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Abstract—Evolutionary optimization or genetic algorithms
have been used to optimize a variety of neural network types,
including spiking recurrent neural networks, and are attractive
for many reasons. However, a key impediment to their widespread
use is the potential for slow training times and failure to converge
to a good fitness value in a reasonable amount of time. In this
work, we evaluate the effect of different selection algorithms
on the performance of an evolutionary optimization method for
designing spiking recurrent neural networks, including those
that are meant to be deployed in a neuromorphic system. We
propose a selection approach that utilizes a richer understanding
of the fitness of an individual network to inform the selection
process and to promote diversity in the population. We show
that including this feature can provide a significant increase in
performance over utilizing a standard selection approach.

I. INTRODUCTION

Spiking recurrent neural networks (SRNNs) are known to
be a theoretically powerful computational tool [1], [2]. More-
over, they are an increasingly popular computational model
implemented in neuromorphic hardware [3]. Perhaps the most
intriguing question associated with these types of neural
networks is how to design and train them effectively to solve
real problems. A variety of approaches have been proposed for
determining the weights of spiking neural networks, including
back-propagation [4], [5] and spike-timing dependent plastic-
ity or other biologically-inspired plasticity mechanisms [6],
[7], but those approaches do not give guidance on determining
various aspects of the network (e.g., network topology or
delays), nor are they necessarily customized for neuromorphic
hardware.

One approach for training neural networks is evolutionary
optimization or evolutionary algorithms, an approach that is
sometimes called neuroevolution [8], [9]. There are a variety
of attractive reasons for using evolutionary approaches for
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training spiking recurrent neural networks: there are no restric-
tions on the topology of the networks or functionality of the
network, they are applicable to a wide variety of applications,
they can operate within the characteristics and constraints of
neuromorphic systems, and they can define all aspects of the
network, including network topology and parameters such as
synaptic weights and delays. Evolutionary optimization and
genetic algorithms have not been widely applied to spiking
neural network in the past because of a few key issues.
First and most importantly, they can be slow to converge for
some applications and may get stuck in local minima, further
delaying convergence, and second, it can be difficult to define
how the evolutionary optimization or genetic algorithm will
operate on the particular spiking neural network structure.

In this work, we seek to address the first issue and improve
the performance of an evolutionary optimization method as
applied to SRNNs for neuromorphic systems by examining
the role of selection algorithms and population diversity in
training performance, with the goal of finding the selection
approach or approaches that are most likely to help with
training convergence. We restrict our view to the selection
aspect of EO because any improvements or alterations that
occur in defining how selection operates are applicable to
any application and any neuromorphic model. Furthermore,
any insight gained in how selection should be implemented
can be extended to other neuroevolution methods as well.
In the following sections, we discuss previous work done on
evolutionary optimization for SRNNs and note both the key
advantages and disadvantages of utilizing them for SRNNs
and neuromorphic networks. In Section III, we briefly describe
the two SRNN models used in this work, noting the key
differences in the two models that can result in significant
differences in training performance. In Section IV, we discuss
our overall evolutionary optimization approach for training
SRNNs and note the role of selection and diversity in that
process. We present the results for both SRNN models on
two different applications in Section V, specifically noting the
difference in performance for different selection algorithms
and how diversity in the population and final performance are
correlated. We also present an approach for utilizing a richer
definition of fitness to improve the selection procedure. We
conclude with discussion of the results and of potential future



directions for this work.

II. BACKGROUND AND RELATED WORK

Evolutionary optimization (EO) and/or genetic algorithm
(GA) approaches for training neural networks have been used
for the last three decades and are sometimes referred to as
neuroevolution [10], [9]. EO and GAs have been used simply
for weight training of fixed structures networks [11], for
determining network topology and weights [12], [8], [13], or
for topology or hyperparameters while traditional algorithms
such as back-propagation are used for weight training [14],
[15].

Spiking neural networks in general, and spiking recurrent
neural networks (SRNNs) in particular, present an intriguing
issue for training, as they add an additional dimension beyond
topology and parameters to optimize in the form of the time
dimension. There are a variety of proposed ways to train
SRNNs, including back-propagation, spike timing dependent
plasticity, and liquid state machines, but none of these methods
define a satisfactory approach for determining all aspects of an
SRNN. Back-propagation based methods will require certain
restrictions on the topology for the network structure, but
it is not clear how many layers, layer types (if utilizing
convolutional neural network-based structures), number of
neurons per layer, and connectivity between layers should be
used for a given task. Certain topologies have been useful
for utilizing STDP, but for general applications, it is not
clear how to determine the topology. Reservoir computing or
liquid state machines overcome this approach by providing
certain rules for the structure of the reservoir and leaving the
weights of the reservoir untrained [16], [17]. However, there
are restricted use cases for reservoir computing and the size
of the reservoir required can be quite large, which may not be
suitable for some neuromorphic implementations. In addition
to those methods, EO and GAs have been applied to SRNNs
successfully in the past in a variety of works [18], [19], [20],
[21]. EO and GAs have also been used to construct spiking
neural networks and SRNNs for neuromorphic systems [21],
[22], [23], [24].

There are a variety of reasons for using EO and GAs for
designing SRNNs. EO and GAs provide the flexibility to
optimize all aspects of SRNNs, which is a great advantage
for these relatively complex models. They can optimize and
customize the topology, parameters, and hyper-parameters of
the network for both the particular application and for a par-
ticular neuromorphic architecture. For neuromorphic systems
in particular, in addition to optimizing topology, parameters,
and hyper-parameters of the SRNNs, the training method must
work within the constraints of the neuromorphic device, which
typically include restrictions on all aspects of the network. Yao
notes several key properties of EO and GAs that make them
useful for training neural networks, including: they do not rely
on gradient information (which may be difficult or impossible
to calculate), they can be applied to any neural network
architecture or model, they are much less sensitive to initial
conditions (though there is still sensitivity to the initialization),

and they always search for global optima, though they may
also get stuck in local optima [10]. EO and GAs are very
flexible with respect to the applications to which they can
be applied, because they rely on a fitness score rather than
an error calculation. As such, they can be applied to design
networks for control applications, where error information may
not be readily available.

Though there are many advantages to utilizing EO and GAs
for SRNN training, there are several issues that may prevent
researchers from utilizing them. The first is that a representa-
tion of the network in the population must be defined, which
is a non-trivial issue for spiking neural networks. We utilize
a direct representation, which means that every aspect of the
network is defined in the representation. As discussed further
below, this means that there are typically a tremendously
large of potential solution networks that are representable in
the population. Moreover, the solution space itself is very
complex, as tweaking of single elements in the representation
can result in changes in topology or parameters that will
radically affect the performance of the network. We have also
observed the tendency for our EO approach to become stuck in
a local minima because the population becomes dominated by
one particular style of solution network, which is exacerbated
by the competing conventions problem, in which many differ-
ent networks are functionally but not structurally equivalent.
Thus, though our network representations are distinct, they
produce the same or very similar behavior, often resulting in
a relatively homogeneous population. One way to mitigate
this issue is to adjust the selection algorithms utilized for
determining which networks in the population to select to
produce offspring. Though selection algorithms themselves
have been studied extensively with respect to EO and GAs as
a whole [25], [26], it is not clear which selection algorithms
will actually perform best in producing the complex network
solutions required for evolving SRNNSs, nor is it clear what the
relationship is between population diversity and performance
for this particular type use case of EO.

III. SPIKING RECURRENT NEURAL NETWORKS

In this work, we examine selection approaches for evo-
lutionary algorithms as applied to spiking recurrent neural
networks. In particular, we examine the effect of selection and
diversity on the performance of evolution-based training for
spiking recurrent neural networks. Throughout, we utilize two
spiking recurrent neural network frameworks: neuroscience-
inspired dynamic architecture (NIDA) networks [27] and
dynamic adaptive neural network array (DANNA) networks
[28]. Both NIDA and DANNA are bounded spiking neural
networks (there are a maximum number of neurons for each)
that utilize integrate-and-fire neurons and synapses with delays
and plasticity mechanisms. The key differences between NIDA
and DANNA are that NIDA is a software-based spiking archi-
tecture and has fairly unlimited connectivity between neurons,
while DANNA is a hardware-based spiking architecture that
has relatively strict limits on network topology. As such, these
two architecture types give a nice spectrum of how selection



algorithms operate in both more restricted (DANNA) and more
unrestricted (NIDA) environments.

IV. EVOLUTIONARY OPTIMIZATION FOR NEUROMORPHIC
SYSTEMS (EONS)

Our evolutionary approach for designing spiking recur-
rent neural networks for neuromorphic implementation is
called Evolutionary Optimization for Neuromorphic Systems
(EONS). For any given instance of EONS, the goal is to
produce a spiking recurrent neural network (SRNN) to be
deployed on a particular neuromorphic implementation that
performs well on a particular application. In particular, the
goal is to design all aspects of the SRNN, including the
topology (number of neurons and synapses and connectivity
between them) and parameters of the network and its elements
(weights of the synapses, threshold of the neurons, etc.) To
achieve this, the first step of EONS is to initialize a population
of networks. This is followed by evaluation, selection, and
reproduction operations that operate on the population to
produce a new population, which will replace the old one
(Figure 1). The evaluation procedure of EONS is dependent
upon the application for which a network is being optimized.
There are many such applications, including those in control,
classification and anomaly detection, and the way evaluation
is done can vary significantly from application to application.
Though there is innovation to be done in the evaluation, this
innovation is likely limited to a relatively small subset of appli-
cations. The reproduction procedure depends on the particular
neuromorphic model on which the network will be deployed;
once again, any innovation to be made here will likely be
relatively specific to the particular neuromorphic model or
device. In previous works we have discussed a variety of
applications and their associated evaluation procedures [29],
[30], [31], as well as particular models and their associated
reproduction operations [21]. In this work, we focus on the
selection portion of the EONS method, which is generic to
both the application and the neuromorphic model. Selection
algorithms are used in genetic and evolutionary algorithms to
produce a “survival of the fittest” effect. There are a variety
of selection algorithms to choose from, some of which have
one or more parameters. Though there has been work done
to analyze the performance of different selection algorithms
(as noted in Section II), it is not clear which ones will
be most appropriate for EONS, because EONS is a non-
traditional evolutionary approach, as described below. Since
the selection procedure is application and model-agnostic,
innovation in the selection algorithm has the potential to
improve performance for a variety of applications, as well as a
variety of neuromorphic models. Moreover, because we have
implemented a software stack that allows for separate models
and applications to be easily compiled with our full software
stack [31], these improvements are immediately applicable to
different models and applications.

EONS optimizes over a non-traditional genomic represen-
tation for members of the population. EONS utilizes a direct
representation of the network, meaning that every parameter
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Fig. 1. Overall view of the operation of EONS. This work focuses on the
selection portion of the EONS workflow.

and aspect of the network is explicitly accounted for in the
genome representation. For example, for one of the neuro-
morphic models explored in this work (NIDA), the network
representation is that of a graph, where the nodes are the
neurons and the edges are the synapses. EONS determines
how many nodes and edges are required in the graph, as well
as their associated parameters. Since we are concerned with
neuromorphic hardware implementations, all of our neuromor-
phic models have physical limits on the maximum number
of neurons and synapses that are allowed. In addition, every
parameter has a fixed number of values that can be attained.
However, there is still a tremendously large solution space
over which EONS is searching to find a particular network.
For example, for another neuromorphic model explored in this
work (DANNA), each DANNA device has a fixed number of
elements, where each element is set as unused, a neuron, or a
synapse. As such for a DANNA with 100 elements, there are
on the order of 3190 different topologies that can be attained
(though some of those are not legal topologies). This number
does not take into account the parameters that are associated
with each element, each of which can take on a variety of
values (up to 256 different values for some parameters). With
this level of complexity, as well as the large number of local
minima that we expect in the fitness landscape, it is not clear
which selection algorithm will perform best in maintaining
enough diversity in the population or which one will be most
useful in mitigating getting stuck in local optima.

V. RESULTS
A. Applications

In this work, we focus our attention on two applications:
the canonical pole balancing task that we have previously
described in [27] and playing the Atari game Pong. For
pole balancing, the SRNN is given information about the
current state of the cart and pole: the cart’s position and
velocity and the pole’s position and velocity. The output of
the SRNN is calculated every 0.02 seconds, and gives a
decision as to whether the cart should move to the left or
to the right. As in many control applications, we evaluate



the SRNN’s ability on the task in several different test cases,
which usually corresponds to different starting conditions. In
the case of pole balancing, we evaluate six different starting
conditions (different initial positions of the cart and the pole).
We measure fitness by how many time steps the SRNN is able
to successfully keep the pole from falling and the cart from
hitting the two endpoints of the track. We cap the maximum
number of time steps for each test case at 15,000. The fitness
for each test case is calculated as follows:

f= number of hits for test case % 0
L 15000
The overall fitness for the SRNN for the pole balancing task

is then:

Z?:l f 7
f= 6 2)
For Pong, the SRNN is given information about the current
state of the game: position and velocity of the player’s paddle,
horizontal and vertical distance to the ball, horizontal and
vertical velocity of the ball, and the position and velocity of the
opponent’s paddle. The output of the SRNN is calculated every
0.02 seconds, and gives a decision as to whether the player’s
paddle should be moved up or down or to stay in the same
position. Similar to the pole balancing task, we evaluate the
SRNN’s ability on the task in multiple test cases. In the case of
Pong, these different starting conditions are different starting
angles of the ball. Unlike several other control applications that
we have evaluated, including the pole balancing task, Flappy
Bird [32], and robotic navigation [30], we have found that
when training SRNNs for Pong, EONS is very likely to get
stuck in a local optima. In particular, we observed that EONS
was likely to optimize to do very well on one or two of the test
cases we have selected, and perform relatively poorly on the
other examples, indicating that the test cases actually require
very different performance from the neuromorphic system
and indicating that the problem is non-trivial for SRNNs
(especially those that are restricted) to solve. As such, Pong
served as an excellent test case for observing the effect of
selection and diversity on overall performance of EONS. In the
Pong application, we use four test cases. We measure fitness by
how many times the player (the SRNN) is able to successfully
hit the ball back to the “ideal” player, which calculates where
the ball is going and moves its paddle to that spot accordingly.
For each of the test cases, we cap the maximum number of hits

at 55. The fitness for each test case is calculated as follows:
£ = number of h1t;5f0r test case ¢ 3)

Then the overall fitness for the SRNN is then:

4
f= —Zij d )

For both applications, in addition to the fitness value of
f for each network, we also return to EONS the various f;
values. Initially, we however, we only utilize f as part of the
training mechanism, though we track full fitness information.

B. Selection Algorithm Performance

The first major question associated with selection and diver-
sity for EONS is how different selection algorithms perform,
both in terms of overall performance and in terms of diversity
in the population. We examined four different types of selec-
tion algorithms: tournament, roulette, truncation, and random.
Tournament selection has two parameters: n, the tournament
size, and p, the likelihood that the best performing network in
the population is chosen. In tournament selection, 0 < n < N
networks are randomly chosen from the population, where
N is the population size. The best performing network in
the tournament is chosen with probability p, the second best
network is chosen with probability p(1 — p), the third best
network is chosen with probability p(1 — p)?, and so on.
Roulette (or fitness proportionate) selection chooses networks
to serve as parents based on their fitness functions; in partic-
ular, the higher the fitness value of a network with respect to
other networks in the population, the more likely that network
is to be chosen. Truncation selection has one parameter, a
population fraction p, where 0 < p < 1. In truncation
selection, the top p * N networks are chosen, and then a
network from those p * N networks is randomly chosen to
serve as a parent. For random selection, a network is randomly
selected from the population to serve as a parent. Random
selection is included to provide a baseline of performance.

In all tests, we used a population size (N) of 100. In
generating a child population from the previous generation’s
population, we include 10 random networks and the top
10 best networks from the previous population. We set the
crossover and mutation rates to 0.9 each. Each run of EONS
was allowed to train for 200 epochs or until a fitness value
of 1 was reached. We include 10 random networks in each
generation to help with diversity, but we also include the
top 10 best networks to guarantee a non-decreasing fitness
over the course of evolution. The inclusion of the top 10 best
networks also allows us to maintain relatively high crossover
and mutation rates in producing the remaining children. We
performed 100 tests for each of the selection algorithms, and
the same 100 random number generator seeds were used for
all selection algorithms; thus, the difference in performance is
entirely an effect of the different selection algorithms and not
an artifact of different initial populations.

Figure 2 shows the final fitness performance for both NIDA
and DANNA on Pong and pole balancing. We can note that
for Pong, the top three selection algorithms for both NIDA and
DANNA are roulette, truncation and then tournament, though
the parameter for truncation differs for NIDA and DANNA.
Truncation with p = 0.75 performed well for both applications
for DANNA, but p = 0.75 for truncation had very poor
performance for NIDA in both cases. For pole balancing, the
different selection algorithms performed very differently for
NIDA and DANNA. In all, it appears that the proper selection
algorithm for any given application and model depends on
both the chosen model and the application. There is not a one-
size-fits-all approach that is guaranteed to perform well for
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Fig. 2. Box plots showing final fitness value on Pong and pole balancing for NIDA and DANNA for different selection algorithms and parameters. The box
plots are sorted, with the highest mean fitness value selection algorithm at the top and the lowest at the bottom. The mean fitness value is plotted as the solid

blue circle.

all possible SRNNs and all possible applications. As such, if
utilizing a standard selection approach, it is likely worthwhile
to test a variety of selection approaches or implement an
adaptive selection strategy.

It is also worth noting from Figure 2 that it is typically
more difficult to build a DANNA network than it is to build
a NIDA network for a given task. This is unsurprising, as
there are fewer constraints on NIDA networks than there
are on DANNA. It is also worth noting that Pong is harder
for DANNA than pole balancing is, and in fact, out of all
1400 tests (across the 14 different selection approaches), none
achieved maximum performance.

C. Population Diversity

To understand the effect of population diversity on per-
formance, we must create a diversity metric. We consider
the fitness “profile” of each network in the population to
be an array containing its overall fitness value f and its
various sub-goal fitness values f;. One way to measure the
diversity of a given population is to consider how many unique
fitness profiles there are. Though two networks may not be
identical in structure, if they have the same fitness profile
then they are likely functionally similar if not functionally
identical. To measure how well particular selection algorithms

maintain diversity over time, we track the number of unique
fitness profiles for each generation and then average those
values over the entire evolution. Table I shows the relationship
between the fitness values and diversity metric for the different
combinations of SRNNs and applications, as well as Pearson’s
correlation coefficient (PCC) between the fitness value and the
diversity metric for each of the test cases. In all cases except
for NIDA on pole balancing, higher diversity correlated to
higher fitness performance (positive correlations between the
two). NIDA on pole balancing, however, had a significantly
higher diversity than all of the other combinations and a
negative correlation, indicating that too much diversity can
also hurt performance. This is consistent with the idea of
balancing exploration and exploitation that is present in many
optimization algorithms, including evolutionary optimization.
In general, however, if population fitness performance is
stagnating, promoting diversity is more likely than not to help
performance. Thus, selection algorithms that have some notion
of how diverse the population is may be able to exploit that
information to improve performance, which we explore in the
next section.



TABLE I
RELATIONSHIP BETWEEN FITNESS AND DIVERSITY

Pole Balancing Pong
Mean Fitness | Mean Diversity | PCC | Mean Fitness | Mean Diversity | PCC
NIDA 0.329 53.77 -0.271 0.486 25.23 0.452
DANNA 0.122 29.83 0.293 0.261 18.03 0.301

D. Exploiting Diversity Information in Selection

Since the fitness profile information is collected over the
course of training and an increase in diversity tends to lead to
an increase in fitness with the baseline selection algorithms,
taking into account the fitness profile during selection may
improve performance. As such, we experimented with altering
the selection algorithm to use fitness profile information as part
of making a selection decision, which we call diversity-aware
selection. Rather than looking at unique fitness profiles for
each network in the population, we instead assigned a category
number to each of the networks based on its fitness profile.
In particular, if the application has G sub-goals for its fitness,
there are a corresponding G + 1 categories that each network
may belong to. We assign a network category as follows:

category(net;) = argmax;_, _ fi (5)

If there are multiple f; values that achieve the maximum
value, then the category is set to 0. As such, the category
values are assigned such that the category number corresponds
to the sub-goal for which it has the best performance, and the
category is assigned to O if there is more than one sub-goal
that has the “best” performance. We utilized these categories
in our selection procedure in the following ways:

o We forced the set of best networks to include the network
for each of the G categories that had the best f; score
for that category.

o Opver the course of selection, we repeatedly iterated over
the ¢ € {0,1,...,G + 1} categories, and for any given
selection of two parents, we required the first parent to
come from category ¢ for that selection round and the
second parent to come from a non-¢ category. The selec-
tion procedure followed the specified selection algorithm
(i.e., roulette, tournament, etc.), but it was repeated until
parents from the appropriate categories were chosen (or
until a fixed number of selections were attempted).

Because there is not one clear selection algorithm that
performs best, we compare the best result for each seed value
across all selection algorithms. Figure 3 shows how many of
the 100 tests for each application and SRNN model combina-
tion performed better, worse, or the same as the basic selection
algorithm (the results shown in Figure 2) and Figure 4 shows
more detail about the differences in performance between
the original selection implementation and the diversity-aware
selection implementation. These figures show that, on average,
the diversity-aware selection approach produces better results
for all of the different application and SRNN combinations,
though the improvement is more significant for DANNA than
NIDA.

Comparison of Diversity-Aware Selection
with Regular Selection

NIDA Pole Balancing

L
DANNA Pole Balancing
NIDA PoNng
DANNA Pong
0 20 40 60 80 100
Same Better M Worse

Fig. 3. Bar chart showing the number of instances where the best performance
of the diversity-aware selection is better, worse, or the same as the normal
selection approach. The comparison was made between the best final fitness
value across all of the 14 selection algorithms for each both normal and
diversity-aware selection for each of the 100 tests cases.

Difference between Diversity-Aware Selection
and Normal Selection
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Fig. 4. Box plot showing the difference in the final fitness value between the
diversity-aware selection and normal selection across the 100 tests cases. The
best final fitness value was found across all 14 selection approaches for each
of the 100 tests cases. The mean difference is plotted as a solid blue circle.

VI. CONCLUSION

Evolutionary approaches for training spiking recurrent neu-
ral networks (SRNNs) have many advantages, but are not
widely used because they may not converge in a timely
manner. In this work, we explore how selection algorithms
perform when training different SRNN models for different
applications, and we extend the selection algorithm approach
to improve the training performance. In particular, we compare
the performance of different selection algorithms both in
terms of best achieved fitness in training. We found that
there is not one clear selection algorithm to use, as different



selection algorithms produce the best behavior for different
SRNN models and applications. We also demonstrated the link
between diversity in the population and training performance
across all of the selection algorithms; namely, higher diversity
tends to lead to better performance, but too much diversity in
the population can also lead to poorer performance. Based on
these results, we augmented the selection approach to utilize
a richer fitness definition, in particular, a fitness profile rather
than a single fitness value. We demonstrate that utilization of
this additional information in the selection procedure leads
to increases in performance of the evolutionary optimization
approach when training over the same number of generations
or epochs.

There is much future work to explore with respect to se-
lection algorithm improvements for SRNNs and neuromorphic
networks. We plan to explore adaptive selection approaches so
that the evolutionary optimization can switch between different
selection approaches if training performance begins to plateau.
We also intend to explore additional diversity-aware fitness
approaches, for example, by developing additional measures
of diversity. Overall, we are encouraged by the preliminary
results presented in this work, and we believe that continuing
to exploit this information will help in producing evolutionary
optimization approaches for training SRNNS effectively and
in a timely manner in the future.
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