
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

A Framework for Modeling and
Optimizing Dynamic Systems Under
Uncertainty

Bethany Nicholson

John D. Siirola

Center for Computing Research
Sandia National Laboratories
Albuquerque, NM

INFORMS Annual Meeting October 22-25, 2017

SAND2017-11463C

Implement this…

2

Dynamic Model

Dynamic Optimization

Disjunction

V

Generalized Disjuntive
Programming

Scenario 1

Scenario 2

Scenario 3

Stochastic Programming

Scenario 1

Dynamic
Model

Scenario 2
Dynamic

Model
Scenario 3

Dynamic
Model

 Challenges with a flat representation
 manual reformulation is required to write a ‘solvable’ model

 difficult to reverse engineer the intent or goal of the original problem

 tedious to experiment with alternative model reformulations

 Benefits to explicitly capturing structure
 models are formulated in a more natural, intuitive form

 fewer coding mistakes

 separates model specification from the solution approach

 easy to experiment with different model reformulations

 encourages general implementations of common solution approaches

Why capture model structure?

3

 Pyomo: Python Optimization Modeling Objects
 Formulate optimization models within Python

 Utilize high-level programming language to write scripts and
manipulate model objects
 Leverage third-party Python libraries

e.g. SciPy, NumPy, MatPlotLib, Pandas

Software platform

4

from pyomo.environ import *

m = ConcreteModel()

m.x1 = Var()
m.x2 = Var(bounds=(-1,1))
m.x3 = Var(bounds=(1,2))

m.obj = Objective(sense = minimize,
expr = m.x1**2 + (m.x2*m.x3)**4 + m.x1*m.x3
+ m.x2 + m.x2*sin(m.x1+m.x3))

Pyomo at a Glance

5

Solver Interfaces

GLPK

BARON

CBC

CPLEX

Gurobi

NEOS

Ipopt

KNITRO

Bonmin

Core Modeling
Objects

Couenne

Meta-Solvers
• Generalized Benders
• Progressive Hedging
• Linear bilevel
• Linear MPEC

Modeling Extensions
• Disjunctive programming
• Stochastic programming
• Bilevel programming
• Differential equations
• Equilibrium constraints

Core Optimization
Objects

Model
Transformations

DAKOTA

DICOPT

ANTIGONE

⋅⋅⋅

⋅⋅⋅

AMPL Solver Library

GAMS Solver Library

Solving dynamic optimization problems

6

min � � �� , ��

���

���

+ � ��

�. �. ���� = � �� , �� , � = 1, … , � − 1
�� = ��������

min � � �, � ��

��

��

+ � �(��)

�. �.
��

��
= � �, �

�(��) = ��������

Discretize
Model

x: State variables
u: Control variables

�� � = � ���ℓ� �

�

���

, ℓ� � = �
(� − ��)

�� − ��

�

���
���

, ��� = ���� + ��ℎ�

� ���

�

���

ℓ �
̇ �� = ℎ�� ��� , ��� , ��� , ��� , ����,� = � ℓ�(1)

�

���

��� , �� = � ℓ�(1)

�

���

��� , ��,� = 0

Approximate dynamics
using algebraic equations

Solving dynamic optimization problems

7

min � � �� , ��

���

���

+ � ��

�. �. ���� = � �� , �� , � = 1, … , � − 1
�� = ��������

min � � �, � ��

��

��

+ � �(��)

�. �.
��

��
= � �, �

�(��) = ��������

Discretize
Model

x: State variables
u: Control variables

Approximate dynamics
using algebraic equations

Automated with Pyomo.DAE

 Extend Pyomo syntax to represent:
 Continuous domains

 Ordinary differential equations

 Partial differential equations

 Systems of differential algebraic equations

 Higher order differential equations and mixed partial derivatives

 Available discretization schemes
 Finite difference methods (Backward/Forward/Central)

 Collocation (Radau or Legendre roots)

 Extensible framework
 Write general implementations of custom discretization schemes

 Build frameworks/meta-algorithms including dynamic optimization

 Interface with numerical simulators
 Scipy for simulating ODEs

 CasADi for simulating ODEs and DAEs

Pyomo.dae

8

 Framework for simplifying implementation of stochastic
programming models, only requiring:
 deterministic base model

 scenario tree defining the problem stages and uncertain parameters

 PySP provides two primary solution strategies
 build and solve the deterministic equivalent (extensive form)

 Progressive Hedging

 (plus beta implementations of others, including 2-stage Benders and
an interface to DDSIP)

 Parallel infrastructure for generating and solving subproblems
on parallel (distributed) computing platforms

PySP

9

 Semibatch reactor[2]

Dynamic system under uncertainty

10

M

Tw,j

Tw,c

Fa

V

� → � → �

[2] Abel and Marquardt, AIChE Journal (2000)

Model inputs (control variables)
��: Inlet flow rate of A
��,�: Water temperature in cooling coil

��,�: Water temperature in cooling jacket

 Two case studies
 parameter estimation

 optimal control under partial
system failure[2]

Dynamic model implementation

11

from pyomo.environ import *
from pyomo.dae import *

def build_semibatch_model(data):

m = ConcreteModel()

Continuous time domain
m.t = ContinuousSet(bounds=(0,21600), initialize=m.measT)

Other variable/parameter/constraint declarations
…

Differential Variable
m.Ca = Var(m.t)
m.dCa = DerivativeVar(m.Ca)

Differential equation
def _dCacon(m,t):

if t == 0:
return Constraint.Skip

return m.dCa[t] == m.Fa[t]/m.Vr[t] - \
m.k1*exp(-m.E1/(m.R*m.Tr[t]))*m.Ca[t]

m.dCa = Constraint(m.t, rule=_dCacon)

Automatically apply collocation over finite elements discretization
discretizer = TransformationFactory(‘dae.collocation’)
discretizer.apply_to(m, nfe=20, ncp=4)

return m

Parameter estimation

12

�
��
→ �

��
→ �

Experiment 1 Experiment 2 Experiment 3

min
{��,��,��,��}

� ���������
�

���.

�. �. ��������ℎ ����� ���������

��, ��

��, ��

Stage 1

Stage 2

 Three different experiments
 different manipulated variables, different measured data

Parameter estimation

13

�
��
→ �

��
→ �

Step change: ��

Measure: ��, ��, �� , ��

Step change: ��,�

Measure: ��

Step change: �� , ��,�

Measure:��, ��

Experiment 1 Experiment 2 Experiment 3

Stochastic structure implementation (1/2)

14

def pysp_scenario_tree_model_callback():
from pyomo.pysp.scenariotree.tree_structure_model \

import CreateConcreteTwoStageScenarioTreeModel

st_model = CreateConcreteTwoStageScenarioTreeModel(scenarios)

first_stage = st_model.Stages.first()
second_stage = st_model.Stages.last()

First Stage
st_model.StageCost[first_stage] = 'FirstStageCost'
st_model.StageVariables[first_stage].add('k1')
st_model.StageVariables[first_stage].add('k2')
st_model.StageVariables[first_stage].add('E1')
st_model.StageVariables[first_stage].add('E2')

Second Stage
st_model.StageCost[second_stage] = 'SecondStageCost'

return st_model

Stochastic structure implementation (2/2)

15

def pysp_instance_creation_callback(scenario_name, node_names):
experiment = int(scenario_name.replace('Scenario',''))

Experiments with measurement noise
explist = [1,2,3] # Different step changes in control inputs

experiment = explist[experiment-1]
instance = generate_semibatch_model_paramest(experiment)

return instance

runph --solver ipopt --output-solver-log -m semibatch.py --default-rho=.25

runef --solve --solver ipopt --output-solver-log -m semibatch.py

 Create and solve extensive form

 Solve using progressive hedging

Semibatch parameter estimation results

16

 Extensive form results

all: 47 IPOPT iterations, 2674 variables, 2670 constraints, 1.08 s to run

missing: 33 IPOPT iterations, 2674 variables, 2670 constraints, 0.87 s to run

 Progressive Hedging results*

all: 50 PH iterations, 15.08 s to run missing: 35 PH iterations, 11.05 s to run

IPOPT subproblem size: 890 variables, 886 constraints, ~7 iterations

* PH is not guaranteed to converge on nonconvex problems

k1 (1/s) k2 (1/s) E1 (kJ/kmol) E2 (kJ/kmol) Objective

Actual 15.01 85.01 30,000 40,000 -

All Meas. 16.84 81.19 30,322 39,861 2.147

Missing Meas. 20.69 77.42 30,850 39,697 24.976

k1 (1/s) k2 (1/s) E1 (kJ/kmol) E2 (kJ/kmol) Objective

Actual 15.01 85.01 30,000 40,000 -

All Meas. 15.72 30.59 30,146 37,017 3.170

Missing Meas. 24.38 69.49 31,302 39,400 25.051

 Find the nominal control profiles such that the batch can be
‘saved’ given a partial cooling system failure at any point
during the batch time[2]

Optimal control

17

X

��,� � = ��,� � � ≤ �����

�����
�� �̇�,� = ��,����

��

��,�
��,� − �� � > �����

[2] Abel and Marquardt, AIChE Journal (2000)

Optimal control scenarios

18

Tw,j(1)Nominal Tw,j(2) Tw,j(3) Tw,j(4) Tw,j(5)

tfail = 4 Tw,j(1) Tw,j(2) Tw,j(3) Tw,j(4) Tw,j(5)

Tw,j(1) Tw,j(2) Tw,j(3) Tw,j(4) Tw,j(5)tfail = 3

Tw,j(1) Tw,j(2) Tw,j(3) Tw,j(4) Tw,j(5)tfail = 2

Tw,j(1) Tw,j(2) Tw,j(3) Tw,j(4) Tw,j(5)tfail = 1

Time Nonanticipativity
Constraints

n-Stage SP as a 2-stage problem

19

Nominal Scenario

Failure
scenarios

“First Stage”

“Recourse Decisions”

Optimal control: tfail = 3 h

20

 15 hours (including debugging)

 300 lines of code
 (60%)Deterministic dynamic model specification

 (2%) Discretization

 (18%) Stochastic problem formulation

 (20%) Result plotting

Optimal control implementation

21

 Gas-solid, 3 region model

(Lee and Miller, 2013, Ind. Eng. Chem. Res.)

 Modeled using system of partial
differential algebraic equations
(PDAEs)

Bubbling Fluidized Bed (BFB) Model

22

min
{��,��,��}

� ���������
�

���.

�. �. ��� ����� ���������

�� , ��

ℎ�S
ta

g
e
 1

S
ta

g
e
 2

Heat Exchanger Model Parameters

�� Average correction factor for tube model

�� Empirical factor for tube model

ℎ� Heat transfer coefficient of tube walls …

BFB Parameter Estimation (1/2)

BFB Parameter Estimation (2/2)

Cr ah hw Solve Time (s)

Actual 1.0 0.8 1500.0 -

Extensive Form 1.016 0.51 1450.35 604.45

Progressive Hedging
(15 proc)

0.9824 0.7850 1501.74 610.98

Progressive Hedging
(30 proc)

0.9824 0.7850 1501.74 459.10

mpirun -np 1 pyomo_ns : -np 1 dispatch_srvr : -np 30 phsolverserver : \
-np 1 runph --solver-manager=phpyro --shutdown-pyro \
-m bfb_paramest.py --solver=ipopt --default-rho=0.25

 Solve using progressive hedging in parallel

 Explicitly capturing high-level structure leads to significantly
easier, faster, and more flexible implementations

 Pyomo provides high-level modeling constructs that can be
easily combined to solve complex, structured optimization
problems. (www.pyomo.org)

On-going pyomo.dae work

 Interface to DAE simulators

 Shooting methods for dynamic optimization

New challenges and open questions

 general implementations of meta-solvers to exploit
layered/nested structure

 scalability of these techniques

Summary

25

 Acknowledgements
 This work was conducted as part of the Institute for the Design of Advanced

Energy Systems (IDAES) with funding from the Office of Fossil Energy, Cross-
Cutting Research, U.S. Department of Energy

Questions?

26

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

Disclaimer This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

