing, the

different selection algorithms performed very differently for

NIDA and DANNA. In all, it appears that the proper selection

algorithm for any given application and model depends on

both the chosen model and the application. There is not a one-

size-fits-all approach that is guaranteed to perform well for



(a) Pong using NIDA (b) Pong using DANNA

(c) Pole balancing using NIDA (d) Pole balancing using DANNA

Fig. 2. Box plots showing final fitness value on Pong and pole balancing for NIDA and DANNA for different selection algorithms and parameters. The box
plots are sorted, with the highest mean fitness value selection algorithm at the top and the lowest at the bottom. The mean fitness value is plotted as the solid
blue circle.

all possible SRNNs and all possible applications. As such, if

utilizing a standard selection approach, it is likely worthwhile

to test a variety of selection approaches or implement an

adaptive selection strategy.

It is also worth noting from Figure 2 that it is typically

more difficult to build a DANNA network than it is to build

a NIDA network for a given task. This is unsurprising, as

there are fewer constraints on NIDA networks than there

are on DANNA. It is also worth noting that Pong is harder

for DANNA than pole balancing is, and in fact, out of all

1400 tests (across the 14 different selection approaches), none

achieved maximum performance.

C. Population Diversity

To understand the effect of population diversity on per-

formance, we must create a diversity metric. We consider

the fitness “profile” of each network in the population to

be an array containing its overall fitness value f and its

various sub-goal fitness values fi. One way to measure the

diversity of a given population is to consider how many unique

fitness profiles there are. Though two networks may not be

identical in structure, if they have the same fitness profile

then they are likely functionally similar if not functionally

identical. To measure how well particular selection algorithms

maintain diversity over time, we track the number of unique

fitness profiles for each generation and then average those

values over the entire evolution. Table I shows the relationship

between the fitness values and diversity metric for the different

combinations of SRNNs and applications, as well as Pearson’s

correlation coefficient (PCC) between the fitness value and the

diversity metric for each of the test cases. In all cases except

for NIDA on pole balancing, higher diversity correlated to

higher fitness performance (positive correlations between the

two). NIDA on pole balancing, however, had a significantly

higher diversity than all of the other combinations and a

negative correlation, indicating that too much diversity can

also hurt performance. This is consistent with the idea of

balancing exploration and exploitation that is present in many

optimization algorithms, including evolutionary optimization.

In general, however, if population fitness performance is

stagnating, promoting diversity is more likely than not to help

performance. Thus, selection algorithms that have some notion

of how diverse the population is may be able to exploit that

information to improve performance, which we explore in the

next section.



TABLE I
RELATIONSHIP BETWEEN FITNESS AND DIVERSITY

Pole Balancing Pong

Mean Fitness Mean Diversity PCC Mean Fitness Mean Diversity PCC

NIDA 0.329 53.77 -0.271 0.486 25.23 0.452

DANNA 0.122 29.83 0.293 0.261 18.03 0.301

D. Exploiting Diversity Information in Selection

Since the fitness profile information is collected over the

course of training and an increase in diversity tends to lead to

an increase in fitness with the baseline selection algorithms,

taking into account the fitness profile during selection may

improve performance. As such, we experimented with altering

the selection algorithm to use fitness profile information as part

of making a selection decision, which we call diversity-aware

selection. Rather than looking at unique fitness profiles for

each network in the population, we instead assigned a category

number to each of the networks based on its fitness profile.

In particular, if the application has G sub-goals for its fitness,

there are a corresponding G+ 1 categories that each network

may belong to. We assign a network category as follows:

category(neti) = argmaxi=1,...,Gfi (5)

If there are multiple fi values that achieve the maximum

value, then the category is set to 0. As such, the category

values are assigned such that the category number corresponds

to the sub-goal for which it has the best performance, and the

category is assigned to 0 if there is more than one sub-goal

that has the “best” performance. We utilized these categories

in our selection procedure in the following ways:

• We forced the set of best networks to include the network

for each of the G categories that had the best fi score

for that category.

• Over the course of selection, we repeatedly iterated over

the i ∈ {0, 1, ..., G + 1} categories, and for any given

selection of two parents, we required the first parent to

come from category i for that selection round and the

second parent to come from a non-i category. The selec-

tion procedure followed the specified selection algorithm

(i.e., roulette, tournament, etc.), but it was repeated until

parents from the appropriate categories were chosen (or

until a fixed number of selections were attempted).

Because there is not one clear selection algorithm that

performs best, we compare the best result for each seed value

across all selection algorithms. Figure 3 shows how many of

the 100 tests for each application and SRNN model combina-

tion performed better, worse, or the same as the basic selection

algorithm (the results shown in Figure 2) and Figure 4 shows

more detail about the differences in performance between

the original selection implementation and the diversity-aware

selection implementation. These figures show that, on average,

the diversity-aware selection approach produces better results

for all of the different application and SRNN combinations,

though the improvement is more significant for DANNA than

NIDA.

Fig. 3. Bar chart showing the number of instances where the best performance
of the diversity-aware selection is better, worse, or the same as the normal
selection approach. The comparison was made between the best final fitness
value across all of the 14 selection algorithms for each both normal and
diversity-aware selection for each of the 100 tests cases.

Fig. 4. Box plot showing the difference in the final fitness value between the
diversity-aware selection and normal selection across the 100 tests cases. The
best final fitness value was found across all 14 selection approaches for each
of the 100 tests cases. The mean difference is plotted as a solid blue circle.

VI. CONCLUSION

Evolutionary approaches for training spiking recurrent neu-

ral networks (SRNNs) have many advantages, but are not

widely used because they may not converge in a timely

manner. In this work, we explore how selection algorithms

perform when training different SRNN models for different

applications, and we extend the selection algorithm approach

to improve the training performance. In particular, we compare

the performance of different selection algorithms both in

terms of best achieved fitness in training. We found that

there is not one clear selection algorithm to use, as different



selection algorithms produce the best behavior for different

SRNN models and applications. We also demonstrated the link

between diversity in the population and training performance

across all of the selection algorithms; namely, higher diversity

tends to lead to better performance, but too much diversity in

the population can also lead to poorer performance. Based on

these results, we augmented the selection approach to utilize

a richer fitness definition, in particular, a fitness profile rather

than a single fitness value. We demonstrate that utilization of

this additional information in the selection procedure leads

to increases in performance of the evolutionary optimization

approach when training over the same number of generations

or epochs.

There is much future work to explore with respect to se-

lection algorithm improvements for SRNNs and neuromorphic

networks. We plan to explore adaptive selection approaches so

that the evolutionary optimization can switch between different

selection approaches if training performance begins to plateau.

We also intend to explore additional diversity-aware fitness

approaches, for example, by developing additional measures

of diversity. Overall, we are encouraged by the preliminary

results presented in this work, and we believe that continuing

to exploit this information will help in producing evolutionary

optimization approaches for training SRNNS effectively and

in a timely manner in the future.

ACKNOWLEDGMENT

Research sponsored by the Laboratory Directed Research

and Development Program of Oak Ridge National Laboratory,

managed by UT-Battelle, LLC, for the U. S. Department

of Energy. This research used resources of the Oak Ridge

Leadership Computing Facility, which is a DOE Office of

Science User Facility supported under Contract DE-AC05-

00OR22725. This research was supported in part by an

Air Force Research Laboratory Information Directorate grant

(FA8750-16-1-0065).

REFERENCES

[1] W. Maass, “Networks of spiking neurons: the third generation of neural
network models,” Neural networks, vol. 10, no. 9, pp. 1659–1671, 1997.

[2] J. Cabessa and H. T. Siegelmann, “The super-turing computational power
of plastic recurrent neural networks,” International journal of neural

systems, vol. 24, no. 08, p. 1450029, 2014.

[3] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean,
G. S. Rose, and J. S. Plank, “A survey of neuromorphic computing and
neural networks in hardware,” arXiv preprint arXiv:1705.06963, 2017.

[4] S. M. Bohte, J. N. Kok, and H. La Poutre, “Error-backpropagation
in temporally encoded networks of spiking neurons,” Neurocomputing,
vol. 48, no. 1, pp. 17–37, 2002.

[5] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S. Modha,
“Backpropagation for energy-efficient neuromorphic computing,” in
Advances in Neural Information Processing Systems, 2015, pp. 1117–
1125.

[6] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition
using spike-timing-dependent plasticity,” Frontiers in computational

neuroscience, vol. 9, 2015.

[7] G. Srinivasan, S. Roy, V. Raghunathan, and K. Roy, “Spike timing
dependent plasticity based enhanced self-learning for efficient pattern
recognition in spiking neural networks,” in Neural Networks (IJCNN),

2017 International Joint Conference on. IEEE, 2017, pp. 1847–1854.

[8] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary computation, vol. 10, no. 2, pp.
99–127, 2002.

[9] D. Floreano, P. Dürr, and C. Mattiussi, “Neuroevolution: from architec-
tures to learning,” Evolutionary Intelligence, vol. 1, no. 1, pp. 47–62,
2008.

[10] X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE,
vol. 87, no. 9, pp. 1423–1447, 1999.

[11] F. Gomez, J. Schmidhuber, and R. Miikkulainen, “Accelerated neural
evolution through cooperatively coevolved synapses,” The Journal of

Machine Learning Research, vol. 9, pp. 937–965, 2008.

[12] D. Yeung, J.-C. Li, W. Ng, and P. Chan, “Mlpnn training via a
multiobjective optimization of training error and stochastic sensitivity,”
Neural Networks and Learning Systems, IEEE Transactions on, vol. PP,
no. 99, pp. 1–1, 2015.

[13] N. T. Siebel and G. Sommer, “Evolutionary reinforcement learning of
artificial neural networks,” International Journal of Hybrid Intelligent

Systems, vol. 4, no. 3, p. 171, 2007.

[14] P. P. Palmes, T. Hayasaka, and S. Usui, “Mutation-based genetic neural
network,” Neural Networks, IEEE Transactions on, vol. 16, no. 3, pp.
587–600, 2005.

[15] S. R. Young, D. C. Rose, T. P. Karnowski, S.-H. Lim, and R. M. Patton,
“Optimizing deep learning hyper-parameters through an evolutionary
algorithm,” in Proceedings of the Workshop on Machine Learning in

High-Performance Computing Environments. ACM, 2015, p. 4.

[16] H. Burgsteiner, M. Kröll, A. Leopold, and G. Steinbauer, “Movement
prediction from real-world images using a liquid state machine,” Applied

Intelligence, vol. 26, no. 2, pp. 99–109, 2007.

[17] Y. Zhang, P. Li, Y. Jin, and Y. Choe, “A digital liquid state machine with
biologically inspired learning and its application to speech recognition,”
IEEE transactions on neural networks and learning systems, vol. 26,
no. 11, pp. 2635–2649, 2015.

[18] Y. Jin, R. Wen, and B. Sendhoff, “Evolutionary multi-objective optimiza-
tion of spiking neural networks,” in Artificial Neural Networks–ICANN

2007. Springer, 2007, pp. 370–379.

[19] R. Batllori, C. B. Laramee, W. Land, and J. D. Schaffer, “Evolving
spiking neural networks for robot control,” Procedia Computer Science,
vol. 6, pp. 329–334, 2011.

[20] N. Kasabov, V. Feigin, Z.-G. Hou, Y. Chen, L. Liang, R. Krishnamurthi,
M. Othman, and P. Parmar, “Evolving spiking neural networks for
personalised modelling, classification and prediction of spatio-temporal
patterns with a case study on stroke,” Neurocomputing, vol. 134, pp.
269–279, 2014.

[21] C. D. Schuman, J. S. Plank, A. Disney, and J. Reynolds, “An evolu-
tionary optimization framework for neural networks and neuromorphic
architectures,” in International Joint Conference on Neural Networks,
Vancouver, July 2016.

[22] J. Schemmel, K. Meier, and F. Schürmann, “A vlsi implementation of
an analog neural network suited for genetic algorithms,” in International

Conference on Evolvable Systems. Springer, 2001, pp. 50–61.

[23] K. D. Carlson, N. Dutt, J. M. Nageswaran, and J. L. Krichmar, “Design
space exploration and parameter tuning for neuromorphic applications,”
in Proceedings of the Ninth IEEE/ACM/IFIP International Conference

on Hardware/Software Codesign and System Synthesis. IEEE Press,
2013, p. 20.

[24] G. Howard, E. Gale, L. Bull, B. de Lacy Costello, and A. Adamatzky,
“Towards evolving spiking networks with memristive synapses,” in
Artificial Life (ALIFE), 2011 IEEE Symposium on. IEEE, 2011, pp.
14–21.

[25] D. E. Goldberg and K. Deb, “A comparative analysis of selection
schemes used in genetic algorithms,” in Foundations of genetic algo-

rithms. Elsevier, 1991, vol. 1, pp. 69–93.

[26] R. Sivaraj and T. Ravichandran, “A review of selection methods in
genetic algorithm,” International journal of engineering science and

technology, vol. 3, no. 5, pp. 3792–3797, 2011.

[27] C. D. Schuman, “Neuroscience-inspired dynamic architectures,” Ph.D.
dissertation, University of Tennessee, May 2015.

[28] M. E. Dean, C. D. Schuman, and J. D. Birdwell, “Dynamic adaptive
neural network array,” in 13th International Conference on Unconven-

tional Computation and Natural Computation (UCNC). London, ON:
Springer, July 2014, pp. 129–141.

[29] C. D. Schuman, J. D. Birdwell, and M. E. Dean, “Spatiotemporal clas-
sification using neuroscience-inspired dynamic architectures,” Procedia

Computer Science, vol. 41, pp. 89–97, 2014.



[30] J. P. Mitchell, G. Bruer, M. E. Dean, J. S. Plank, G. S. Rose, and
C. D. Schuman, “NeoN: Neuromorphic control for autonomous robotic
navigation,” in IEEE 5th International Symposium on Robotics and

Intelligent Sensors, Ottawa, Canada, October 2017, pp. 136–142.
[31] J. S. Plank, G. S. Rose, M. E. Dean, C. D. Schuman, and N. C. Cady,

“A unified hardware/software co-design framework for neuromorphic
computing devices and applications,” in IEEE International Conference

on Rebooting Computing (ICRC 2017), Washington, DC, November
2017.

[32] C. D. Schuman, A. Disney, S. P. Singh, G. Bruer, J. P. Mitchell,
A. Klibisz, and J. S. Plank, “Parallel evolutionary optimization for neuro-
morphic network training,” in Machine Learning in HPC Environments,

Supercomputing 2016, Salt Lake City, November 2016.




