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Abstract—Neuromorphic computing is one promising post-
Moore’s law era technology. In order to develop and use neu-
romorphic systems, traditional von Neumann-based computers
must be able to communicate with neuromorphic hardware to
support functionality such as monitoring the state of the network,
optimizing the array to better perform the task, and input/output
data processing. In this paper, we describe our use of a separate
neuromorphic array communications controller to support high-
throughput, low-latency communication between a traditional
computer and our implementations of neuromorphic systems.
The goal of the communications controller is to provide enough
performance to facilitate the desired interaction between the
systems and to enable scaling of the neuromorphic systems to
larger sizes.

I. INTRODUCTION

As the limits of conventional computation are reached,

new architectures that break away from the traditional von

Neumann architecture will need to be researched, developed,

and deployed. One promising class of post-von Neumann

architectures are the brain-inspired, neuromorphic architectures.

Spiking neural networks, one type of neuromorphic architecture,

are event-based networks with an inherent notion of time [1].

The neurons in this network create a fire event when their

charge exceeds a threshold. This fire event results in a spike

with a weight value. The connected neurons receive the spike

and increase their charge by the weight. The input, output, and

internal communication are all done via spikes.

Many of these spiking neuromorphic architectures are

implemented in a separate physical device, either as a custom

designed VLSI chip [2] or within an FPGA [3]. In order to
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develop these neuromorphic systems, traditional von Neumann-

based computers must be able to communicate with the new

neuromorphic arrays over a fast and flexible communication

channel. This communication setup should be fast enough to

allow the neuromorphic processor to operate in real-time as a

coprocessor to the von Neumann computer, thereby allowing

real-time data processing and control applications to run on

the system. The communication setup also needs to allow for

larger array sizes and use of multiple chips, enabling the setup

of larger neuromorphic arrays. Creation of a communication

setup that meets the growing needs of larger neuromorphic

hardware is a challenge.

We propose to solve the challenge of interfacing traditional

computers with neuromorphic systems through the use of

a separate neuromorphic array communications controller

implemented on a separate FPGA board. This separate commu-

nications board acts as a fast intermediary between the computer

and the neuromorphic array, providing both a high-speed, low-

latency channel between the devices and the capability to scale

the neuromorphic chips to larger sizes, as well as to multiple

neuromorphic chips.

This paper discusses the considerations and design of our

neuromorphic array communications controller, which has been

designed for high performance, scalability, and flexibility. We

go into fine detail on the various decisions that we made in

designing and implementing the controller, and we measure

the impact of these decisions experimentally. The decisions

and accompanying details are intended to be useful to those

who design neuromorphic hardware systems. In particular,

most hardware design focuses on the neuromorphic elements

themselves. In this paper, we wish to demonstrate that the

communications between the hardware, and the host who uses

the hardware, is an important component that needs careful

consideration and can impact performance of the neuromorphic

system.

II. RELATED WORK

Many research groups are working on neuromorphic hard-

ware. Although the neuromorphic components are different,

each group must develop ways to connect their neuromorphic

elements together and also to off-chip devices. The human brain

has billions of neurons, each with thousands of connections,



so as researchers work to scale up their designs, they will be

faced with additional communication challenges.

Researchers at Stanford University have created a mixed-

analog-digital system called Neurogrid [4]. Neurogrid uses

deadlock-free multicast tree packet routers to transmit data

between its 16 Neurocores [5]. Each Neurocore has its own

full-custom asynchronous VLSI implementation of this router.

Neurogrid communicates off-board to a computer running the

software stack via USB 2.0 with the use of a Cypress EZ-USB

FX2LP (FX2) [6].

Manchester University, in the United Kingdom, is working on

a large neuromorphic system called SpiNNaker [7]. SpiNNaker

simulates neurons and synapses with digital chip multipro-

cessors (CMPs). Each processor has its own communications

controller which communicates with an on-chip router to send

neural spike signals. The packet-switched router forms links

between each on-chip processing core and to the routers of the

neighboring chips. A conventional computer is connected by

Ethernet to one or more SpiNNaker CMPs [8]. This computer is

used to specify the neuromorphic model, trigger the simulations,

and retrieve the results.

The Human Brain Project has developed waferscale neu-

romorphic hardware through the FACETS and BrainScaleS

projects [9]. A special communication infrastructure had to be

developed to support communication needs of the waferscale

neuromorphic system [10], [11]. Intra-wafer communication is

handled by a packet-based network which connects the wafer

to surrounding wafers and host PCs. The main component of

the packet-based network is an application-specific integrated

circuit called a digital network chip (DNC). The DNC employs

synchronous high-speed serial packet communication to trans-

mit time-stamped spike events. The packet network is set up

hierarchically with high input count analog neural networks

connected to DNCs, which are connected to a custom FPGA

board, which then connects to the host PC.

IBM has also developed a neuromorphic platform called

TrueNorth as part of the DARPA SyNAPSE project [12]–[14].

TrueNorth is composed of a scalable network of neurosynaptic

cores. These neurosynaptic cores are connected together

through an on-chip communications network to form large

neuromorphic arrays. Short range connections are implemented

with an intra-core crossbar memory and long range connections

are implemented through an inter-core spike-based message-

passing network.

The current methods of handling host-to-neuromorphic

array communications are not without their problems. Slow

connections like USB 2.0 and Ethernet have limited bandwidth,

which in turn limits the number of simultaneous commands

and events which can be transferred. Additionally, the current

designs are not well suited for processing information in real-

time and for guaranteeing accurate arrival of time-sensitive data.

New designs need to have sufficient communication capacity

to achieve in situ processing of information. New features are

also desired, such as real-time monitoring, online optimization,

and live reconfiguration of the array. The TENNLab research

group is working to overcome these challenges and research

new features through their unified application framework and

development environment, which allows cutting-edge research

on multiple neuromorphic models simultaneously [15]. The

neuromorphic array communications controller discussed in this

paper allows the host to connect to hardware implementations

of the neuromorphic models.

III. HIGH-LEVEL COMMUNICATION CONSIDERATIONS

Communication between a traditional computer and a

neuromorphic array is needed to perform a multitude of

operations. Often the neuromorphic hardware acts as a co-

processor and is configured and controlled by a computer

which will hereinafter be referred to as the host system. The

types of information which needs to be sent between the host

and the neuromorphic array include the array configuration,

input/output firing commands, and array monitoring data. These

host machine functions drive the communications requirements

and deserve further discussion.

A. Monitoring

A crucial function for both developing and debugging neu-

romorphic hardware is the capability to monitor the operation

of the neuromorphic array. Live monitoring of the network can

be leveraged to provide valuable feedback used to understand

the properties of the network that allow the network to learn to

run the application. The live monitoring also allows analysis

of network activity, leading to comparisons between different

neuromorphic models and the analysis of power utilization

between different networks and applications.

Monitoring can also be used to detect unexpected behavior

of the network, which could either be caused by a bug in

the logic of the system or an attack on the system. For high

security jobs, monitoring can be used to detect a security or

safety vulnerability in the network.

Real-time monitoring will cause an additional strain on

communication as the diagnostic data has to be transmitted in

addition to the normal information. The level of monitoring

will also have a direct impact on the communication load. The

information collected per element in the network will have an

exponential impact on the communication needed.

B. Optimization

The host can also be used to drive real-time learning and

optimization of the neuromorphic network. The host can deploy

multiple mutated networks along with the current best network.

If one of the new networks starts to perform better than the

existing best network, the host can switch to using the new best

network. This allows for a robust form of online learning to take

place while the application is running, enabling the network to

adapt or be optimized to solve the application while the network

is active. Using the host to perform online optimization would

increase the communication demand; additional bandwidth is

needed to load and switch between multiple networks.
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Fig. 1. Scalable Neuromorphic System Infrastructure

C. Host to array communications

The host will often need to send operational commands to the

network. These commands include network loading and initial

starting and stopping of the operation of the network. The host

will also often need to send data between the neuromorphic

network for processing. The most promising use case is sending

real-time streaming data to the neuromorphic processor for real-

time processing. Streaming real-time data will drive throughput

and latency requirements needed to ensure that information

can pass seamlessly between the two processors.

D. Scale to external interfaces

The host machine is also needed to support scaling to a

multitude of external interfaces. Many neuromorphic applica-

tions will require processing of either the input or the output

of the neuromorphic spikes. The host machine can provide this

functionality and allow the neuromorphic processor to scale to

any external interface.

IV. USE OF AN INTERMEDIATE COMMUNICATION BOARD

While weighing the possible methods of interfacing the

host machine and neuromorphic array, the method which

made the most sense is to develop a custom neuromorphic

communications board to facilitate the communication. Using

a separate communications board has many advantages over a

direct connection. For starters, a separate board provides a great

increase in flexibility. With a communications board, separate

methods of communication can be used between the host and

the communications board and between the communications

board and the neuromorphic array. This allows for a wider

range of hosts and communications boards to be supported. In

addition, the interface on one side of the communication can be

changed without having an impact on the other communication

interface.

A separate communications board also relieves the burden

of supporting a complex protocol from the board implementing

the neuromorphic array. Often a complex protocol, requiring

a substantial amount of resources, is needed to communicate

with a host machine. With a separate communication board,

the burden of implementing the complex protocol is handled

by the communications board, and a simpler protocol, with

less resource requirements, can be used to connect to the

neuromorphic array. This will free up resources on the

neuromorphic chip to be used for the implementation of the

neuromorphic hardware.

A dedicated communication board also enables increased

scaling of the neuromorphic array. A single connection from

the host to the communication board is needed; however,

multiple neuromorphic processing boards can be connected to

the same communications board. This allows the neuromorphic

arrays to scale to multiple boards without modifying the host

connection. Figure 1 shows a diagram of the connection of the

host machine to the neuromorphic array with a communication

board being used as an intermediary between the two systems.

Use of a separate communications board will allow host-to-

array communication to have additional flexibility and greater

scaling potential.

V. EXPLORATION AND SELECTION OF COMMUNICATION

PROTOCOLS

In order to support the key features listed in Section III,

the communication protocol selection is crucial. The selected

protocols need to have sufficient bandwidth and low latency

to support the real-time, high-bandwidth transfers that will be

needed.

A. Host to Communication Board

The connection between the host and the communication

board is limited to protocols that are available both to an



FPGA and to a PC. The main options are USB, PCIe, Ethernet,

fiber optic, Serial ATA (SATA), and UART. UART is quickly

eliminated by being the slowest by far with a maximum speed

of 115200 b/s. We have previously used USB with the help of a

Cypress USB 3.0 peripheral controller. It proved to be difficult

to use and offered insufficient performance [16], [17]. Gigabit

Ethernet (GbE) over twisted pair cables has a maximum speed

of 1000 Mb/s or 125 MB/s and is widely available on most

PCs. However, at this speed it is slower than USB 3.0.

Fiber optics can be used to run 40Gb Ethernet (40GbE) with

a maximum speed of 5 GB/s. A major disadvantage is special

computer hardware is required since commercial PCs do not

come with fiber optic ports.

SATA has a maximum speed of 16 Gb/s or 2 GB/s, which

makes it a compelling option; however, SATA connectors are

not commonly found on FPGA boards without an adapter and

interface protocol intellectual property (IP) would have to be

licensed or custom-designed in order to use it.

Peripheral Component Interconnect Express (PCIe) is a high

speed serial computer bus standard, which is used by virtually

all modern computers. PCIe is well-suited to connect peripheral

devices and is used to connect other co-processing boards such

as GPUs. PCIe is a complex protocol with many low-level

details that must be implemented correctly to create a successful

design. Luckily, there are existing solutions that make getting

started with Host to FPGA communication over PCIe easy.

Xillybus is one such solution which proved sufficient for our

initial communication board design [18].

PCIe is the fastest option followed by 40GbE. If Xillybus is

used to aid in PCIe communication, the maximum bandwidth

is 800 MB/s, 1700 MB/s, and 3500 MB/s for Xillybus revisions

A, B, and XL respectively [19]. Should Xillybus ever prove

insufficient, a custom PCIe driver and FPGA IP core can be

designed. Since PCIe is a common PC interface available on

all desktop computers, fast and easy to implement with the

help of Xillybus, it was chosen as the interface between the

host PC and the communication board.

B. Communications Board to Neuromorphic Array

Even more options are available when choosing an interface

between the communication board and the neuromorphic array.

In order to have a complete communication setup, decisions

have to be made about the physical connection, the encoding

of the data, the link level protocol, and the transport level

protocol. To get the best performance and use fewer pins, a

high-speed, asynchronous bus is used. Gigabit transceivers are

used to transmit the data across the bus.

Xilinx provides a LogiCORE IP called Aurora, which is

an open link-layer protocol that uses the high-speed serial

transceivers on Xilinx FPGAs. The Aurora core is lightweight,

scalable, and provides many configuration options to the user.

The Aurora core can take full advantage of the high-speed

transceivers and can use up to 16 transceivers for a channel,

which results in a throughput that ranges from 480 Mb/s to

over 84.48 Gb/s. Aurora was selected as the link-layer protocol

because of its availability, flexibility, cost, and speed. For

VLSI implementations of neuromorphic arrays, an Aurora

compatible network interface can be designed using the open

Aurora protocol specification.

Aurora is able to use either 8B/10B or 64B/66B line

encoding. The 8B/10B encoding is widely used with many

serial technologies, such as Ethernet and PCIe. The 64B/66B

encoding is used for 10 Gigabit Ethernet and has less encoding

overhead than 8B/10B [20]. A disadvantage to 64B/66B is a

lower ratio of sync bits to payload bits, which can result in

the possibility of a slight DC bias, longer alignment times,

and more complex encoders and decoders. Because of the

downsides of 64B/66B encoding, 8B/10B encoding was chosen

for the first implementation. If the overhead of 8B/10B proves

to be too great, the encoding can be changed to 64B/66B at a

later time.

Since Aurora is designed as a link-level protocol, it does

not have any provision for guaranteed delivery. Aurora will

try to maintain an open channel and deliver packets on a best

effort basis. Aurora does have the capability to perform CRC

checking on frames of data that are transmitted, but Aurora

does not have any built-in recovery mechanism for incorrectly

transmitted data. There are existing commercial transport level

protocols available which include delivery guarantees; however

they do have their downsides. Besides the licensing agreements,

these solutions included many more features than are needed for

a lightweight, high-speed, and low error chip-to-chip protocol.

The extra overhead for the unused features of the more complex

protocols would result in reduced performance without an added

benefit. To overcome this limitation, a simple lightweight Go-

Back-N retransmission protocol was developed and added on

top of Aurora to ensure that packets sent over the Aurora

channel are received correctly. This addition of the lightweight

retransmission protocol proved to have minimal overhead due

to the hardware implementation and the lightweight nature of

the protocol.

Deciding to use Aurora as the link-layer protocol is only

part of a board-to-board communication solution; a physical

connector still needs to be chosen. Most Xilinx FPGA boards

route the high-speed transceivers to either a special purpose

connector, like PCIe or SFP, or to a general purpose connector,

like an FMC connector. Since the FMC connector is commonly

found on most FPGAs, and since it has the highest number of

high-speed signals, it was the logical choice. Some FPGAs are

designed to stack and can be directly connected together. Other

FPGAs need an intermediary. FMC is designed primarily to

connect FPGAs to a daughter card and is not designed to be

able to connect two FPGAs together unless one of the FPGAs

is designed to stack. Because of this, the 8-port FMC to SMA

daughter card and SMA cables were chosen to connect FPGA

boards that are not designed to stack. Using SMA cables as a

general connection is logical since they can handle the high-

speed differential signals and provide maximum flexibility with

each transceiver being wired up independently. SMA connectors

are also easily added to custom boards with VLSI chips. The

main downside is the large number of cables that will have to

be connected—2 cables per lane per direction, resulting in 4
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cables needed to connect one duplex Aurora lane. However,

this solution is still the best available, resulting in the fastest

speeds and the most flexibility.

VI. NEW COMMUNICATION BOARD DESIGN

After evaluating various possible communication solutions,

a new communications board was designed using the best

options. Figure 2 shows a high-level block diagram of the new

communication setup. The communication board sits in the

middle and facilitates communication between the host PC and

the neuromorphic array. The communication board connects to

the host over PCIe using Xillybus. The Xillybus driver has to

be installed on the host to interface with the communications

board. The Aurora protocol is used to transfer data from the

communication board and the neuromorphic array. A Go-Back-

N automatic repeat request (ARQ) transport layer guarantees

packet delivery. The transceivers used by Aurora are connected

via an FMC connector. Data sent to the communication board is

stored in buffers until the destination is ready to receive it. The

buffers are asynchronous FIFOs and provide synchronization

between the clock regions used by Xillybus and Aurora. On

the neuromorphic array chip, an AXI4-Stream bus is used to

connect Aurora to the neuromorphic array.

The complete communication system has been implemented

and the performance of the system has been evaluated. The next

section looks at the performance benchmarks of the system.

VII. RESULTS

In order to verify the performance of the communication

board versus the previously used Cypress FX3 USB based

communication, multiple benchmarking tests were conducted.

Each test setup is designed to measure either the complete

communications path or an individual component of the

communications path. Each test implemented a communications

loop back. The host sent messages and measured how long

the same messages took to be received. The packet size for

the messages was chosen to be 64 bytes long. The test setups

used to measure performance are as follows.

FX3: Measures the performance of the prior Cypress FX3

communication setup. This is the only test setup not using

PCIe.

PCIe: Measures the performance of Xillybus PCIe component

of the communication board design.

PCIe 64: Measures the increase in performance of the Xilly-

bus PCIe component when 64-bit buses are used internally

instead of 32-bit buses. The larger 64-bit bus forces the

smallest transfer size to 64-bits but provides additional

performance.

PCIe with FX3 Emulator (PCIe GPIF): Designed to mea-

sure the performance of the General Programming Inter-

face (GPIF) used with the FX3 implementation.

Aurora x1: Aurora with one lane of communication.

Aurora x2: Aurora with two lanes of communication. The

number of lanes equal the number of high speed

transceivers used for the connection.

Aurora x1 Ack: One lane Aurora with a Stop-and-Wait ARQ.

One packet is sent and acknowledge before the next

packet is sent. This shows the need for a more complex

acknowledgement protocol to guarantee packet delivery.

Aurora x1 Window: One lane Aurora with a Go-Back-N

ARQ. Go-Back-N has sufficient performance when the

error rate for the data path is low.

All the tests were conducted from a host system consisting

of an Asus P10S-M micro ATX motherboard, an Intel Xeon

e3-1275 processor, and 32 GB of DDR4-3333 memory. The

computer is running Ubuntu 16.04.2 LTS. Because of a

buffer flushing problem with the Xillybus driver packaged

with Ubuntu 16.04, the newest Xillybus driver needs to be

downloaded and installed. Xillybus Revision B was used as it

performs better than Revision A and is a drop-in replacement.

The FX3 test setup used a Cypress FX3 board (FX3) and a

HiTech Global HTG-777 with a Xilinx Virtex7 X690T (690T).

The remaining tests all used a Virtex7 Xilinx VC707 evaluation

board (VC707) for the communication board. The PCIe GPIF

test setup and the Aurora test setups all communicated with a

690T that acted as the neuromorphic array board. The Aurora

communication logic uses less than 1% of the FPGA’s resources,

allowing the vast majority of the FPGA’s resources to be used

for the neuromorphic array.

The two main metrics measured are round trip latency and

round trip throughput. There are two main variables when

performing the benchmarks. The first is the size of the buffer

used when making a call to the transfer and receive functions.

A larger buffer means that more data can be transferred before

the user program has to be involved. This variable is called

the transfer size.

The other main variable is the total amount of data that is

transferred. This total amount is transferred one transfer size

at a time until the total amount is reached. The user program

needs to be reentered to make the next transfer call when the

total size is bigger than the transfer size. Thus, the user program

will have to be entered total transfer size
transfer size

times. The benchmark

makes the assumption that the total transfer size is a multiple

of the transfer size.

A. Latency Benchmarks

The first set of benchmarks are aimed at measuring the

latency of one round trip transfer of a 64-byte packet. This

means that the total transfer size and the transfer size were



both kept to 64 bytes. In order to obtain clean measurements,

the computer was taken off the network and run without a

graphical user interface. In addition, the benchmark program

would send 1000 round trip packets before sending a packet

that is measured. The program would then average 1000 of

the measured packets together to get the mean and standard

deviation for the data point. The latency benchmark was run

for all the test setups and the results of the benchmark can

be found in Figure 3. The FX3 test setup had by far the

highest round trip latency, with a latency value of 80.38 µs.
All the other test setups have a round trip latency of around

6 µs. Aurora x1 Window has higher round trip latency than

the other PCIe based implementations, which is caused by

the additional buffers used to store the send window. The

measurements obtained had a low variance, with the standard

deviation from the FX3 benchmark being 2 µs and from the

PCIe-based benchmarks being 0.2 µs. The low variance in part

indicates that there were no measurement artifacts in the data

collected. Additionally, the measured values are as expected.

The documented FX3 firmware processing time for each DMA

buffer is about 40 µs. Since a round trip transfer has to be

processed twice by the DMA engine, a total round trip time

of 80 µs seems very reasonable [21]. The much lower values

of the PCIe benchmarks is also logical. Since Xillybus allows

for explicit flushing of the DMA buffers, the latency of the

round trip packet is much lower.

Looking more closely at the various PCIe-based benchmarks,

they all appear as expected. Taking into account the standard

deviation values, the measurements for PCIe are all roughly

the same. However, the mean is higher for PCIe with the FX3

emulator and the four Aurora tests. One would expect the mean

for these to be higher since they communicate to the 690T and

back whereas the PCIe test does not. The theoretical latency

for both the GPIF and Aurora can be calculated. The GPIF

latency is calculated as shown in (1).

GPIF latency = clock freq. × (data cycles + overhead) (1)

Assuming the overhead is around 10 cycles, then the round

trip transfer time is 0.4 µs, as calculated in (2).

round trip time = 100MHz× ((16× 2) + 10) = 0.4 µs (2)

The theoretical increase of 0.4 µs is larger than the observed

increase of 0.03 µs, but taking into account that the transfer can

start while the PCIe transfer is still in progress, the observed

increase seems reasonable.

A theoretical calculation for Aurora can similarly be made.

The Aurora latency can be calculated as shown in (3), which

results in a theoretical latency of 0.1638 µs.

bits to transfer

transfer rate
=

64× 16

6.25Gbps
= 0.1638 µs (3)

The theoretical increase of 0.16 µs is about the same as the

observed increase of ≈ 0.1 µs. Again, the Aurora transfer can

start while the PCIe transfer is still taking place, which explains

why the observed value is less than the theoretical value.

B. Throughput Benchmarks

The second set of benchmarks are aimed at measuring the

maximum throughput of each design. Figure 4 shows the

throughput measured for each test design when the total transfer

size is held constant and the transfer size is varied. The FX3

setup has the lowest throughput. It starts off at about 1MB/s
and increases linearly to 108MB/s. This increase in throughput

is a result of making better use of the USB 3.0’s bursting

capabilities. In order to maximize the FX3’s performance, a

large burst length and buffer size is required. The upper bound

of the FX3’s performance is caused by the implementation

of the GPIF interface [21]. The GPIF’s maximum throughput

is shown by the PCIe with FX3 emulator line. According to

“Optimizing USB 3.0 Throughput with EZ-USB” [21], the

maximum throughput of the FX3 is 450MB/s. This means

the FX3’s performance is limited by the implementation of

the GPIF interface logic. The maximum theoretical throughput

of the GPIF interface is 32 bits× 100MHz = 400MB/s for

both directions. Both directions share the 400MB/s, so each

direction only gets 200MB/s. By adding in communication

overhead, the measured GPIF throughput of 117MB/s in the

PCIe FX3 emulator test seems reasonable.

The maximum throughput of the PCIe test setup is 896MB/s.
Since this maximum is much greater than the Aurora or PCIe

with FX3 emulator tests, it can be inferred that PCIe was

not the bottleneck in the other tests. The PCIe test shows the

upper throughput limit with the PCIe implementation used in

the communication board. If more bandwidth is needed, then

64-bit streams can be used. The maximum throughput of PCIe

64 is 1511MB/s. In order to reach the maximum throughput,

a transfer size of 1K and 2K is needed for PCIe and PCIe

64, respectively. All the implementations have the same rate

of change in the beginning region before the maximum is

achieved. This means that the Xillybus PCIe bus transfer is

the limiting factor and that the limit is the same for 64-bit as

it is for 32-bit.

One lane of Aurora achieves a maximum throughput of

345MB/s. Moving from one lane to two lanes roughly doubles

the maximum throughput to 669MB/s. Aurora should maintain

this trend as more lanes are added until its throughput starts

to match the limits of the PCIe implementation. There is an

interesting artifact in the data as the PCIe transfer size starts

to exceed 32768 bytes. The throughput starts to drop and the

variance in the data greatly increases. This can be caused by

exceeding the size of the buffers on the communication board

or from exceeding the size of the host DMA buffers. PCIe 64

shows a similar dip in performance, but the change happens

with a larger transfer size.

The addition of a Go-Back-N ARQ only added a slight de-

crease in bandwidth with a maximum throughput of 328MB/s
for one-lane of Aurora. This is only a 5.5% decrease in

throughput caused by the overhead of adding packet numbers

and sending acknowledgments.

From this graph, many helpful conclusions can be made.

First, the new communication board has room to scale. If
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the single lane Aurora limit is reached, then two or more

lanes can be used. If the PCIe limit is reached, 64-bit PCIe

can be used. Once the 64-bit PCIe limit is reached, Xillybus

Revision XL, which offers a maximum throughput of 3500

MB/s with a 128-bit internal data width, can be used [19]. The

new communication setup can scale far beyond the previous

communication limits of the FX3 and GPIF interface. Second,

the maximum throughput is only reached when large blocks

are transferred at a time, with the sweet spot seeming to be

1KB of data.

Additional tests, which varied the total transfer size and

kept the transfer size fixed to a single 64-byte packet, showed

that performance is highly dependent on the buffer size used

to call the transfer function and not on the total amount of

data being transferred. This means that the best performance

is achieved by buffering multiple packets together and making

large transfer calls to the Xillybus driver.

VIII. FUTURE WORK

Now that a new communication board has been designed and

tested to show high communication performance with room to

scale, the communication board can be extended to become

a feature-rich neuromorphic array communications controller

and a hyper-scale interconnect allowing multiple neuromorphic

arrays to be connected together in a scalable manner. The first

level of scaling is to connect multiple neuromorphic boards

together with local connections. The communications board

will have to be extended to handle data between the host and

each of the neuromorphic boards. Additional synchronization

logic will also have to be added to ensure that temporal sensitive

inputs occur at the same time across each board.

Once local scaling between neuromorphic boards with a

single communication board has reached its limit, the scaling

can be continued with regional scaling comprised of multiple

communication boards each with a local group of neuromorphic

boards. At this level of scaling, the communication boards will

have to support communication between themselves along with

any needed synchronization between the communication boards.

With help from the communication boards, the neuromorphic

arrays can be scaled linearly in multiple dimensions. Direct

links for spiking communication will be used between devices

in the local regions, whereas the communication boards will

transfer spikes between regions. These spiking communications

across high-speed interconnects will allow linear scaling to

hyper-scale neural networks (on order of billions of synaptic

elements). An additional level of scaling can be achieved

by adding multiple hosts, each with multiple communication

boards and each communication board connected to multiple

neuromorphic boards. The hosts would then be connected via

Ethernet or some other communication channel to form a

neuromorphic supercomputer.

In addition to forming a communications plane for hyper-

scale neural networks, the functionality of the neuromorphic

array communications controller can be extended to perform or

assist in the tasks performed by the host computer. These tasks

include configuring the neuromorphic boards to act as one



large array or as multiple smaller independent arrays, as well

as using multiple arrays to perform continuous optimization

of the network via dynamic learning and optimization using

genetic algorithms.

IX. CONCLUSION

A new communications system for neuromorphic arrays

using a separate communications board was designed and its

performance measured. The new communications system was

shown to out-perform the prior FX3-based communications

setup and can be used to scale-up to communicate with multiple

neuromorphic boards simultaneously. PCIe is used to connect

the host machine to the communication board and Aurora is

used to connect the communication board to the neuromorphic

boards. Both have been benchmarked and shown to have

much higher throughput and lower round trip latency than

the FX3 communication setup. The new communication board

offers more flexibility, both in terms of the ease in which the

communication packet structure can be modified and in terms

of how the boards can be connected. The communications

board has sufficient performance to facilitate the desired

interaction between traditional von Neumann computers and

new neuromorphic systems. It also has sufficient room to scale

up to be used as a high-speed communications interconnect

for a hyper-scale neuromorphic array.
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