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Why capture model structure?

= Challenges with a flat representation
= manual reformulation is required to write a ‘solvable’ model
= difficult to reverse engineer the intent or goal of the original problem
= tedious to experiment with alternative model reformulations

= Benefits to explicitly capturing structure
= models are formulated in a more natural, intuitive form
= fewer coding mistakes
= separates model specification from the solution approach
= easy to experiment with different model reformulations
= encourages general implementations of common solution approaches
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Software platform

= Pyomo: Python Optimization Modeling Objects ‘)
* Formulate optimization models within Python - PYOMO

from pyomo.environ import *

m = ConcreteModel ()

m.x1 = Var ()

m.x2 = Var (bounds=(-1,1))

m.x3 = Var (bounds=(1,2))

m.obj = Objective (sense = minimize,

expr = m.x1**2 + (m.x2*m.x3)**4 + m.x1*m.x3
+ m.x2 + m.x2*sin(m.x1l+m.x3) )

= Utilize high-level programming language to write scripts and
manipulate model objects
= Leverage third-party Python libraries

e.g. SciPy, NumPy, MatPlotLib, Pandas
#CCR
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Pyomo at a Glance =
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Solving dynamic optimization problems ) e

tr N-1
min [ ($G0w))de + BG(ee) min Y ($Ciow) + $C)
fo k=1
dx S.L| Xjy1 = f(xl-,ul-),li =1,..,N—1
st o= glx,u) Jiscretize X, = constant

DUE
x(ty) = constant : .
(to) Approximate dynamics

x: State variables using algebraic equation

u: Control variables
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Solving dynamic optimization problems ) e

tr N-1
min [ (Gou))de +pGx(tr) min Y ($Ciow) + $C)
to k=1
dx Di c S.t. Xi+1 = f(xlr ul)rl = 1; ;N -1
S.t. ac =g(x,u) RIS X1 = constant
t Model

x(ty) = constant : .
(to) Approximate dynamics

using algebraic equations

x: State variables
u: Control variables Automated with Pyomo.DAE

#CCR
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Pyomo.dae ) 2=,

= Extend Pyomo syntax to represent:

= Continuous domains

= Ordinary differential equations

= Partial differential equations

= Systems of differential algebraic equations

= Higher order differential equations and mixed partial derivatives
= Available discretization schemes

= Finite difference methods (Backward/Forward/Central)

= Collocation (Radau or Legendre roots)
= Extensible framework

= Write general implementations of custom discretization schemes

= Build frameworks/meta-algorithms including dynamic optimization
= |nterface with numerical simulators

= Scipy for simulating ODEs

= CasADi for simulating ODEs and DAEs

FCCR
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PySP ) .,

= Framework for simplifying implementation of stochastic
programming models, only requiring:
= deterministic base model
= scenario tree defining the problem stages and uncertain parameters

= PySP provides two primary solution strategies
= build and solve the deterministic equivalent (extensive form)
= Progressive Hedging
= (plus beta implementations of others, including 2-stage Benders and
an interface to DDSIP)
= Parallel infrastructure for generating and solving subproblems
on parallel (distributed) computing platforms

FCCR
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Dynamic system under uncertainty ) fees,

= Semibatch reactor!?!

: E E
A->B-C Cy =k1 exp (—mir)ca—kgexp ("R;’;.)C”
C, =k exp( E: )C
2 Fa e =h2 _RTr b
@ 4 v _ FaMw,
Tc P
—_—
y (prep, )Tr =M(Tf -T)
Twj — k1 exp (— Er ) C,AH, — ks exp (— E ) CyAH,
RT, RT,
/
‘/ A_] Ac
R o +ow Ty = Tr) + cwey—(Tuwe = Tr)
‘/ T, T,
}E-
= Two case studies
Model inputs (control variables) . ter estimation
E,: Inlet flow rate of A parameter estimatio
Ty c: Water temperature in cooling coil = optimal control under partial

Ty,;: Water temperature in cooling jacket system failure!?!

#CCR (2] Abel and Marquardt, AIChE Journal (2000)
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Dynamic model implementation ) 2=

from pyomo.environ import *
from pyomo.dae import *

def build_semibatch_model(data):
m = ConcreteModel()

# Continuous time domain
m.t = ContinuousSet(bounds=(0,21600), initialize=m.measT)

# Other variable/parameter/constraint declarations

# Differential Variable
m.Ca = Var(m.t)

m.dCa = DerivativeVar(m.Ca) Oa :& — ky exp (_ Eq )Ca

# Differential equation
def _dCacon(m,t):
if t == 0o:
return Constraint.Skip
return m.dCa[t] == m.Fa[t]/m.Vr[t] - \
m.kl1*exp(-m.E1/(m.R*m.Tr[t]))*m.Ca[t]
m.dCa = Constraint(m.t, rule=_dCacon)

# Automatically apply collocation over finite elements discretization
discretizer = TransformationFactory(‘dae.collocation’)
discretizer.apply_to(m, nfe=20, ncp=4)

return m



Parameter estimation i) ora_

Experiment 1 Experiment 2

=
£
L3

Stage 1

ki, ko
Eq E,

min Z:(errormeals)2 ‘ T_)

{k1,k2,E1,E2}
exp.

s.t. semibatch model equations
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Parameter estimation

= Three different experiments

= different manipulated variables, different measured data

Experiment 1 Experiment 2
Fo £y
i yaihe

Step change: F, Step change: T, . Step change: F,, T, .
Measure: C,, Cp, C., T} Measure: T, Measure:Cy, T,

A95Y
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Stochastic structure implementation (1/2) @ o

def pysp scenario_tree_model callback():
from pyomo.pysp.scenariotree.tree_structure_model \
import CreateConcreteTwoStageScenarioTreeModel

st_model

= CreateConcreteTwoStageScenarioTreeModel(scenarios)

first_stage = st_model.Stages.first()
second_stage = st_model.Stages.last()

# First Stage

st_model.
st_model.
.StageVariables[first_stage].add('k2")
st_model.
st_model.

st_model

# Second

st_model.

StageCost[first_stage] = 'FirstStageCost’
StageVariables[first_stage].add('k1l"')

StageVariables[first_stage].add('E1"')
StageVariables[first_stage].add('E2"')

Stage
StageCost[second _stage] = 'SecondStageCost'’

ZCCR  return st_model
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Stochastic structure implementation (2/2) @

def pysp instance creation callback(scenario_name, node_names):

experiment = int(scenario_name.replace('Scenario',’'"'))

explist = [1,2,3]

experiment = explist[experiment-1]
instance = generate_semibatch_model paramest(experiment)

return instance

= Create and solve extensive form

Sandia
National
Laboratories

runef --solve --solver ipopt --output-solver-log -m semibatch.py

= Solve using progressive hedging

runph --solver ipopt --output-solver-log -m semibatch.py --default-rho=.25

#CCR




. . . Sandia
Semibatch parameter estimation results ) s,

= Extensive form results

k, (1/s) k,(1/s) E,(kJ/kmol) E, (kJ/kmol) Objective

Actual 15.01 85.01 30,000 40,000 -
All Meas. 16.84 81.19 30,322 39,861 2.147
Missing Meas. 20.69 77.42 30,850 39,697 24.976

all: 47 IPOPT iterations, 2674 variables, 2670 constraints, 1.08 s to run
missing: 33 IPOPT iterations, 2674 variables, 2670 constraints, 0.87 s to run

= Progressive Hedging results”

k, (1/s)  k,(1/s) E, (kJ/lkmol) E, (kJ/kmol) Obijective

Actual 15.01 85.01 30,000 40,000 -
All Meas. 15.72 30.59 30,146 37,017 3.170
Missing Meas. 24.38 69.49 31,302 39,400 25.051

all: 50 PH iterations, 15.08 s torun  missing: 35 PH iterations, 11.05 s to run
IPOPT subproblem size: 890 variables, 886 constraints, ~7 iterations
#CCR * PH js not guaranteed to converge on nonconvex problems




Optimal control ) 2=,

= Find the nominal control profiles such that the batch can be
‘saved’ given a partial cooling system failure at any point
during the batch time!2!

0 Fy
4

The
‘/"'—
Ty o
""’-"’F—.
/:E>E"
Tw,j (t) = Tw,c (t) t < trail
(PwCp, Vi )Tw,j = aw jsA; WTO (Tw,; = Tr) t> trau

HCCR (2] Abel and Marquardt, AIChE Journal (2000)
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Optimal control scenarios

Nonanticipativity Time
Constraints

Nominal

tan =4

tran = 3

tan = 2

ta = 1

#CCR
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n-Stage SP as a 2-stage problem

“First Stage”

“Recourse Decisions”

#CCR
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Optimal control: t;;, =3 h =
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Optimal control implementation

= 15 hours (including debugging)

= 300 lines of code
B (60%)Deterministic dynamic model specification

B (2%) Discretization
(18%) Stochastic problem formulation

(20%) Result plotting

Tron pyoma_enviran inpart =
fron pyomo.das inport

det generate senibatch model (tsbepfail)
R = Concretenodsl ()

# Paranaters for seni-batch reactor model
k1 = Parem{initializesls 81) £ 1fs

RLR = Paran(initializes3.314) # KI/molK
R & Paran(initislizessa s) # kyimal
n.rhar = Paraniinitialize=1993.9) % ka/n3

n.deltaH] = Paren! initialize=-43002.0) # kikmol
n.deltaH? = Paren( initializes-£3203.0) # kifimol
n_algha) = Pareminitializesd 5) & K3fs/m 2K
n.alghac = Paron{initialize=d. T) & kIfs/m2/K

n.¥] = Parentinitialioe.2) £ w3
R_VC & Paran(initializes
- hod = Farangimitiat ioes7oR. o) ¥ kgt
n.cpu = Paran(initislizes: 1) # K,
R.Co6 = Faran(initializesd 6) ¥ knol/m3)
(0 = Paran(initialize=d.0) # knolfm"3)
R.CcB = Paran{initislize=3.6) # knal/n3)
R_TrS = Paran{initializes3st a) & K
VMG = Paraniinitislize=1.8) # w3

# Cooling jacket failure paraneters

n.all_fail tines = Set{initializes[2163%4 for i in range(,11)1)

n_algma)_fatl = Param{initialiresd 75

n.tine_fail = Paran(initializesz160. atstepfail) # 5

* Time dependent variasles

initial_times = [2160.0 * 1 for 1 dn range(l. 21) if 2160 * 1 < 21600 + value(n.tine fail)]

n.tine = ContinuousSet{bounds=(9, 21695 + n.tine fail), initislizesinitisl tines) # Tine in seconds

n.Ca = Varin.tine, initializeen.Cof, boumds={d,15))

9. bounds={255,433))
. bounds={252,432)) # Coaling coil temp, control

tine, initialize=d.0. bounds=(0.0.35)) # Inlet flow rate. control ingut
n.Cnfa = War(n.tine, initialire=d) # cumlative Fa, used to specify total anount of A used

# Dertvatives in the nodel
n.dCa = Derivativerarin.ca)
n_db = Derivativetarin (o)
n.dCc = Derivativevarin. £c)
Rdir = Dertvativerarin ¥l
n.dir = DerivativeVarin.
n.dl] = Derivativearin.Ti) # Only used after facket failure
n_doinfa & Deriuativewar(n conFa)

E

# Extra componants o that PySP can be used to enforce the monanticipativity constraints
R.Tc_nanant = Var{n_all_fail_tines, initializes31 8, boundse(255,432))
n.Fa_nonant = Var(n.all fail tines. initializeed.d. bounds=(3.0.95))

ingut
tine, initializes31a 8, boundse| 255 None)) & Cooling jacket ten. follous cail tenp until fatlure

return Comstraint_Skip
dtalt] == n.Faltlm.Vrit] - n.kl%expi-n.ELf{m.Ron. Trlt]))"n.Calt]
e £ A TS o T b

def _dcocanin, t):
#if €=

#  return Constraint.Skip
return n_d(h[t] == m_KL*expi.n_ELf{n M Trit])) o Calt] . \
n_kz*expi -n.E2¢{n_R*n. Trit])) . Colt]
n_a0acon = Constraintin.time, rules dcncon)

skip
return n.dCclt] == n.k2%exn{-n.EZf{n.R'n. TrlE])) . colt ]
n_doccon = Canstraintin. time, rules dCcoon)

#  return Constraint.Skip
raturn n_dvr(t] = n_Falt]"n.Ma/m_rhar
n.dircon « Constraintin. time, rule= dércon)

dat _dire
PRt
*  retum Constraint.Skip
return n. ror.orn.dirt] =
n.Falt]*n.Mam.cor/m Ve[ t] % TEnTrlt]) - 4
n_k1*expi . ELF{n.A%n. Tr( t1)"n. Cal t] . deltatl. -
N k2*exp( B2/ (M-A*A. Tr(t])) N (o[ t]"n. deltaHz + 3
n_alohaj n.Aj fm.VrE*n. T [E]n.Trl]) +
Alphacn_sc/m vret(n. o] Trit])
n.dircon = Canstraintin. tine, rule= dircon)

nin, £ 2

det _singlecoslingin, t)
# apply this constraint at tine_fail to set initial condition for Tj diff eg
if value(n.time fail) == 0 or t <= value(n.tine fail):
retura n.Tcit] = n_Tjlt]
wlse:
return Constraint.Skip
n.singlecooling = Constraintin.tine, rule= singlecoaling)

sat _adTenpcan(m, )2
return {n.Tadlt]-n.Trit])*in. thar*n.corm.vrit] +
oL Cput (e Ve)) =
nVr(E]*{{-n.deltaH] n.deltaiiz) *n.Calt] + {-n.celtaiiz)n.calt])
n_adTenpron = Constraint(m_tine, rules sdTempcon)

dat _dTjconin, t)
if value(n.time fail) == 8 or t <= value(n.tine fail):
retura Constraint . Skin
alsa:
. rhoun. oMLY LT E] =\
n.alpnaj_failsm.Aj'm.vriclm.vra*(n.1j ] -n-1rit])
n.dTjcon = Constraintin.time, rules dfjcon)

det _dounFaconin, £):
if t == n.tine firs
ratarn Constraint.Skig
return n_domFait] = n_Faf;

n_dranfacon = Constraint(n.tine, rule= dounFacon)

Bound on cunnulatve Fa
n_cnfalinit = Constraint(expren. cunfaln.time. Last{)] == 73)

# Bound on tinal Ca
n.cafinal = Constraint (epra.caln. tineLast() | <= 8.5}

# Initial Conditions
dat _initcon(n)
yield n.Caln. tine. first{)] == n.Cad

yield n.Co[n. tine. first{)] == n.Ced
yield n.Coin. tine. first{)] == n.cca
yield n.Vrin. tine. first{)] == n.¥ra
yield n.Tr[n. tine. first{)] == n.Tra
ield n.cutFaln. tine. first )

n.initcon = Constraintiist{rubes_initcon)

# Malper canctraints for enforcing nnanticigativity constraints
det T romantconin.t):

if value(n_tine fail) = 3 a value(n_tine fail):

n.Tc_nonantcon = Constraint(n.all fail tines, rule= Tc nonantcon)

def _Fa nonantcan(n,t):
if value(n.tine fail) = O or £ <= value(n.tine fail):
return n.fa nonant(t] == m-faft]
return Constraint. Skip
n.Fa nonantcon = Constraint(n.all fail tines, rules Fa nonantcon)

# Stage-specific cost computations
daf ComputeFirstStagetost rulzinodel]

retura @
n.FirstStagetost = Expression!rulestomputeFirstStagetast_rule)
et Computesecandstagecast_rule(nodel):

return «n.caln. tine.Last ()]
n.SecondStagelast = Expression] rule=ConputeSecondstageCost_rule)

def tatal_cost_ruleinodel)
return modelFirststageCast + model SecondStagetast
n.Total Cost Objectave = Qbjectiveirulestotal_cost rule, sensesnininize)

# Discretize nodel Mumber of finite elenents depends on the cooling failure tine
rumte = n.ting last()/z168.9

disc = TransfomationFactory( ‘dae. col location')

disc.apply tojn, nfesmte, ncpet)

dizc. raduce_collocation pOINtE(n, VArn.F3, NCpel, COnNtEaten.tine)

disc. reduce_collocation paintsin, varen.Tc, ncpel, contseten.tine)

retura n

[

from pyono.environ inpart *

#rom pyons pysp scenariotres nanager import )
ScenariofresManagerClientSerial

from pyono.pysp.ef ANpart Create_ef_instance

thisdir = or.path.dirname{os.path.sbepathi_fila_))

options = ScenarioTreeManagerClientSerial register options{)

options_nodel_Location = oz_path.jein{thisdir, ‘senibatch.py’)

manager = ScenarioTreefanagerClientSerial ogtions)
manager_initializei)

@f_instance = Create ef_instance(nanager.sCENAric tree, VErDOSe ourptTrus)
print{ ‘Created EF instance')
sallver = Solvarfactary| *igegt )

salver.solveief_instance, teesTrue)

[# thumber o scenaraos
scenarios = 10

det pysn_scenaria tree nodel 03z
#ron gyona. pysp. scenariotree. tree structurs nodsl \
inpart. CraateConcretaTucstagescanarioT redadel

st_model. = CreateConcreteTunStagescenar ioTreeModel {scenardos)

first_stage = st_model Stages. firstq)
second stage = 5t nodel_Stages.Lastq)

# First stage
st nodel_Stagefast|first stage] = “FirstStagelast
st_nodel_Stagevarisoles{first_stage].add{ Fa nonant
st_nodel._Stagevariatles] first_stage].add{ ‘Tc_nomant

* socand stage
e

condStagetast

raturn st_nodsl

dat pyso snstance creation callback{scenario nane, node nanes)
failtimestep = int{soenario_name.replace| ‘Scenaria’,
instance = generate_senibatch madel{failtinestes. 1)

raturn instance

n = ef_tnstance. Soenariot

nontime = [1£3500.9 for i in non_tine]
tine = [1/3600.9 for i in n_tine]

inport matplotlin.pyslet as plt

plt.sumplot(313)

plt.plotinoatine. (valueinon Calt]) for t in ron.tine]. colorsgreyl)
plt.plot{montine, [valueinon Colt]) for t in non.tine]. -, color-grey2)
plt.plot{montime, [valueinonCclt]) for t in mon.tine], -, color=grey3)
plt.plot(tine, [value(n.Calt]) for t in n.tine],Label="Ca’, color=greyl)
plt_plot(tine, [valuein Cht]) for t in n_tine], Labela'Co’,coloragrey2)
plt_plot tine, [valuein.Cclt]) for t in n.tine],Labele"Cc*, colar=grey3)
plLt. Legend( Loc= Dest )
plt.xlabel( ‘Tine (n)
plt_ylabel { ‘Cancentration {imol fm
plt.xLim{amineg)

plt.ylamiyminea)|

plt. subplot{211)

glt.plot(tine(1: ], [value{n.Falt]1*3508 for t in n.tine](1:],color=grey2)
olt.plot(montine(1:] , [valueinom. Falt]) 3509 for t in non_tine][1:],"--",color=grey2)
Pt Legend(Loca bast ")
plt.ylabel| ‘Foed Fa {kmol,
ple.xLimfmineg)
plt.yliniynined)

1

plt. subplat {312}

pLt.plot{montime[1:] , [valus{nom. Te[t]) for t in ron.time](1:], -, coloregreyl)
plt_plot(nontine]1:] . [valueinem T{[t]) for t in non_tine](1:]_ .. " coloregreyz)
plt.plot{montine, [valueinon.Trit]) for t in non.tine], - ,color-grey3)
plt.plot(tinel1:], [valueim.TclE]) for ¢ in n.time](1:],labelaCail Tenn. ", colar=greyl)
plt.plot(time(1:], [value(n.Ti[t]) for t in n.time](1:], labels Jacket Tenp. ', colorsgrey2)
plt plot{tine, [valuein TriE]) for t in n_tine] Labela'Reactar Temn. ', colarsgrey3)

plLt. Legend( Loc="best ")
ylabel (“Temperature ()"}
xblinismined)

_thau()



Bubbling Fluidized Bed (BFB) Model ) 2=,

= Gas-solid, 3 region model
(Lee and Miller, 2013, Ind. Eng. Chem. Res.)

Gas Outlet

4 & |Bubble
) Heat Transfer Solid Inlet _
1 — Surface Reaction
$ «I» S | Cloud-wake
wn o
[} ]

¢’ wm

{9 + S | Emulsio

wn o

= Modeled using system of partial
differential algebraic equations 11 Gasinlet
(PDAES)

#CCR
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BFB Parameter Estimation (1/2) (O}

: 2
min z (erroteqs)
{CT'lahth}

exp.

s.t. BFB model equations

Heat Exchanger Model Parameters

a, Emopirical factor for tube model

N A
% :

07 K2
) .

FCCR
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BFB Parameter Estimation (2/2)

= Solve using progressive hedging in parallel

mpirun -np 1 pyomo nhs : -np 1 dispatch srvr : -np 30 phsolverserver :

-np 1 runph --solver-manager=phpyro --shutdown-pyro \
-m bfb_paramest.py --solver=ipopt --default-rho=0.25

Sandia
National
Laboratories

C, ap, h,, Solve Time (s)
Actual 1.0 0.8 1500.0 -
Extensive Form 1.016 0.51 1450.35 604.45
Progressive Hedging 0.9824 0.7850  1501.74 610.98
(15 proc)
Progressive Hedging 0.9824 0.7850  1501.74 459.10

(30 proc)

FCCR




Summary (]

= Explicitly capturing high-level structure leads to significantly
easier, faster, and more flexible implementations

= Pyomo provides high-level modeling constructs that can be
easily combined to solve complex, structured optimization
problems. (www.pyomo.org)

On-going pyomo.dae work

= |nterface to DAE simulators
= Shooting methods for dynamic optimization
New challenges and open questions

= general implementations of meta-solvers to exploit
layered/nested structure

= scalability of these techniques

FCCR
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Questions? )
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