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Abstract

Land-cover change has long been recogniasdavingnarked effecon the amount of
soil organic carbo(SOC) However themicrobially-mediatedprocesss and mechanision
SOCarestillsunclear In this study,the soil samples a degenerate succession from alpine
meadow to“alpine steppe meadow the Qinghaifibetan Plateauvere analyzed using
high-throughputtechnologies, includingllumina sequencingagnd GeoChigfiunctional gene
arrays Thessailmicrobial community structure and diversity were significanf/ < 0.05)
different between alpine meadow and alpine steppe meatt@vmicrobiala-diversity in
alpine steppe meadow was significan®<{ 0.01) higher than in alpine meadow. Molecular
ecologcal networkanalysisindicated that the microbial community structure in alpine steppe
meadow was‘more complex and tightean in the alpine meadowhe relative abundance of
soil microbial labile carbon degradation genes (e.g., pectand hemicellulose) was
significantly..higher in alpine steppe meadow than in alpine meadow, but the relative
abundance osoil recalcitrantcarbondegradation genes (e.g. chitmd lignin) showed the
opposite tendencyl he Biolog Ecoplateexperiment showedhat microbidly-mediated soll
carbon utilization was more active in alpine steppe meadowhan in alpine meadaw
Consequentlymoresoil labile carbormight be decompeslin alpine steppe meadow than in
alpine meadowrherefore the degenerate succession of alpineeadowbecause otlimate
change orfanthropogenic activitisuld most likely decrease8OCand nutriers medicated
by changing soil microbial community structure and their functional potsritalcarbon

decomposition.

Introduction
Land-coverychange is a conon phenomenonn land ecosystemsand it has been
recognized that this aboveground change would marlaffgigt the belowgroundoil organic

carbon(SOC)pool. The aboveground change includes processeb as the plant succession
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and degradationeflecing the ecological processes causedh® combineaffects of natural
climate change, ovagrazing, deforestation and other hunaativities(Yu et al., 2013; Yan et

al., 2005) About 1.2 Pg carbor) in every year, or about ¥to 15% of total anthropogéec

fluxes, was releaseas CO, to the atmospherby landcover change(Powers et al., 2011).

Both soil fertility lossand CQ release(Powers et al., 2012yerethe consequences the
changes:insplantesiduesand the immobilization of organiC mediatedby microorganisms
(Tate, 1987;"Van der Werf GR et al., 2008herefore, the study of the effect of landver
change onSOC and its effecton processes andnechanism is critically important to

understandrthglobal C balance andontribute to sustainadland-cover management.

Microorganisms arene ofthe most abundant and diverse organisms and are essential to

soil ecologicalfunction, particularly inSOC and nutrient cycling (Vand der Heijden et al.,

2008; Feeney=et al., 2006Ylany studies haveevealed the changes in SOCCO, release,

microbial biemassand microbial species diversityy landeover changes (Lundquist et al.,

1999; Wang et al., 2003; Michelsen et al., 20Btreret al, 2010; LopeAd.ozanoet al,
2013).Because.of the higmicrobialdiversityin soil ecosystem and technidahitations, soil
microbial activitiesand processes involved in soil C cyclihngve beerassessd byindirect
indicators in mospreviousstudies,such assoil respiration (i et al, 2010; Bastida et al.
2006, metabolic quotient (Bini et al., 2013), erozyme activitiesNayak et al., 2007and
microbial phospholipid fatty acid (Smith et al., 2014h) recentyears some researchehave
focused on, the/charg soil microbial community based on65 rDNA, ITS or functional
genes sequencinifcakova, et al., 2015; Xue et al., 2Q16lowever, thesoil microbial
activities and processasediatng the conversiorof SOC to CQ and biomassre still a
“black boxX (Waldrop et al., 2004Ding et al, 2013 Lange M, etal., 2015 Sulman et al.,
2014).Therefore, althoughand-cover changes significantbffect SOC little is known about
the influence of landover changes on the metabolic activities and proceskabe
belowground microbial community (Reeve et al., 20Fartherstudy on the change soil
microbial potential and metabolic traits following landcover changeis needed

(Lopez-Lozancet al, 2013).
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The QinghaiTibet Plateau is the highemsid the largest lovatitudeplateauin the world
(Wanget al, 2013, and it is a extremely sensitiveegion to the impact of global warming
and environmental changes (Zhang et al., 20lt8alpine meadowWAM), widely distributed
on the Tibetan Plateau, occupies over 40% of the Qinghatan Plateau area and plays a
critical role.in regionasustainabl@levelopment, biodiversity and water resource conservation
(Kang et aly2007Zhouet al, 2005).The AM is also a largeSOC pool. Wang et al. (2002)
found that*seil*(0- 75cm) organicC content reaockd 23.2 Pg in themeadow and steppe
grasslands in the Tibetan Plateau, accounting for 23.44% of €hatal organic soistoredC
or 2.5% ofsthe"global sofC pool. As one of the most important and vulnerable €opools,
about 3.02 Pg'o€C have been emitted from the grasslands of the Qirnfbatan plateau
because ofhe changes in lardover and grassland degeneration in the last 30 years (Wang et
al., 2002)dn=recent decades, succession and degradagwe been gradually oceing
between differenAM types suchasAM hasappearedn the alpine steppe meadd@/aSM)
region. This might be theconsequences dfie climate warmin@nd anthropogenic activities
(Guoet al;2011; Zhotet al, 2005; Wang et al., 2012).

In this study, we adoptdtlumina sequencing anidinctional gene microarray (GeoChip)
to analyze theprocesses anthechanism of changes immicrobially-mediatedSOC in the
degenerative successiom AM to ASM in QinghaiTibetan PlateauThe aims othis study
were to determine: (lthe effect ofdegenerativesuccession frordM to ASM on SOCand
soil microbial cammunity structure; (2)e divergencef soil C utilization by microbes and
microbial functional gene diversity related @cycling; and (3) the major eimonmental
factors affectingoil microbial conmunity structure anthicrobially-mediatedSOCIoss.
Material and. methods
Site and sampling

The study sites were situated in Sanjiangyuan Natural Reserve2d7°4Q00°0327" E,
34°0816" - 35°6606” N), Qinghai Province, Chinawhich was located in theenter of
QinghaiTibetan Plateau (Zhargt al, 2013). The annual mean air temperaturé i§~3.8C,
and the average precipitation is 262.2~772.8mmeflal, 2015).
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Soil samping siteswere set upin AM (35°4126"N, 99°33'01"E, elevation: 3880m) and
ASM (35°4010"N, 99°5513"E, elevation: 3190 m). At each site, 10 plots (hx1 m) were
establishecind thediagonal method was used to collect soil samples at the depti0oth
in each plot.Ten to fifteen soil cores were taken fr@achplot and combined to obtain about
4009 of sail. Roots and stones were removed framges, andhen the samples froeach
plot weretheroughlymixed Tenreplicatesoil samplesvere collectedrom the same siteTo
avoid contaminationluring sampling, thaterile glowes, sterilized paper and water was used
for sampling fromeach plot. At the same timeplant properties weranvestigatedand
recordedingeach, plot, including the plant specigg&ant number, canopy of eadjrass and
plant height (Fang et al., 2004). Torsay the plant biomass, all the grass was harvested in
each plotdried in the oven at 65C for about 24h and weigll
Soil property"measurements

All soil samples were aidried and then sievetd 2 mm. Soil moisture was measured by
the drying/methad@Bao, 1999). Soil pH was measured by pH meter according to the ratio of
2.5 soil: HaO. Total organicC, total nitrogen(TN), total phosphoruéTP), total sulfur(TS),
rapidly availablemphosphoruy®AP), availableN (AN), nitrateN (NO3™-N) and ammonim N
(NH4"-N) ' Were “measured (Bao, 1999)he vegetation propeigs and soil physicochemical
propertiesnvere presented in Tab&l.

Soil microbial.carbon utilization

A Biolog, Ecaplate experiment was performed to examine thierobial functional
diversity of carbon metabolism (Cooksenal, 2008). Each well of the plate was scanned at
the wavelength of 596m with the Biolog plate reader (bfblog ReL 3.5) at 12 mtervals
throughto 168 h (Liu et al, 2013).C utilization was monitored byvarage well color
developmentAWCD) = > (Ci — R/n , whereCi was the absorption value of théh well, R
was the control absorption well andvas the number of plates<31). AWCD values of 168h
were used to calculate timaicrobial functional diversity ofC metabolism(Garland & Mills,
1991).Several indexes were used to analyze diversity and richness of the commtiéties:

ShannonWiener diversity K): H=- —YP; x (InP;), whereP i was the ratio of the relative
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absorption of theth dividedby the sum of all relativeator development of the plate at 168

the MclIntosh index{): U=/Zni? , whereni was the relative color development of ttre

and te richness indexyf was the number of wells withi -R > 0.25.
Soil microbial DNA extraction, purification, and quditdation

Soil micrebialDNA extraction wasconductedby usingthe Fast DNA Spin kit for soil
following the"manufactures instructions (MP Biomedical, Carlsbad, CA, USA)Soill
microbial DNA wasfurther purified twice by using 0.5% low melting pointaagse geland
was determined, by analyzing the ratiosaborbance @60nm/280nm and 260nm/230nm.
Finally, microbial DNA was quantifiel using a FIUOstar Optima (BMG Labtechm Jena,
Germany).
lllumina sequeneing and data processing

Purified "DNA'extractsfrom soil samples were used as a template and the primers were
designed for| amplification according to the V4 hypervariable regioth@bacterial 16S
rDNA gene.The sequence of forward primer was BTGCCAGCMGCCGCGGTAA3
(515F), and the reverse primeasvs- GGACTACHVGGGTWTCTAATF3’ (806R) (Caporaso
et al, 2011, 2012).The reverse primewas combined with a barcode sequen&CR
amplificatign was used in a 25 pl reaction, containing 1 pl of each primer, 2.5 pl AccuPrime
PCR buffer_ll_(Invitrogen, Grandsland, NY, USA), 5 ul DNA and 0.1 ul AccPrime Taq
PolymeraseThe/reaction mixture was denatured af®4or 1 min, followed by 30 cycles of
94°C for 20's, 53C for 25 s and 68C for 45s, and extension at 3 for 10 min (Ding et al.,
2015). The PCRproducts were purified and run using a Miseq (lllumina, San Diego, CA,
USA) (Cong.et al., 2015; Ding et al., 2015)

Raw data,were separatedo samples according the barcode sequence. Adapters, low
quality and=ambiguouseads(“N”) were trimmed for example readsthat did not perfectly
match the PCRyprimehad norassigned tags, or had read250 bp vereremoved (Kong,
2011). The forward and reverse reads were integrated into a whole sequence by FLASH

(Mago¢ & Salzberg 201]). Operational taxonomic units (OTUs) wedefined at 97%
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similarity level by using UCLUST Hdgar 2010). The singletons were removethe
ribosomal database project (RDP) classifier was used to determine the taxonomic identity of
eat phylotype (Wangpt al, 2007).The number of detected OTUs and sequences at different
levels of ‘classification were counte®andom resampling was processed with 15,000
sequences per _soil samphdl these datawere testedwith the Galaxy Illlumina sequesing
pipelines
GeoChip hybridization and data processing

Geochip 4.0 was used for detectswjl microbialDNA functional gene diversityGeochip
4.0 containeds82,000 oligonucleotide probes covering 141,995 functional genes involved in
410 gene categoseinvolved in C, N cycling and other biogeochemical processéke

detailedGeoChipinformation is presented on the websitetf://ieqg.ou.edy Purified DNA

was labeledwith Cy3uorescentdye using a random priming megtd (Tu et al., 20134 All
hybridizations*were carriedut at 42°C for 16 h using ahybridization station (MAUI,
BioMicro Systems, Salt Lake City, UT, USAhd arrays were scanned at full laser power and
100% photomultiplier tubes with a NimbleGBt§200Microarray scar(Roche, Madison, WI,
USA). Scannedimages were gridded by NimbleScan software (Tu et al., 2014).

Raw "~ GeoChip data were uploaded to the GeoChip data analysis manager

(http://ieq.ou.edu/microarray/Data was pe-processed datasing thefollowing steps: (i) the

poor-quality spots with a signdb-noise ratio of less than 2.0 or the signal intensity value less
than 1000'were discarde(i) genesthat weredetected in no more thahout of 10replicate
samples from the sarsampling sitevere removeg(iii) normalizing the signal intensity of
each spoty dividing the mean value of each sample of total signal intereityg {v)
transfornation of the dat#&o the natural logarithmic forrfHe et al., P10; Cong et al., 2015;
Ding et al.;2015).
Statistical.analysis

Plant diversity was calculated by Simpson index, #red number ofplant species was
calculatedin all sampleshased on the survey data in the fiel8hannon indexSimpsoris

index, Relous evenness, iBipson evenness ar@TUs richness index were used to test soil
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microbial diversity based offllumina sequencing dataf 16S rDNA andgyrB gene in
GeoChip 4.0 Data analysis was performed byestanalysis andP values oft-tests were
adjuste by a false discovery ra(€DR) of < 3% (Kong et al., 2013). Principal coordinate
analysis (PCoAwas used to assess the distribution of microbial comiesfiased orthe
Bray-Curtis dissimilarity matrixThe Mantel testwas used t@analyzethe correlabn between
microbial eemmunitystructure and environmental factgrssariance partitioning analysis
(VPA) was performed to analgthe contributions of environmental variableghiemicrobial
communitystructure Canonical correspondence analysis (CCA) was used to determine the
major environmental attribusecontributingto the microbial community structure. Before
performing CCA, the environmental variableerefirstly filtrated according to the variance
inflation factors (VIF) (Yanget al, 2019. All data were tested in R v. 3.1.2 using the Vegan
package (w3:i1:2).
Soil microbial'retwork construction

Based on random matrix theoffpenget al, 2012),ecological networksvas construced
usingsequencing data of 16S rDNA the network construction, only out of 10 replicates
of OTUs data wereised.Various network properties, such as average clustering coefficient,
average degree, modularity index, and average path distance, were cdunted) the
topological, properties ithe ecological network, wdularity could be used to measure the
extent of species interactiomsd it could characterize the ecosystem quality and stability
(Oleseret al, 2007 Alon, 2003).Average degrewasused to describthe propeies of nodes
(Guimeraet al, 2007), and &erage clustering coefficienvasused to measure the extent of
module structure present in a netw@lenget al, 2012), while harmonic geodesic distance
(HD) could._represent the path length of different nodes in disgigtaph (Deng et al,
2012).

The network modules were generated using rapid greedy modularity optimization. Hub and
connector genes were determined by amwmioglule connectivity Fi) and withinmodule
connectivity Zi) (Olesen et al., 2007). Tt# described thelegree oftonnectivity betwee a

node and other nodes in its own module, Bnkflected the extent that a node was connected
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to the other module3he network parameters and properties were obtained tihewebsite
(http://ieg2.ou.edu/mena/). According to the parameters and pesptre visualized network
graphswere constructed b@ytoscape 2.8.0 software (Clieeal, 2007).
Results
SOCand seil geochemical properties

The soil and=plantharacteristicsvereremarkablydifferent betweenAM andASM (Table
S1). Kobresia®pygmaeaPotentilla bifurca and Leontopodium pusillumvere the dominant
speciesn AM, while Poa annuaOxytropis deflexaand Carex tristachyavere dominantin
ASM. The plantibiomass and plandiversitywere significantly lowe(P < 0.01) inAM sites
than inASM sites

Among the measuresbil paraneters(TableS1), SOCcontent wasignificantly P < 0.01)
higher in AM=samples thaimn ASM samples and most ofthe othersoil nutrientcontents
followed the"same trend, such sail TP, TN andRAP (Table S1)All these resultsndicated
thatthe soil degenerate processrom AM to ASM caused the decredsse SOCand nutrient
content,even.though the aboveground grass biomass might beddppocreased.
Soil microbial community composition and structure betwddrandASM

To compare soil microbial community composition and structure in the two meadsw sit
16S DNA_high-throughput sequencinwas performed A total of 13, 307 and 15,754
opeational taxonomic units (OTUs)ere separately obtained at 97% similarity level, ranging
from 266310 44000 TUsper sample iMM and from 3615 to 4759 TUsper sample iASM.
For taxongmic identificatignall detected OTUsould be classifiednto 34 bacterial phyla
and 2 archaeal phyla. The dominant phyleerev Acidobacteria Proteobacteria
ActinobacterisandPlanctomycetem both AM and ASM thesoil microbialrichness fumber
of OTU) was,significantly (P < 0.05) higherin ASM thanin AM (Table S2) Total 21
subgroupsfphylum Acidobacteriawere detected and 7 of themere dominant (Table S3).
At the family classification level, a total of 176 families (avenagmber of OTU over 1 in 10
replicate samples) were detectedhatwo siteswith 154 familiesin AM and 17 1familiesin

ASM. Themostdominant familiegaveragenumber of OTU over 100 in 10 replicate samples)
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in these sites were Planctomycetaceae Actinomycetales Solirubrobacterales
Chitinophagaceae Sphingomonadaceaand Acidimicrobiales (Dataset S1) At the genus
classification level, a total of 369 gena (averagenumber of OTU over 1 in 10 replicate
samples) were found ithe two sites, and 31gererain AM and 342gererain ASM. The
most dominant geara(averagenumber of OTU over 80 in I@plicate samples) in these sites
were Acidimicrobineag ConexibacteracgeZavarzinellaand GemmatimonagDataset S2)
However, the*microbial diversity based gywB genewaslower than the 16S rDNA arftad
no significantly difference between the two alpine meadow Etalsle 1)

The relativeabundances aof -Proteobacteria Planctomycete€hloroflexi andFirmicutes
were significantly (P < 0.05) higher in ASM than in AM. The relative abundance of
a--Proteobacteriaand s-Proteobacteriawere significantly (P < 0.05) higherin AM than in
ASM, whilestherothers had rexgnificantdifferencebetween the twoneadowsites(Table S2)
Therefore,”the““composition and relative abundantesoil microbial community were
significantly difference between AM and ASM.

The a-diversity indexes of microbial community suctureswere calculateqTablel). The
Shannon index'and Simpson index were significarRly (0.01) higherin ASM (7.59 and
844.3] ‘respectively)than in AM (7.33 and 636.15respectively) PCoA of the overall
microbial eommunitystructureshowed thathe microbial communities of the two meadow
sites were well separated (Fifj. Furthermore, three ngrarametric multivariate statistical
tests (MRPP, ANOSIM and Adonis) indicated that therere significant @ < 0.01)
differencesbetween theetwo sites(Talde S4). Therefore, thaliversity and structureof the
soil microbial communieswere significantlydifferent betweerAM andASM soil.

Ecological retworksanalysisof soil microbial communitiebetweerAM andASM

The ecological netwoskthat wereconstructed had 613 and 828 nottasAM and ASM,
respectivelysunder theidentical thresholds (0.89)Table S5). In this study, modularity,
average degreandaverage clustering coefficiemtere higher in the networdf ASM thanin
AM (Talde S5), which indicadthat soil microbial community structure in AS#ite might be

more complex and tigat than in AMsite

This article is protected by copyright. All rights reserved

85UB0|7 SUOWWOD 8A e8I 3|qed ! [dde ay) Aq pausenob afe ssjoile O ‘8sn Jo S8|nJ Joj ArIqiT8UlUO 48] UO (SUO1IPUOD-pUe-SWLBI W00 A3 1M Afe.d 1 Ul |Uo//SANy) SUONIPUOD pue Sw.e | 8y} 88S *[£202/50/6T] U0 ARiqiTaulluo A8|iMm ‘(OSSN) JelueD Ssolnes pareus VSN Aq 8yTiT 98W/TTTT 0T/I0p/W00 A8 |im Ariq pul|uoy//sdiy woj pepeojumod ‘T ‘LTOZ ‘Xy62S9ET



278 In the Z P-plot, peripherals represemj a node in this category Yalower connectivity

279 and lower vale d Pi and Zi. According to the network topologc structure graphthe

280 majority of nodes belonged to the peripherals and did not contact with the external rRodule (
281 = 0).Theconnector categorgiescribeshe nodes with loweZi, but higherPi. In AM sites no

282 nodes werebe detectedhat belonged to connectorcategory while seven connectors were
283  observed inASM site (Fig. 2). Among these connectors, four of seven connectors were
284  derived fromProteobacteriaand he other three connectors were derived fAxidobacteria

285 GemmatimonadetemndActinobacteriarespectively. Module hubs represesithe nodes with

286  higherZi but lowerPi. For AM, five nodeswere detected that belonged to the module hub
287  category, which™ were composed ofthree Proteobacteria one Acidobacteria and one

288  Actinobacteria In ASM, seven module hubs were observed, which were composed of three
289  ActinobacteriathreeAcidobacteriaand oneChloroflexi According to theesults the network

290 interaction=of'seil microbial taxa hadbeen substantially changedin the process of

291  degenerate successiofrom AM to ASM.

292 Carbon wtilization osoil microbial communities

293 The average well color development (AWCéhowedhatthe C sourceswvererapidly used

294  from 24"to 168h'incubation and reachatie maximum véduesat 168h (Fig. 3). Compared

295  with AM, samples ilASM had higher AWCD valuescrossall the incubatiortime points (Fig

296 3). The Shannon indeXcintoshindex andichness indexvere significantiP < 0.01) higher

297 in ASM thanin AM (Tale 1). These resultsdicated thasoil microbialdiversity and activity

298 to SOC utilizatiorwas highein ASM than inAM.

299 Carbon sources analysis showed thatutilizations of most C sourcewassignificantly P

300 < 0.01) higher inASM than in AM, such as polymers, carbommnates, phenolic acids,
301 carboxylic acids and amino acigBig. S1). These resultsmplied thatthe soil microbial

302 communitiesin ASM might consumea broader range of Gubstrates to satisfyheir

303  ecologicalfunction. Furthermorehe top threeC sources tili zed by microbesn ASM were

304 polymers, amino acids and phenolic acids, while tthye three Csubstratesn AM were

305 polymers, amino acids and carbohydrafeg). S1). The range of C sources metabolized
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indicates different ecological functions of tls®il microbial communitiesin these two
meadowsites
Difference s inail microbial functional gene related 6 andN cycling

A total of 6425microbial genesinvolved in differentC degradation pathwaysuch as
starch, pectin, hemicellulosecellulose, chitin and lignirdegradationswere detected by
Geochipr 40in=the meadow sampledhe detectedrelative abundanseof many genes
involved inflabileC degradatiorwere significantly P < 0.05)higher in ASMthan inAM (Fig.
4), such aghe pectinasergh andrgl genes involvedn pectin degradatioand theara gene
involved inshemicellulose degradation. Howevére detectedrelative abundaneeof genes
involved inrecalcitrantC degradation were significantly?(< 0.05) higher in AM than in
ASM, such asndoditinasegeneinvolved in chitin degradatiormnp and phenol oxidase
genesinvolved=in lignin degradation(Fig. 4). Theseresults apparently indicated thsoil
microorganisms“ilAM might have digher potential abilityto use some recalcitraf (e.g.,
chitin and lignin), while after conversion ofAM to ASM, the microorganismeay tend to
decomposenorelabile C (e.g., pectin antiemicellulose)

Microbial genes related tN cycling were analyzed. fe detectedrelative abundance of
amoAgene related toitrification was significantly higher P < 0.09 in ASM thanAM. In
contrast, theletectedelative abundance afapAandnrfA genegelated toN reduction and
hzogeneinvolved in anammoxveresignificantly (P < 0.05) higher iPAM than in ASM(Fig.
5). These variationsn N cycling gens mightlead tothe difference intransformation from
NOs~ synthesis td\H," synthesis. These results indicatedatmanyN cycling genesnight
be changed and influendke N bioprocessunder thedegenerate successiorfrom AM to
ASM.

Relationshipbetweesoil microbial community and environmental factors

To identify“therelationship betweernvironmental factorand soil microbial community,
Mantel tesand*€CAwere performedTable 2) The resuls indicated thasoil properties, such
as pH, TN, TR, TS, SOC and RAP were significantly(P < 0.05) affected by both soil

microbial taxonomicand functional genstructures. The CCA result indicated thatSOGC
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plant diversity andlr'P might be the mosimportant factors in forming microbiahxonomic
structureg(P =0.05) (Fig. S2A) and microbial functiongéneqP =0.01) (Fig. S2B).

VPA was performed to anag the contributions of environmental variables to microbial
communitystructure A substantial proportion5.92%) of the variationsin soil microbial
community. structure could be explained by the selected emvéotal factorsspecifically,
9.88%, "33139%» and 4.76%f the variations could be explained byegetationfactors
(including "plant*biomass and plant diversjtgpil nutrients(including TN, TP, NH4*-N,
NOs-N, SOC and RAP) and soil pH, respectively (Fig.38). A even higher proportion
(86.2%) variations could be explainddr the microbial functional gengructure(Fig. S3B).
These results showed that soil nutrients wagaly associateavith soil microbial taxonomic
structure angbotentialmetabolicfunction in both sampling sites.

Discussion

In recent"decadg our knowledge on soil microbial communities has expanded rapidly
with the development of newequencing methods kyassing the neetbr isolations of
microorganismgTorsvik et al., 2002; Drenovsky et al., 200#).this study, lhe microbial
taxonomic composition obtained bylumina sequencingshowed that species diversity
significantly ‘increased under thdegenerabn from AM to ASM, but the responses of
different phyla could be varied. Thehylum Acidobacteriais one of the most abundant soil
bacteriaandtherelative abundance alominant subgroups 3, 6,7 and 10wvasincreased in
ASM, with"low soil organic matter content, when compared with. Rdcent studies showed
that the phylum Acidobackria are in general oligotrophiecosysterm and revealed their
adaptation_to low substrasnvrionments;dr examplethe proportion ofAcidobacteriawas
reported to._be_significantly lower in nutriemth rhizosphere than in bulk soil (Kielak et al.,
2009, and,they have low abundancenutrientrich agricultural soil (Lopez.ozano et al.,
2013; Kielak'et al., 2009However, some dominant subbrougfsAcidobacteriawere also
known to haveyadecreasingresponse to the soil environments with decreasedabiai
nutrients(Navarrete, 2013, 2015; Zhang et al., 2814n our study, the dominant subgroup

17 wassignificantlydecreased in ASMIhese results suggested that a differential response of
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the Acidobacteriasubgroups to ecosystem or environment changakl be used to as early

warning indicators of soil managements and plant type successions (Navarrete, 2013, 2015;

Zhang et al., 2014a).

For the complicated and diversified interactions among different spédlesenet al,
2007), ecological networlanalysisis a sensitive, reliable and robust towl reveal the
interactions=of=microorganisms in complex biogeochemical processes &haly 2010;
Denget al2012).The modularity, average degree, and harmonic geodesic distance (HD) are
crucial indicators in reflecting the stability, robustness and resistance of complicated
ecosystemenetworks (Dergf al, 2012). According to the analysis results, d@mwlogical
network relationship was significantly difference betwe®d and ASM. The network
topologcal propertieswere more complicated inASM than in AM implying that the
microorganisms=inASM might havemore complicatedinteractions in which microbial
species couldnore stably coexist (Dingt al, 2015). With thedegenerate succession oAM
to ASM, soil' microbial community structures were changing toward a more complicated
ecosystemy.and.this successimight beconducive to strengtherg the resistance to external
disturbance.

Understanding thenechanisnof land€over change onthe soilmicrobialy-mediated C
cycling isessential foestimation othesoil C pool.Analyzing the differencgin microbialC
utilization ability was helpful to understand functional change the soil microbial
community,(Liuet al 2013). Inthe Biolog C utilization study AWCD represented the
utilization f C sourcesdy microbes, and reflected the activity and physiological function of
microbial communities (Livet al, 2013), whilethe Shannon index, MciIntosh index and
richness index could reflect the functional efisity of microbial metabolisms (Wareg al,
2011). Ourstudies indicated that soil microbial communities in ASM had higheityattian
in AM for_Cuutilization of differentC components, such as polymers, carbohydrates, phenolic
acids and carboexylic acids. The analysis aotilization of sole C substrate by microbial
community structureindicatedthat soil microbesnight havegreaterability to decompose

SOCin ASM than in AM which could be the reason wiBOCdecreased in ASM.
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390 Directly Revealingthe mcrobial metabolic activities and processimt mediated the
391  SOC cycles caused by lambver change is still difficult. In our study, the

392 microbially-mediated soil C cycling processes weréurther analyzed using GeoChip
393  technologyln previous studies, G&hip wasused toshowthat the detecteflinctional gene
394  signal intensitieshad significant correlatios with environmental nutrient contents atitht

395  GeoChip could=be used tdink microbial communities with ecosystem processes and
396 functions to"a“certain etent; for example, Yergeau et al.(2007) showed a significant
397  correlation betweertellulaseenzyme activity and the number of cellulase gene variants
398 Reeve et al (2007) fouradsignificant correlatiorbetweercellulosegene signal intensity and
399  celluloseactivity in the soil Zhang et al. (2013 showed oxidizable organic carbon was
400 significantly linked P < 0.05) to the total abundance of genes involved in active organic
401  carbon degradation (cellulose, hemicellulasd starch)Ding et al. (2015) explotethe total

402  abundances ofitrification genem{oA andhao) were negatively correlated € -0.46,P =

403 0.023) with soil NH'-N, and total abundances of denitrification gemisS andnirK) were

404  also negatively.correlated € -0.54,P = 0.008) with soilNO3™-N. In this study, the relative
405 abundance of microbi& degradation geneelated tdabile Cdegradatiorwere significantly

406  higher in’ASM sitehan in AM site but the relative abundance@©fdegradation genes related
407  to recalcitrant C were signifiodly lower in ASM site than in AM site. Therefore, a significant
408 difference insoil C metabolic processawight occurwith degenerative successiand soil

409  microbes could/be the facilitatord this process in th&M. Comparedwith 16S rDNA

410 sequencing, howeveGeoChip provided limited information for complex ecosysteins to

411  the limitation of microbial functional gene probe number and,typesitivity and quantitative
412  capability, it might be preferable to use cmmbinationof technologies to better reveal the
413  interactionjncomplex soil ecosystens the future.

414 Plant.diversity and soil nutrientgeimportant environmental factothat influence the

415  soil microbial*eemmunity antheir ecologicafunctions(Liu et al, 2008; Wardleet al,, 2004).
416  Speciediversity and productivity of vegetatianight greatly affect organic compounds and

417  the litter diversity which are the majorsoil resources and substrate satisfyimgrobial
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requirements Rardgett & Shine, 1999 Changesn the plant community often leai a
corresponding change in both quantity and quality of soil organic n{ateg et al, 2014;
Carney & Matson, 2005; Chabrerat al, 2003. SOC as an important intermediating
substance between plant and microorganisms, could be considered asntrg @riving
force in shaping microbial diversity and activityilerset al, 2010; Benizri & Amiaud, 2005).
Some studies=haveonfirmedthat soil C availability, which could effectively regulate the
changedn 'mierobial community structure and microbigowth, had substantiainpact on
microbial community composition and activity (Zhameg al, 2014; Liu et al, 2014).
Consistently, SOC was not only significantly correlted with microbial community
composition, but influenced the functional genesolving in C and N cycling. Soil
phosphorus as a limiting factoright indirectly affect the availability of other nutrients, such
as N elementJanssen®t al, 1998). Recent studies have reported thatavailability of
phosphorus™net only limited microbigrowth, butwas alsoan important factor in driving
microbial [community structure and biogeochemical function (Demetz & Insam, 1999;
DeForeskt.al,2012;Kuramaeet al, 2010; Liuet al, 2019. In this study, we found that soil
nutrients, includingTN, TP, NH;*-N, NOs™-N, SOCand RAP, were highly associated with
soil microbial taxonomic structure and potential metabolic function in both AM arMd AS
sites, suggestinghat the soil degenerate succession might dramaticalbffect both soll
nutrients and.maerobial communitiesynchronously.

In summary, to understand the effect of lmoder change orthe soil microbial
community andmicrobially-mediatedSOC loss the soil microbial community structure and
metabolicfunction related taC cycling in AM and ASM on QinghaiTibetan Plateau, were

analyzed by _lllumina sequencinBjolog Ecoplateand GeoChip technologies. The results

showed that.the soil microbial community structure and diversity were significantly increased

underdegenerave succession frolAM to ASM. Bothmicrobialfunctional genes involved in
C cycling and=Biolog experimenigsdicated thatASM might decomposenore SOC and
releasd it in the form ofCO,, which could further intensify the greenhouse efféberefore,

the changesn landcover na only affected soil microbial community structure, @iso
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affected their functional potentifdr C decompositionThis mightalter organiadC dynamics,
leading to increasing soil C losses and greenhouse gas emigglodsgenerativsuccession

of vegedationbased on climate change or anthropogenic activities.
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Table 1. Overall of microbial community diversity detected by Illumina sequencing and Biolog

Ecoplate data in the two meadow sites

Indices AM ASM FDR
Taxonomic Shannon Index(H) 7.33+006 7.59+0.03 0.003
diversity ]

Simpson Index(D) 636.15+347 844.31+22.45 0.000
(16S rDNA)

Pielou evenness(J) 0.89+0.003 0.91+0.001 0.003

Simpson evenness(Si)  0.17+0.01 0.19+0.01 0.012

Richness Index 3680.80+559.69 4374.40+301.34 0.006
Phylogentic
diversity (gyrB) Shannon Index (H) 6.25+0.16 6.05+0.16 0.333

Simpson Index (D) 585.32+78.45 463.02+61.50 0.283
Biolog data Shannon Index 3.22+0.01 3.29+0.01 0.006

Mclntosh Index 6.854).28 8.6940.31 0.000

Richness Index 25.13+0.44 27.40+0.40 0.003

Data present the mean value and standard error.

Note: AM, Alpine meadow; ASM, Alpine steppe meadow.
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Table 2. Mantel test between 16S rDNA OTUs and functional genes of carbon and nitrogen

cycling genes with environmental factors

16S OTUs Functional genes
Environmental parameters
R P R P
Plant biomass 0.102 0.124 0.444 0.001
Vegetation
Plant diversity 0.181 0.027 0.391 0.001
properties
Plant species -0.055 0.719 0.007 0.410
Maisture -0.046 0.654 0.001 0.428
pH 0.213 0.015 0.338 0.002
Total Nitrogen 0.317 0.001 0.654 0.001
Total Phosphorus 0.376 0.001 0.707 0.001
Soil Total Sulfur 0.294 0.004 0.435 0.001
properties  NH,*-N 0.012 0.434 -0.017 0.549
NOs-N 0.104 0.156 0.028 0.311
Soil organic carbon 0.352 0.003 0.674 0.001
Available Nitrogen 0.080 0.198 0.289 0.004
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