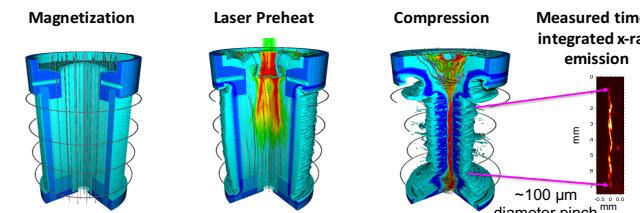


Characterizing fuel magnetization for MagLIF using neutron diagnostics

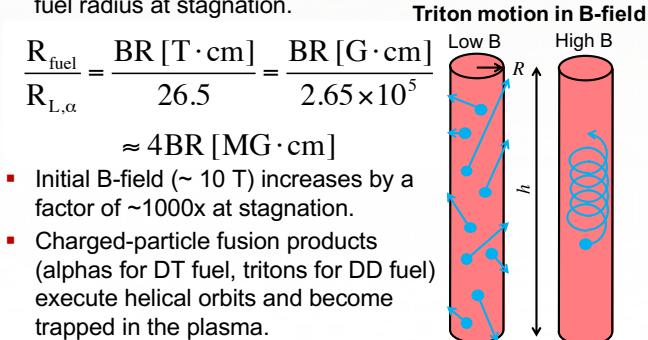
SAND2017-11477C


Sandia
National
Laboratories

K. D. Hahn,¹ G. A. Chandler,¹ P. F. Schmit,¹ P. F. Knapp,¹ S. B. Hansen,¹ E. Harding,¹ M.R. Gomez,¹ D. Ampleford,¹ C. L. Ruiz,¹ G. W. Cooper,² B. Jones,¹ J. D. Styron,² J. A. Torres¹ and P. J. Alberto¹

MagLIF is an inertial-confinement-fusion (ICF) concept that utilizes magnetic confinement to relax certain ignition requirements.

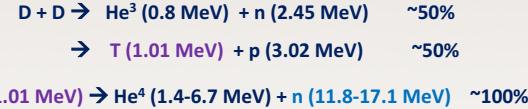
- Pre-magnetizing the fuel significantly reduces the pressures and densities needed to achieve ignition.


Magnetized liner inertial fusion¹⁻² (MagLIF)

- The relaxed conditions are realizable because the magnetic field insulates the hot fuel from the cold pusher.
- For MagLIF, the compressed axial magnetic flux confines the charged burn products.
 - In the case of DT fuel, this leads to enhanced alpha particle self-heating.

BR and ρR are two of the fundamental confinement parameters for MagLIF.³⁻⁴

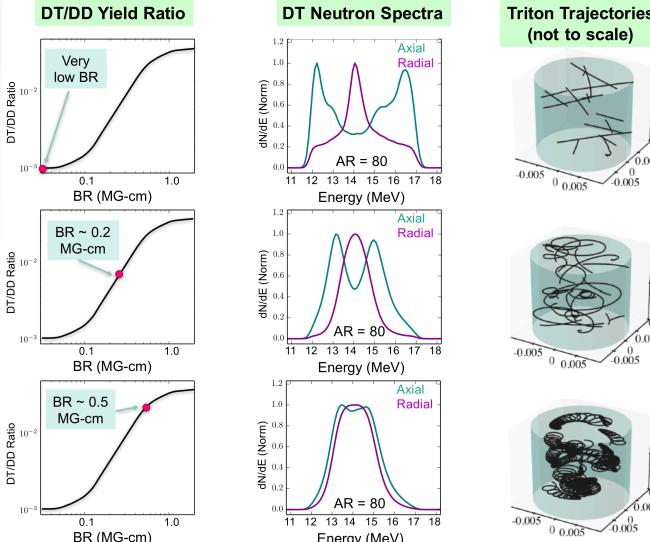
- The degree of fuel magnetization at stagnation depends on the quantity BR, which is the product of the B-field and the fuel radius at stagnation.


- Initial B-field (~ 10 T) increases by a factor of ~ 1000 at stagnation.
- Charged-particle fusion products (alphas for DT fuel, tritons for DD fuel) execute helical orbits and become trapped in the plasma.

BR > 0.6 MG-cm is a goal for MagLIF.

BR ~ 0.4 MG-cm is what we have achieved.

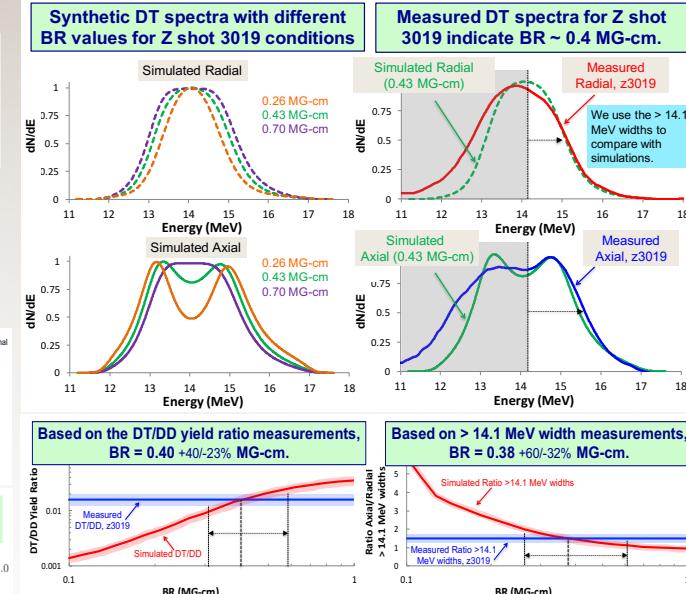
Secondary DT neutrons reveal information about the degree of fuel magnetization at stagnation.


- Primary DD and secondary DT reactions:

- The 1-MeV triton from DD reactions serves as an excellent surrogate for studying alpha particle confinement and heating relevant for 50/50 DT fuel.

A 1D fully kinetic model is used to track the triton motion in the deuterium plasma.

- A Monte Carlo code post-processes the results and produces synthetic neutron data.
- 2000+ simulations are run with experimentally measured stagnation plasma parameters for different BR values.



Asymmetry in the secondary DT neutron spectra is due to the cylindrical geometry.

¹Sandia National Laboratories


²University of New Mexico

Differences in the radial and axial secondary DT spectra, and relative DT/DD yield ratios, are used to infer BR.

BRs inferred from the neutron spectra and the relative yield ratios are usually reasonably consistent.

- The BR inferred from DT/DD ratios may be less reliable because of mix and other issues not taken into account in the model.
- Because there is not yet a way to measure BR for DT-fuel, DD-tritons will be used to inform alpha heating for future DT-fuel experiments.

Using a cylindrical geometry and deuterium fuel allow us to diagnose fuel magnetization at stagnation.