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Magnetized Liner Inertial Fusion relies on  
three stages to produce fusion relevant conditions 

S. A. Slutz, et al., Phys. Plasmas 17, 056303 (2010). 

*S.A. Slutz et. al., PoP (2010) 

 S.A. Slutz and R. A. Vesey, PRL (2012) 

 M.R. Gomez et. al., PRL (2014) 

 P.F. Schmit et. al., PRL (2014) 

 A.B. Sefkow, et. al. ,PoP (2014) 

 M.R. Gomez, et. al., PoP (2015) 

 S.B. Hansen, et. al. , PoP (2015) 

 R.D. McBride, et. al., PoP (2016) 
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Maglif has successfully demonstrated the 
necessary elements of magneto-inertial fusion 

Data from M. Gomez / K. Peterson 

Laser Preheat required 

for significant yields 
Applied Bz required with preheat for 

significant yields 

Stagnation self emission imaging 

with and without applied Bz 



Summary: 
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Maglif is presently operating close to ideal simulation expectations. 

 

Presently, degradation of neutron yield is dominated by: 

• Implosion instabilities 

• Mix into fuel 

• Loss of thermal insulation 

Not to: 

• Lack of preheat energy 

• Low current delivery 

 

Understanding relative dominance of these different processes helps 

define path forward 

 



3 Main areas of concern have been: Laser 
Coupling, High Z Mix, Liner Instabilities 
 

To what extent are these degradation mechanisms limiting Maglif performance ? 

Poor 

laser 

Coupling 
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In reality it is likely all 3 and more are in play to some degree ! 
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What are our expectations ? 

6 

To understanding how significant different degradation 

mechanisms are we must first 

Understand what we expected the performance to be 

Better characterize our inputs: 

What is the preheat energy delivered 

What is the current 



16.2 MA delivered to standard 10mm tall Maglif 
target (Z 2851) 
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Laser energy deposited in gas determined by 
shadography of surrogate experiments 

Energy deposited drives the 

expansion of a blast wave 

Blast wave radius at late 

time is dependent on 

energy deposited 
Data / images provided by M. Geissel  /  A. Harvey-Thompson 



Shadography used to infer deposited energy and 
axial distribution of deposited energy  
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Targets used surrogate He gas, 

but more recently deposit into D2 

 

Cumulative energy as 

laser entrance hole is 

approached 

Start of imploding 

region in Maglif target 

Data / images provided by M. Geissel  /  A. Harvey-Thompson 



Standard Maglif Target parameters have been 
largely determined by engineering capabilities 
and historical precedent 

• 10T applied Bz  

 

• 1.8 micron polyimide 

window 

 

• 0.7 mg/cc D2 gas 

density 

 

• 10mm tall target 
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Optimum laser preheat energy defined by loss of 
magnetic insulation through Nernst advection 

𝐹𝑒 = −𝜅
𝑑𝑇𝑒
𝑑𝑟

 

Bz= 10T 

Magnetic field preferentially frozen into hotter electrons 

also responsible for thermal diffusion (Nernst) 

𝑬 = 𝜼𝒋 − (𝒗 + 𝒗𝑻) × 𝑩 

M.G. Haines 

Plasma Physics and Controlled Fusion Vol. 28 No. 11 pp 1705-1716, 1986 

Ohms law modified: 

Yield vs. Preheat Energy 

With Nernst 

No Nernst 

This has important implications for the effect 

of implosion instabilities. 

Heat flow 

inhibited by field 

Z shots 
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Yield vs. Preheat Energy 

With Nernst 

No Nernst 

This has important implications for the effect 

of implosion instabilities. 

𝐹𝑒 = −𝜅
𝑑𝑇𝑒
𝑑𝑟

 

Heat flow 

inhibited by field 

Field pushed out 

by heat flow 

Z shots 



Optimizing performance requires raising preheat 
/ fuel density and magnetic field together 
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- graphs provided by Steve Slutz  

Further discussion on possibilities 

for Z in upcoming publication by 

S.Slutz et al  



Optimizing performance requires raising preheat 
/ fuel density and magnetic field together 
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for Z in upcoming publication by 

S.Slutz et al  

How do 3D implosion 

instabilities affect performance 

of existing targets 



Stagnation instabilities principally diagnosed in 
time integrated self emission imaging 
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4mm load height modeled, with perturbation 
applied consistent with liner radiography 
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Implosion instabilities can degrade neutron yield 
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Implosion instabilities can degrade neutron yield 
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Density slices – Top Down 

Implosion instabilities can degrade neutron yield 
Z2613 

Mid-line 



Time 

Integrated 

Emission 

0.96mm 

Density 

~peak neutron 

emission 

x
-z
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Implosion instabilities can degrade neutron yield 
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Implosion instabilities can degrade neutron yield 
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Implosion instabilities can degrade neutron yield 
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Penetration of Fuel Volume can results in 
bifurcation of emission structure  
 Fuel volume can be bisected creating 

bifurcated structures evident is some 

of the Ar imaging 

Side Density slice 

Ar 

imager 

2613 / 2850 / 2708 

Experimental Images 

Density slice – Top Down 



side 

slice 

top 

slice 

3D 1D 

To what extent is this structure actually 
damaging performance ? 
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Loss of thermal insulation and disruption from 
instabilities compete to truncate burn. 

Fuel Volume 

effective diameter 

3D disruption:  liner does not 

effectively bounce off of the fuel.  

Instabilities bisect fuel volume and 

redistribute heat. 

( At 10T, ~1kJ preheat, low current, 0.7mg/cc initial gas density  -  loss of thermal insulation wins ) 

Heat loss:  liner does not effectively 

bounce off of the fuel.  Aggressive 

temperature gradient redistributes field, 

insulation is lost, heat redistributed 
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Loss of thermal insulation and disruption from 
instabilities compete to truncate burn. 

Fuel Volume 

effective diameter 

3D disruption:  liner does not 

effectively bounce off of the fuel.  

Instabilities bisect fuel volume and 

redistribute heat. 

( At 10T, ~1kJ preheat, low current, 0.7mg/cc initial gas density  -  loss of thermal insulation wins ) 

Heat loss:  liner does not effectively 

bounce off of the fuel.  Aggressive 

temperature gradient redistributes field, 

insulation is lost, heat redistributed 
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3D Instability degradation is worse as magnetic 
insulation improves 
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3D 

1D No Nernst 

With Nernst 

Yield vs Preheat Energy 

Absent Nernst, degradation from 3D 

instabilities more significant. 

At higher currents this gets worse 

Increase Magnetic field to improve insulation 

3D mitigates gains from improved 

insulation from higher Bz field 
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Instabilities appear insufficient to degrade mix 
alone, but mix is also observed 

Axially resolved spectra indicate iron 

emission from stagnation column 

Image and data provided by Eric Harding 

Associated with Fe 

contaminant in Be 

Maglif liners from 

manufacturing 



Instabilities appear insufficient to degrade mix 
alone, but mix is also observed 

Axially resolved spectra indicate iron 

emission from stagnation column 

Image and data provided by Eric Harding 

Associated with Fe 

contaminant in Be 

Maglif liners from 

manufacturing 

Spectral analysis (Eric Harding) 

indicates: 

Be mix fraction = 7 ± 3 % 

Electron Temperature between 1.4 and 

2 keV 

Typically lower than the ion temperature 

from neutron diagnostics. 

 

e.g. shot 2977 

<Te>  = 1.74 keV 

Tion = 2.5 keV (from nTOF) 

YDD = 3.0e12  



Maglif performance fairly robust to Be mix 
introduced at time of laser preheat 
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Lower temperature from iron emission indicative of 
late time instability injection of liner material into fuel 
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Uniform early time Be Mix 

S.B. Hansen, et. al. , PoP (2015) 
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migrated into fuel volume 

Window mix can more effectively degrade yield 

Image and data from Adam Harvey-Thompson 

For different experiment / laser setups, assuming mix is just window plastic, values in 

the range of 1 – 7% have been inferred.  See P. Knapp (Wed. PO8) 
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Window mix can more effectively degrade yield 

3D  
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For different experiment / laser setups, assuming mix is just window plastic, values in 

the range of 1 – 7% have been inferred.  See P. Knapp (Wed. PO8) 



Summary: 
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Maglif is presently operating close to ideal simulation expectations. 

 

Presently, degradation of neutron yield is dominated by: 

• Implosion instabilities 

• Mix into fuel 

• Loss of thermal insulation 

Not to: 

• Lack of preheat energy 

• Low current delivery 

 

We have a fairly clear path forward requiring some capability 

development (higher Bz with higher current for higher fill densities at 

higher preheat energies) 

 


