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Abstract—Neuromorphic computing is one promising post-
Moore’s law era technology. In order to develop and use neu-
romorphic systems, traditional von Neumann-based computers
must be able to communicate with neuromorphic hardware to
support functionality such as monitoring the state of the network,
optimizing the array to better perform the task, and input/output
data processing. In this paper, we describe our use of a separate
neuromorphic array communications controller to support high-
throughput, low-latency communication between a traditional
computer and our implementations of neuromorphic systems.
The goal of the communications controller is to provide enough
performance to facilitate the desired interaction between the
systems and to enable scaling of the neuromorphic systems to
larger sizes.

I. INTRODUCTION

As the limits of conventional computation are reached,
new architectures that break away from the traditional von
Neumann architecture will need to be researched, developed,
and deployed. One promising class of post-von Neumann
architectures are the brain-inspired, neuromorphic architectures.
Spiking neural networks, one type of neuromorphic architecture,
are event-based networks with an inherent notion of time [1].
The neurons in this network create a fire event when their
charge exceeds a threshold. This fire event results in a spike
with a weight value. The connected neurons receive the spike
and increase their charge by the weight. The input, output, and
internal communication are all done via spikes.

Many of these spiking neuromorphic architectures are
implemented in a separate physical device, either as a custom
designed VLSI chip [2] or within an FPGA [3]. In order to
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develop these neuromorphic systems, traditional von Neumann-
based computers must be able to communicate with the new
neuromorphic arrays over a fast and flexible communication
channel. This communication setup should be fast enough to
allow the neuromorphic processor to operate in real-time as a
coprocessor to the von Neumann computer, thereby allowing
real-time data processing and control applications to run on
the system. The communication setup also needs to allow for
larger array sizes and use of multiple chips, enabling the setup
of larger neuromorphic arrays. Creation of a communication
setup that meets the growing needs of larger neuromorphic
hardware is a challenge.

We propose to solve the challenge of interfacing traditional
computers with neuromorphic systems through the use of
a separate neuromorphic array communications controller
implemented on a separate FPGA board. This separate commu-
nications board acts as a fast intermediary between the computer
and the neuromorphic array, providing both a high-speed, low-
latency channel between the devices and the capability to scale
the neuromorphic chips to larger sizes, as well as to multiple
neuromorphic chips.

This paper discusses the considerations and design of our
neuromorphic array communications controller, which has been
designed for high performance, scalability, and flexibility. We
go into fine detail on the various decisions that we made in
designing and implementing the controller, and we measure
the impact of these decisions experimentally. The decisions
and accompanying details are intended to be useful to those
who design neuromorphic hardware systems. In particular,
most hardware design focuses on the neuromorphic elements
themselves. In this paper, we wish to demonstrate that the
communications between the hardware, and the host who uses
the hardware, is an important component that needs careful
consideration and can impact performance of the neuromorphic
system.

II. RELATED WORK

Many research groups are working on neuromorphic hard-
ware. Although the neuromorphic components are different,
each group must develop ways to connect their neuromorphic
elements together and also to off-chip devices. The human brain
has billions of neurons, each with thousands of connections,



so as researchers work to scale up their designs, they will be
faced with additional communication challenges.

Researchers at Stanford University have created a mixed-
analog-digital system called Neurogrid [4]. Neurogrid uses
deadlock-free multicast tree packet routers to transmit data
between its 16 Neurocores [5]. Each Neurocore has its own
full-custom asynchronous VLSI implementation of this router.
Neurogrid communicates off-board to a computer running the
software stack via USB 2.0 with the use of a Cypress EZ-USB
FX2LP (FX2) [6].

Manchester University, in the United Kingdom, is working on
a large neuromorphic system called SpiNNaker [7]. SpiNNaker
simulates neurons and synapses with digital chip multipro-
cessors (CMPs). Each processor has its own communications
controller which communicates with an on-chip router to send
neural spike signals. The packet-switched router forms links
between each on-chip processing core and to the routers of the
neighboring chips. A conventional computer is connected by
Ethernet to one or more SpiNNaker CMPs [8]. This computer is
used to specify the neuromorphic model, trigger the simulations,
and retrieve the results.

The Human Brain Project has developed waferscale neu-
romorphic hardware through the FACETS and BrainScaleS
projects [9]. A special communication infrastructure had to be
developed to support communication needs of the waferscale
neuromorphic system [10], [11]. Intra-wafer communication is
handled by a packet-based network which connects the wafer
to surrounding wafers and host PCs. The main component of
the packet-based network is an application-specific integrated
circuit called a digital network chip (DNC). The DNC employs
synchronous high-speed serial packet communication to trans-
mit time-stamped spike events. The packet network is set up
hierarchically with high input count analog neural networks
connected to DNCs, which are connected to a custom FPGA
board, which then connects to the host PC.

IBM has also developed a neuromorphic platform called
TrueNorth as part of the DARPA SyNAPSE project [12]-[14].
TrueNorth is composed of a scalable network of neurosynaptic
cores. These neurosynaptic cores are connected together
through an on-chip communications network to form large
neuromorphic arrays. Short range connections are implemented
with an intra-core crossbar memory and long range connections
are implemented through an inter-core spike-based message-
passing network.

The current methods of handling host-to-neuromorphic
array communications are not without their problems. Slow
connections like USB 2.0 and Ethernet have limited bandwidth,
which in turn limits the number of simultaneous commands
and events which can be transferred. Additionally, the current
designs are not well suited for processing information in real-
time and for guaranteeing accurate arrival of time-sensitive data.
New designs need to have sufficient communication capacity
to achieve in situ processing of information. New features are
also desired, such as real-time monitoring, online optimization,
and live reconfiguration of the array. The TENNLab research
group is working to overcome these challenges and research

new features through their unified application framework and
development environment, which allows cutting-edge research
on multiple neuromorphic models simultaneously [15]. The
neuromorphic array communications controller discussed in this
paper allows the host to connect to hardware implementations
of the neuromorphic models.

III. HIGH-LEVEL COMMUNICATION CONSIDERATIONS

Communication between a traditional computer and a
neuromorphic array is needed to perform a multitude of
operations. Often the neuromorphic hardware acts as a co-
processor and is configured and controlled by a computer
which will hereinafter be referred to as the host system. The
types of information which needs to be sent between the host
and the neuromorphic array include the array configuration,
input/output firing commands, and array monitoring data. These
host machine functions drive the communications requirements
and deserve further discussion.

A. Monitoring

A crucial function for both developing and debugging neu-
romorphic hardware is the capability to monitor the operation
of the neuromorphic array. Live monitoring of the network can
be leveraged to provide valuable feedback used to understand
the properties of the network that allow the network to learn to
run the application. The live monitoring also allows analysis
of network activity, leading to comparisons between different
neuromorphic models and the analysis of power utilization
between different networks and applications.

Monitoring can also be used to detect unexpected behavior
of the network, which could either be caused by a bug in
the logic of the system or an attack on the system. For high
security jobs, monitoring can be used to detect a security or
safety vulnerability in the network.

Real-time monitoring will cause an additional strain on
communication as the diagnostic data has to be transmitted in
addition to the normal information. The level of monitoring
will also have a direct impact on the communication load. The
information collected per element in the network will have an
exponential impact on the communication needed.

B. Optimization

The host can also be used to drive real-time learning and
optimization of the neuromorphic network. The host can deploy
multiple mutated networks along with the current best network.
If one of the new networks starts to perform better than the
existing best network, the host can switch to using the new best
network. This allows for a robust form of online learning to take
place while the application is running, enabling the network to
adapt or be optimized to solve the application while the network
is active. Using the host to perform online optimization would
increase the communication demand; additional bandwidth is
needed to load and switch between multiple networks.
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Fig. 1. Scalable Neuromorphic System Infrastructure

C. Host to array communications

The host will often need to send operational commands to the
network. These commands include network loading and initial
starting and stopping of the operation of the network. The host
will also often need to send data between the neuromorphic
network for processing. The most promising use case is sending
real-time streaming data to the neuromorphic processor for real-
time processing. Streaming real-time data will drive throughput
and latency requirements needed to ensure that information
can pass seamlessly between the two processors.

D. Scale to external interfaces

The host machine is also needed to support scaling to a
multitude of external interfaces. Many neuromorphic applica-
tions will require processing of either the input or the output
of the neuromorphic spikes. The host machine can provide this
functionality and allow the neuromorphic processor to scale to
any external interface.

IV. USE OF AN INTERMEDIATE COMMUNICATION BOARD

While weighing the possible methods of interfacing the
host machine and neuromorphic array, the method which
made the most sense is to develop a custom neuromorphic
communications board to facilitate the communication. Using
a separate communications board has many advantages over a
direct connection. For starters, a separate board provides a great
increase in flexibility. With a communications board, separate
methods of communication can be used between the host and
the communications board and between the communications
board and the neuromorphic array. This allows for a wider
range of hosts and communications boards to be supported. In
addition, the interface on one side of the communication can be
changed without having an impact on the other communication
interface.

A separate communications board also relieves the burden
of supporting a complex protocol from the board implementing
the neuromorphic array. Often a complex protocol, requiring
a substantial amount of resources, is needed to communicate
with a host machine. With a separate communication board,
the burden of implementing the complex protocol is handled
by the communications board, and a simpler protocol, with
less resource requirements, can be used to connect to the
neuromorphic array. This will free up resources on the
neuromorphic chip to be used for the implementation of the
neuromorphic hardware.

A dedicated communication board also enables increased
scaling of the neuromorphic array. A single connection from
the host to the communication board is needed; however,
multiple neuromorphic processing boards can be connected to
the same communications board. This allows the neuromorphic
arrays to scale to multiple boards without modifying the host
connection. Figure 1 shows a diagram of the connection of the
host machine to the neuromorphic array with a communication
board being used as an intermediary between the two systems.
Use of a separate communications board will allow host-to-
array communication to have additional flexibility and greater
scaling potential.

V. EXPLORATION AND SELECTION OF COMMUNICATION
PROTOCOLS

In order to support the key features listed in Section III,
the communication protocol selection is crucial. The selected
protocols need to have sufficient bandwidth and low latency
to support the real-time, high-bandwidth transfers that will be
needed.

A. Host to Communication Board

The connection between the host and the communication
board is limited to protocols that are available both to an



FPGA and to a PC. The main options are USB, PCle, Ethernet,
fiber optic, Serial ATA (SATA), and UART. UART is quickly
eliminated by being the slowest by far with a maximum speed
of 115200 b/s. We have previously used USB with the help of a
Cypress USB 3.0 peripheral controller. It proved to be difficult
to use and offered insufficient performance [16], [17]. Gigabit
Ethernet (GbE) over twisted pair cables has a maximum speed
of 1000 Mb/s or 125 MB/s and is widely available on most
PCs. However, at this speed it is slower than USB 3.0.

Fiber optics can be used to run 40Gb Ethernet (40GbE) with
a maximum speed of 5 GB/s. A major disadvantage is special
computer hardware is required since commercial PCs do not
come with fiber optic ports.

SATA has a maximum speed of 16 Gb/s or 2 GB/s, which
makes it a compelling option; however, SATA connectors are
not commonly found on FPGA boards without an adapter and
interface protocol intellectual property (IP) would have to be
licensed or custom-designed in order to use it.

Peripheral Component Interconnect Express (PCle) is a high
speed serial computer bus standard, which is used by virtually
all modern computers. PCle is well-suited to connect peripheral
devices and is used to connect other co-processing boards such
as GPUs. PCIe is a complex protocol with many low-level
details that must be implemented correctly to create a successful
design. Luckily, there are existing solutions that make getting
started with Host to FPGA communication over PCle easy.
Xillybus is one such solution which proved sufficient for our
initial communication board design [18].

PCle is the fastest option followed by 40GbE. If Xillybus is
used to aid in PCle communication, the maximum bandwidth
is 800 MB/s, 1700 MB/s, and 3500 MB/s for Xillybus revisions
A, B, and XL respectively [19]. Should Xillybus ever prove
insufficient, a custom PCle driver and FPGA IP core can be
designed. Since PCle is a common PC interface available on
all desktop computers, fast and easy to implement with the
help of Xillybus, it was chosen as the interface between the
host PC and the communication board.

B. Communications Board to Neuromorphic Array

Even more options are available when choosing an interface

between the communication board and the neuromorphic array.

In order to have a complete communication setup, decisions
have to be made about the physical connection, the encoding
of the data, the link level protocol, and the transport level
protocol. To get the best performance and use fewer pins, a
high-speed, asynchronous bus is used. Gigabit transceivers are
used to transmit the data across the bus.

Xilinx provides a LogiCORE IP called Aurora, which is
an open link-layer protocol that uses the high-speed serial
transceivers on Xilinx FPGAs. The Aurora core is lightweight,

scalable, and provides many configuration options to the user.

The Aurora core can take full advantage of the high-speed
transceivers and can use up to 16 transceivers for a channel,
which results in a throughput that ranges from 480 Mb/s to
over 84.48 Gb/s. Aurora was selected as the link-layer protocol
because of its availability, flexibility, cost, and speed. For

VLSI implementations of neuromorphic arrays, an Aurora
compatible network interface can be designed using the open
Aurora protocol specification.

Aurora is able to use either 8B/10B or 64B/66B line
encoding. The 8B/10B encoding is widely used with many
serial technologies, such as Ethernet and PCle. The 64B/66B
encoding is used for 10 Gigabit Ethernet and has less encoding
overhead than 8B/10B [20]. A disadvantage to 64B/66B is a
lower ratio of sync bits to payload bits, which can result in
the possibility of a slight DC bias, longer alignment times,
and more complex encoders and decoders. Because of the
downsides of 64B/66B encoding, 8B/10B encoding was chosen
for the first implementation. If the overhead of 8B/10B proves
to be too great, the encoding can be changed to 64B/66B at a
later time.

Since Aurora is designed as a link-level protocol, it does
not have any provision for guaranteed delivery. Aurora will
try to maintain an open channel and deliver packets on a best
effort basis. Aurora does have the capability to perform CRC
checking on frames of data that are transmitted, but Aurora
does not have any built-in recovery mechanism for incorrectly
transmitted data. There are existing commercial transport level
protocols available which include delivery guarantees; however
they do have their downsides. Besides the licensing agreements,
these solutions included many more features than are needed for
a lightweight, high-speed, and low error chip-to-chip protocol.
The extra overhead for the unused features of the more complex
protocols would result in reduced performance without an added
benefit. To overcome this limitation, a simple lightweight Go-
Back-N retransmission protocol was developed and added on
top of Aurora to ensure that packets sent over the Aurora
channel are received correctly. This addition of the lightweight
retransmission protocol proved to have minimal overhead due
to the hardware implementation and the lightweight nature of
the protocol.

Deciding to use Aurora as the link-layer protocol is only
part of a board-to-board communication solution; a physical
connector still needs to be chosen. Most Xilinx FPGA boards
route the high-speed transceivers to either a special purpose
connector, like PCIe or SFP, or to a general purpose connector,
like an FMC connector. Since the FMC connector is commonly
found on most FPGAs, and since it has the highest number of
high-speed signals, it was the logical choice. Some FPGAs are
designed to stack and can be directly connected together. Other
FPGAs need an intermediary. FMC is designed primarily to
connect FPGAs to a daughter card and is not designed to be
able to connect two FPGAs together unless one of the FPGAs
is designed to stack. Because of this, the 8-port FMC to SMA
daughter card and SMA cables were chosen to connect FPGA
boards that are not designed to stack. Using SMA cables as a
general connection is logical since they can handle the high-
speed differential signals and provide maximum flexibility with
each transceiver being wired up independently. SMA connectors
are also easily added to custom boards with VLSI chips. The
main downside is the large number of cables that will have to
be connected—2 cables per lane per direction, resulting in 4
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Fig. 2. Diagram of the Communications Board

cables needed to connect one duplex Aurora lane. However,
this solution is still the best available, resulting in the fastest
speeds and the most flexibility.

VI. NEw COMMUNICATION BOARD DESIGN

After evaluating various possible communication solutions,
a new communications board was designed using the best
options. Figure 2 shows a high-level block diagram of the new
communication setup. The communication board sits in the
middle and facilitates communication between the host PC and
the neuromorphic array. The communication board connects to
the host over PCle using Xillybus. The Xillybus driver has to
be installed on the host to interface with the communications
board. The Aurora protocol is used to transfer data from the
communication board and the neuromorphic array. A Go-Back-
N automatic repeat request (ARQ) transport layer guarantees
packet delivery. The transceivers used by Aurora are connected
via an FMC connector. Data sent to the communication board is
stored in buffers until the destination is ready to receive it. The
buffers are asynchronous FIFOs and provide synchronization
between the clock regions used by Xillybus and Aurora. On
the neuromorphic array chip, an AXI4-Stream bus is used to
connect Aurora to the neuromorphic array.

The complete communication system has been implemented
and the performance of the system has been evaluated. The next
section looks at the performance benchmarks of the system.

VII. RESULTS

In order to verify the performance of the communication
board versus the previously used Cypress FX3 USB based
communication, multiple benchmarking tests were conducted.
Each test setup is designed to measure either the complete
communications path or an individual component of the
communications path. Each test implemented a communications
loop back. The host sent messages and measured how long
the same messages took to be received. The packet size for
the messages was chosen to be 64 bytes long. The test setups
used to measure performance are as follows.

FX3: Measures the performance of the prior Cypress FX3
communication setup. This is the only test setup not using
PCle.

PCle: Measures the performance of Xillybus PCle component
of the communication board design.

PCle 64: Measures the increase in performance of the Xilly-
bus PCle component when 64-bit buses are used internally
instead of 32-bit buses. The larger 64-bit bus forces the
smallest transfer size to 64-bits but provides additional
performance.

PCle with FX3 Emulator (PCIe GPIF): Designed to mea-
sure the performance of the General Programming Inter-
face (GPIF) used with the FX3 implementation.

Aurora x1: Aurora with one lane of communication.

Aurora x2: Aurora with two lanes of communication. The
number of lanes equal the number of high speed
transceivers used for the connection.

Aurora x1 Ack: One lane Aurora with a Stop-and-Wait ARQ.
One packet is sent and acknowledge before the next
packet is sent. This shows the need for a more complex
acknowledgement protocol to guarantee packet delivery.

Aurora x1 Window: One lane Aurora with a Go-Back-N
ARQ. Go-Back-N has sufficient performance when the
error rate for the data path is low.

All the tests were conducted from a host system consisting
of an Asus P10S-M micro ATX motherboard, an Intel Xeon
€3-1275 processor, and 32 GB of DDR4-3333 memory. The
computer is running Ubuntu 16.04.2 LTS. Because of a
buffer flushing problem with the Xillybus driver packaged
with Ubuntu 16.04, the newest Xillybus driver needs to be
downloaded and installed. Xillybus Revision B was used as it
performs better than Revision A and is a drop-in replacement.
The FX3 test setup used a Cypress FX3 board (FX3) and a
HiTech Global HTG-777 with a Xilinx Virtex7 X690T (690T).
The remaining tests all used a Virtex7 Xilinx VC707 evaluation
board (VC707) for the communication board. The PCle GPIF
test setup and the Aurora test setups all communicated with a
690T that acted as the neuromorphic array board. The Aurora
communication logic uses less than 1% of the FPGA’s resources,
allowing the vast majority of the FPGA’s resources to be used
for the neuromorphic array.

The two main metrics measured are round trip latency and
round trip throughput. There are two main variables when
performing the benchmarks. The first is the size of the buffer
used when making a call to the transfer and receive functions.
A larger buffer means that more data can be transferred before
the user program has to be involved. This variable is called
the transfer size.

The other main variable is the total amount of data that is
transferred. This total amount is transferred one transfer size
at a time until the total amount is reached. The user program
needs to be reentered to make the next transfer call when the
total size is bigger than the transfer size. Thus, the user program
will have to be entered % times. The benchmark
makes the assumption that the total transfer size is a multiple
of the transfer size.

A. Latency Benchmarks

The first set of benchmarks are aimed at measuring the
latency of one round trip transfer of a 64-byte packet. This
means that the total transfer size and the transfer size were



both kept to 64 bytes. In order to obtain clean measurements,
the computer was taken off the network and run without a
graphical user interface. In addition, the benchmark program
would send 1000 round trip packets before sending a packet
that is measured. The program would then average 1000 of
the measured packets together to get the mean and standard
deviation for the data point. The latency benchmark was run
for all the test setups and the results of the benchmark can
be found in Figure 3. The FX3 test setup had by far the
highest round trip latency, with a latency value of 80.38 us.
All the other test setups have a round trip latency of around
6 us. Aurora x1 Window has higher round trip latency than
the other PCle based implementations, which is caused by
the additional buffers used to store the send window. The
measurements obtained had a low variance, with the standard
deviation from the FX3 benchmark being 2 ps and from the
PCle-based benchmarks being 0.2 ps. The low variance in part
indicates that there were no measurement artifacts in the data
collected. Additionally, the measured values are as expected.
The documented FX3 firmware processing time for each DMA
buffer is about 40 us. Since a round trip transfer has to be
processed twice by the DMA engine, a total round trip time
of 80 us seems very reasonable [21]. The much lower values
of the PCIe benchmarks is also logical. Since Xillybus allows
for explicit flushing of the DMA buffers, the latency of the
round trip packet is much lower.

Looking more closely at the various PCle-based benchmarks,
they all appear as expected. Taking into account the standard
deviation values, the measurements for PCle are all roughly
the same. However, the mean is higher for PCle with the FX3
emulator and the four Aurora tests. One would expect the mean
for these to be higher since they communicate to the 690T and
back whereas the PCle test does not. The theoretical latency
for both the GPIF and Aurora can be calculated. The GPIF
latency is calculated as shown in (1).

GPIF latency = clock freq. x (data cycles + overhead) (1)

Assuming the overhead is around 10 cycles, then the round
trip transfer time is 0.4 s, as calculated in (2).

round trip time = 100 MHz x ((16 x 2) + 10) = 0.4ps (2)

The theoretical increase of 0.4 us is larger than the observed
increase of 0.03 ps, but taking into account that the transfer can
start while the PCle transfer is still in progress, the observed
increase seems reasonable.

A theoretical calculation for Aurora can similarly be made.
The Aurora latency can be calculated as shown in (3), which
results in a theoretical latency of 0.1638 ps.

bits to transfer 64 x 16
transfer rate  6.25 Gbps

= 0.1638 us 3)
The theoretical increase of 0.16 ps is about the same as the
observed increase of = 0.1 ps. Again, the Aurora transfer can
start while the PCle transfer is still taking place, which explains
why the observed value is less than the theoretical value.

B. Throughput Benchmarks

The second set of benchmarks are aimed at measuring the
maximum throughput of each design. Figure 4 shows the
throughput measured for each test design when the total transfer
size is held constant and the transfer size is varied. The FX3
setup has the lowest throughput. It starts off at about 1 MB/s
and increases linearly to 108 MB/s. This increase in throughput
is a result of making better use of the USB 3.0’s bursting
capabilities. In order to maximize the FX3’s performance, a
large burst length and buffer size is required. The upper bound
of the FX3’s performance is caused by the implementation
of the GPIF interface [21]. The GPIF’s maximum throughput
is shown by the PCle with FX3 emulator line. According to
“Optimizing USB 3.0 Throughput with EZ-USB” [21], the
maximum throughput of the FX3 is 450 MB/s. This means
the FX3’s performance is limited by the implementation of
the GPIF interface logic. The maximum theoretical throughput
of the GPIF interface is 32 bits x 100 MHz = 400 MB/s for
both directions. Both directions share the 400 MB/s, so each
direction only gets 200 MB/s. By adding in communication
overhead, the measured GPIF throughput of 117 MB/s in the
PCle FX3 emulator test seems reasonable.

The maximum throughput of the PCle test setup is 896 MB/s.
Since this maximum is much greater than the Aurora or PCle
with FX3 emulator tests, it can be inferred that PCle was
not the bottleneck in the other tests. The PCle test shows the
upper throughput limit with the PCle implementation used in
the communication board. If more bandwidth is needed, then
64-bit streams can be used. The maximum throughput of PCle
64 is 1511 MB/s. In order to reach the maximum throughput,
a transfer size of 1K and 2K is needed for PCle and PCle
64, respectively. All the implementations have the same rate
of change in the beginning region before the maximum is
achieved. This means that the Xillybus PCle bus transfer is
the limiting factor and that the limit is the same for 64-bit as
it is for 32-bit.

One lane of Aurora achieves a maximum throughput of
345 MB/s. Moving from one lane to two lanes roughly doubles
the maximum throughput to 669 MB /s. Aurora should maintain
this trend as more lanes are added until its throughput starts
to match the limits of the PCle implementation. There is an
interesting artifact in the data as the PCle transfer size starts
to exceed 32768 bytes. The throughput starts to drop and the
variance in the data greatly increases. This can be caused by
exceeding the size of the buffers on the communication board
or from exceeding the size of the host DMA buffers. PCle 64
shows a similar dip in performance, but the change happens
with a larger transfer size.

The addition of a Go-Back-N ARQ only added a slight de-
crease in bandwidth with a maximum throughput of 328 MB /s
for one-lane of Aurora. This is only a 5.5% decrease in
throughput caused by the overhead of adding packet numbers
and sending acknowledgments.

From this graph, many helpful conclusions can be made.
First, the new communication board has room to scale. If
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the single lane Aurora limit is reached, then two or more
lanes can be used. If the PCle limit is reached, 64-bit PCle
can be used. Once the 64-bit PCle limit is reached, Xillybus
Revision XL, which offers a maximum throughput of 3500
MB/s with a 128-bit internal data width, can be used [19]. The
new communication setup can scale far beyond the previous
communication limits of the FX3 and GPIF interface. Second,
the maximum throughput is only reached when large blocks
are transferred at a time, with the sweet spot seeming to be
1KB of data.

Additional tests, which varied the total transfer size and
kept the transfer size fixed to a single 64-byte packet, showed
that performance is highly dependent on the buffer size used
to call the transfer function and not on the total amount of
data being transferred. This means that the best performance
is achieved by buffering multiple packets together and making
large transfer calls to the Xillybus driver.

VIII. FUTURE WORK

Now that a new communication board has been designed and
tested to show high communication performance with room to
scale, the communication board can be extended to become
a feature-rich neuromorphic array communications controller
and a hyper-scale interconnect allowing multiple neuromorphic
arrays to be connected together in a scalable manner. The first
level of scaling is to connect multiple neuromorphic boards
together with local connections. The communications board
will have to be extended to handle data between the host and
each of the neuromorphic boards. Additional synchronization
logic will also have to be added to ensure that temporal sensitive
inputs occur at the same time across each board.

Once local scaling between neuromorphic boards with a
single communication board has reached its limit, the scaling
can be continued with regional scaling comprised of multiple
communication boards each with a local group of neuromorphic
boards. At this level of scaling, the communication boards will
have to support communication between themselves along with
any needed synchronization between the communication boards.
With help from the communication boards, the neuromorphic
arrays can be scaled linearly in multiple dimensions. Direct
links for spiking communication will be used between devices
in the local regions, whereas the communication boards will
transfer spikes between regions. These spiking communications
across high-speed interconnects will allow linear scaling to
hyper-scale neural networks (on order of billions of synaptic
elements). An additional level of scaling can be achieved
by adding multiple hosts, each with multiple communication
boards and each communication board connected to multiple
neuromorphic boards. The hosts would then be connected via
Ethernet or some other communication channel to form a
neuromorphic supercomputer.

In addition to forming a communications plane for hyper-
scale neural networks, the functionality of the neuromorphic
array communications controller can be extended to perform or
assist in the tasks performed by the host computer. These tasks
include configuring the neuromorphic boards to act as one



large array or as multiple smaller independent arrays, as well
as using multiple arrays to perform continuous optimization
of the network via dynamic learning and optimization using
genetic algorithms.

IX. CONCLUSION

A new communications system for neuromorphic arrays
using a separate communications board was designed and its
performance measured. The new communications system was
shown to out-perform the prior FX3-based communications
setup and can be used to scale-up to communicate with multiple
neuromorphic boards simultaneously. PCle is used to connect
the host machine to the communication board and Aurora is
used to connect the communication board to the neuromorphic
boards. Both have been benchmarked and shown to have
much higher throughput and lower round trip latency than
the FX3 communication setup. The new communication board
offers more flexibility, both in terms of the ease in which the
communication packet structure can be modified and in terms
of how the boards can be connected. The communications
board has sufficient performance to facilitate the desired
interaction between traditional von Neumann computers and
new neuromorphic systems. It also has sufficient room to scale
up to be used as a high-speed communications interconnect
for a hyper-scale neuromorphic array.
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