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Magnetized Liner Inertial Fusion relies on i) i,
three stages to produce fusion relevant conditions
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Maglif has successfully demonstrated the =)
necessary elements of magneto-inertial fusion
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Summary:

Maglif is presently operating close to ideal simulation expectations.

Presently, degradation of neutron yield is dominated by:
* Implosion instabilities

* Mix into fuel

* Loss of thermal insulation

Not to:

« Lack of preheat energy

* Low current delivery

Understanding relative dominance of these different processes helps
define path forward
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3 Main areas of concern have been: Laser )
Coupling, High Z Mix, Liner Instabilities

Poor Implosion /
laser High Z mix ? window stagnation
Coupling material instabilities
? injected
> 2kJ brought
on target. _ E
How much is Mix of Mix of
coupled into end cap liner
the gas ? material material

To what extent are these degradation mechanisms limiting Maglif performance ?

In reality it is likely all 3 and more are in play to some degree !
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What are our expectations ?

To understanding how significant different degradation
mechanisms are we must first

Understand what we expected the performance to be

Better characterize our inputs:
What is the preheat energy delivered
What is the current




16.2 MA delivered to standard 10mm tall Maglif @y
target (Z 2851) *

Plate velocity

Apply techniques of the Z dynamic material properties groups E 31 measured
4
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Laser energy deposited in gas determined by )
shadography of surrogate experiments

Energy deposited drives the
expansion of a blast wave

Gas cell experiments

Backward scatter Probe laser 53 psi He gas fill \
Laser shadowgram

.

Gas cell

Heated plasma §> /

LEH foil (1.5 um LEH foil
polyimide) Heated plasma

Blast wave radlus at Iate
time is dependent on

_ _ _ energy deposited
Data / images provided by M. Geissel / A. Harvey-Thompson




Shadography used to infer deposited energy and @iz
axial distribution of deposited energy
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Standard Maglif Target parameters have been )
largely determined by engineering capabilities
and historical precedent

« 10T applied Bz

e 1.8 micron polyimide
window

0.7 mg/cc D2 gas
density

« 10mm tall target




Given measured current and preheat ideal )
performance within a factor of “3 or ~ 4

Preheat Use standard target: 0.7mg/cc gas fill, 10T applied Bz
uniformly
applied Implode Unperturbed Liner
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Yield vs. Preheat Energy
L)
QL 1.5E134
SN
c
O
E % 1.0E13
5 c
o a) Preheat
A 5.0E12- >
Z shots I Eixe‘fj;‘me”t
0.0 - r - ; ' ' ' '
0.0 0.5 1.0 1.5 2.0
- = Preheat Energy / kJ

Following method used by S Slutz, conduct ideal 2D Maglif implosion calculations in GORGON.
Equivalent to 1D + end losses




Optimum laser preheat energy defined by loss of @&
magnetic insulation through Nernst advection

Bz= 10T Yield vs. Preheat Energy
* 1 () LA Heat flow i
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o /
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also responsible for thermal diffusion (Nernst)
M.G. Haines This has important implications for the effect
Plasma Physics and Controlled Fusion Vol. 28 No. 11 pp 1705-1716, 1986 of implosion instabilities.




Optimum laser preheat energy defined by loss of

Sandia

magnetic insulation through Nernst advection

Bz= 10T

Ohms law modified:
E=mnj— (w+vr)XB

A

Heat flow
iInhibited by field

dT,
F, = —Kx—

dr

Field pushed out
by heat flow

Fe

YT ¥ 5 2n,T,

Magnetic field preferentially frozen into hotter electrons
also responsible for thermal diffusion (Nernst)

M.G. Haines

Plasma Physics and Controlled Fusion Vol. 28 No. 11 pp 1705-1716, 1986
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This has important implications for the effect
of implosion instabilities.




Optimizing performance requires raising preheat (@&,
/ fuel density and magnetic field together

L=1cm Ind=7.2 Imax=17.4 DD

Uniform 2D lasnex scaling calculations

- graphs provided by Steve Slutz
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Further discussion on possibilities 1 10
for Z in upcoming publication by Edep (kJ)

S.Slutz et al




Optimizing performance requires raising preheat (@&,
/ fuel density and magnetic field together

L=1cm Ind=7.2 Imax=17.4 DD

Uniform 2D lasnex scaling calculations

- graphs provided by Steve Slutz
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Further discussion on possibilities How do 3D implosion 1 10
for Z in upcoming publication by instabilities affect performance Edep (kJ)

S.Slutz et al of existing targets




Stagnation instabilities principally diagnosed in g
time integrated self emission imaging

Helical structure /

bifurcations and 0
— intensity variations 1 1

indicative of
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4mm load height modeled, with perturbation
applied consistent with liner radiography

Rezone central region 20micron _ Liner radiography 10T applied Bz
from 20 to 5 micron S micron

) T.Awe PRL 111(23) 235005
resolution
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Implosion instabilities can degrade neutron yield @
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Implosion instabilities can degrade neutron yield @ g

Laboratories

Density Time
~peak neutron Integrated 22613

emission Emission




Implosion instabilities can degrade neutron yield @&,
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Implosion instabilities can degrade neutron yield @
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Implosion instabilities can degrade neutron yield @&,
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Implosion instabilities can degrade neutron yield
Int(-erignrqated 72613 Orthogonal Optically Fuel emission
views thin only

Density
~peak neutron

emission Emission




Implosion instabilities can degrade neutron yield

: Time
Densit
= Integrated £2613

Emission

~peak neutron

emission

Emission image Widths
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L U
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2 0.2
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Penetration of Fuel Volume can results in )

bifurcation of emission structure

Fuel volume can be bisected creating

bifurcated structures evident is some :

Density slice — Top Down 2613/ 2850/ 2708

-
.

Side Density slice




To what extent is this structure actually
damaging performance ?
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Burn partially truncated in 3d, but damage was @&
largley done by then
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Loss of thermal insulation and disruption from =) e
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instabilities compete to truncate burn.

( At 10T, ~1kJ preheat, low current, 0.7mg/cc initial gas density - loss of thermal insulation wins)

3D disruption: liner does not
effectively bounce off of the fuel.
Instabilities bisect fuel volume and
redistribute heat.
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Heat loss: liner does not effectively
bounce off of the fuel. Aggressive
temperature gradient redistributes field,
insulation is lost, heat redistributed
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Loss of thermal insulation and disruption from ) e
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instabilities compete to truncate burn.

( At 10T, ~1kJ preheat, low current, 0.7mg/cc initial gas density - loss of thermal insulation wins)

3D disruption: liner does not
effectively bounce off of the fuel.
Instabilities bisect fuel volume and
redistribute heat.
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3D Instability degradation is worse as magnetic e
insulation improves

Yield vs Preheat Energy Increase Magnetic field to improve insulation
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Preheat Energy / kJ Bz/T
Absent Nernst, degradation from 3D 3D mitigates gains from improved
instabilities more significant. insulation from higher Bz field

At higher currents this gets worse i



Instabilities appear insufficient to degrade mix e
alone, but mix is also observed

Axially resolved spectra indicate iron

emission from stagnation column
Image Associated with Fe
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Image and data provided by Eric Harding




Instabilities appear insufficient to degrade mix e
alone, but mix is also observed

Axially resolved spectra indicate iron
emission from stagnation column

Spectral analysis (Eric Harding) Image Associated with Fe
indicates: contaminant in Be
Be mix fraction=7+3 % x Maglif liners from

Electron Temperature between 1.4 and ‘ maniifactirinn

2 keV ‘

Typically lower than the ion temperature \

from neutron diagnostics.

Vertical distance

e u J

e_g_ shot 2977 Horiz. distance
<Te> =1.74 keV iaidl ::tgl?toé; SRR
Tion = 2.5 keV (from nTOF) (6.4 kev) (6.7 keV)
YDD = 3.0el12
e

Image and data provided by Eric Harding




Maglif performance fairly robust to Be mix )
introduced at time of laser preheat

5 1E13-
A :
> ~ Mix of Mix of
5 I SN 5% end cap / liner
® 1E124 " 6% material § material
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I

1E1 o
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Preheat Energy / kJ Performance is fairly robust to Be introduced

at time of laser preheat
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Lower temperature from iron emission indicative gf
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late time instability injection of liner material into fuel

Uniform early time Be Mix Late time liner / fuel mix
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mix weighted to colder /
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Penetration of iron
carrying Be into cold fuel

S.B. Hansen, et. al. , PoP (2015)




Window mix can more effectively degrade yield &=

Axially resolved spectra
show Co window tracer has

LEH foil 1 nm Co migrated into fuel volume
coating
Z3057 — ZBL-only, with-DPP - 1E13-
© ]
______ SN <
§ ' b RN 2%
Be liner - LEH Axial extent 5 _ - o N 0
imploding material | of LEH mix GC) 1E12 ! ! ! S~ DN 3%
regi pushed in ] | I I N
gion QO N 49
""" )] I I I 4%
Z shots
I "
1E11
6400 6600 6800 7000 7200 7400 7600 7800 8000 OO 05 10 15 20
Photon energy (eV)
Preheat Energy / kJ
For different experiment / laser setups, assuming mix is just window plastic, values in
the range of 1 — 7% have been inferred. See P. Knapp (Wed. PO8)
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Window mix can more effectively degrade yield &=

3D
+ end loss
+ 2% win. mix

Axially resolved spectra
show Co window tracer has

LEH foil 1 nm Co migrated into fuel volume
coating
Z3057 — ZBL-only, with-DPP - 1E13-
[z | , -
______ SN

c VA <~ S
S ' b RN 2%
Be liner - LEH Axial extent 5 _ - o N 0
imploding material | of LEH mix GC) 1E12 ! ! ! S~ DN 3%

regi pushed in ] | I | N
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""" )] I I I 4%
Z shots
I "
1E11 ——
6400 6600 6800 7000 7200 7400 7600 7800 8000 OO 05 10 15 20
Photon energy (eV)
Preheat Energy / kJ
For different experiment / laser setups, assuming mix is just window plastic, values in
the range of 1 — 7% have been inferred. See P. Knapp (Wed. PO8)
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Summary: )
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Maglif is presently operating close to ideal simulation expectations.

Presently, degradation of neutron yield is dominated by:
* Implosion instabilities

* Mix into fuel

* Loss of thermal insulation

Not to:

* Lack of preheat energy

* Low current delivery

We have a fairly clear path forward requiring some capabillity
development (higher Bz with higher current for higher fill densities at
higher preheat energies) N




