SAND2017-11463C

A Framework for Modeling and
Optimizing Dynamic Systems Under
Uncertainty

Bethany Nicholson

John D. Siirola

Center for Computing Research
Sandia National Laboratories
Albuquerque, NM

INFORMS Annual Meeting October 22-25, 2017

U.S. DEPARTMENT OF VVA T o o?
@ENERGY 4VISA HCCR

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525

Implement this... =

Generalized Disjuntive
Programming

Dynamic Optimization Stochastic Programming

Disjunction Scenario 1
. Scenario 2
Dynamic Model [] vV [] .
Scenario 3
/ \\

Disjunction

Dynamic vV Dynamic
Model Model

Scenario 1

Dyl Scenario 2
5 Dy
M

Scenario 3

Dynamic
Model

Scenario 1

Scenario 2
[Dy

Scenario 3
HCCR

{E
Dynamic V Dynamic
Model Model
Center for Computing Research

Why capture model structure?

= Challenges with a flat representation
= manual reformulation is required to write a ‘solvable’ model
= difficult to reverse engineer the intent or goal of the original problem
= tedious to experiment with alternative model reformulations

= Benefits to explicitly capturing structure
= models are formulated in a more natural, intuitive form
= fewer coding mistakes
= separates model specification from the solution approach
= easy to experiment with different model reformulations
= encourages general implementations of common solution approaches

FCCR

Center for Computing Research

7| Netora

Software platform

= Pyomo: Python Optimization Modeling Objects ‘)
* Formulate optimization models within Python - PYOMO

from pyomo.environ import *

m = ConcreteModel ()

m.x1 = Var ()

m.x2 = Var (bounds=(-1,1))

m.x3 = Var (bounds=(1,2))

m.obj = Objective (sense = minimize,

expr = m.x1**2 + (m.x2*m.x3)**4 + m.x1*m.x3
+ m.x2 + m.x2*sin(m.x1l+m.x3))

= Utilize high-level programming language to write scripts and
manipulate model objects
= Leverage third-party Python libraries

e.g. SciPy, NumPy, MatPlotLib, Pandas
#CCR

Center for Computing Research

Pyomo at a Glance =

p \ BARON
" CBC

‘/ PYOMO Solver Interfaces CPLEX

Meta-Solvers oL

* Generalized Benders
* Progressive Hedging
* Linear bilevel

e Linear MPEC

Core Optimization Gurobi
Objects NEOS

AMPL Solver Library

Core Modeling [lpopt |

Objects KNITRO

. . Bonmin
Moc.iglmg.Extensmns. | Cowenne |
« Disjunctive programming ™ oakoTA |
« Stochastic programming Model - |

« Bilevel programming Transformations :
- Differential equations GAMS Solver Library
« Equilibrium constraints |___DICOPT |

_ / ANTIGONE

FCCR

Center for Computing Research

Solving dynamic optimization problems) e

tr N-1
min [($G0w))de + BG(ee) min Y ($Ciow) + $C)
fo k=1
dx S.L| Xjy1 = f(xl-,ul-),li =1,..,N—1
st o= glx,u) Jiscretize X, = constant

DUE
x(ty) = constant : .
(to) Approximate dynamics

x: State variables using algebraic equation

u: Control variables

K

K
(=)
Ko=) @, o= [—% =t +h
k=0

@-w)

k+j

J=0
K

K K
Z zij € (1) = hif Zie Yirer Uit tire)» Zit1,0 = Z (D z, oz = Z (1) zyj, 210 =0
Jj=0 j=0 j=0

Solving dynamic optimization problems) e

tr N-1
min [(Gou))de +pGx(tr) min Y ($Ciow) + $C)
to k=1
dx Di c S.t. Xi+1 = f(xlr ul)rl = 1; ;N -1
S.t. ac =g(x,u) RIS X1 = constant
t Model

x(ty) = constant : .
(to) Approximate dynamics

using algebraic equations

x: State variables
u: Control variables Automated with Pyomo.DAE

#CCR

Center for Computing Research

Pyomo.dae) 2=,

= Extend Pyomo syntax to represent:

= Continuous domains

= Ordinary differential equations

= Partial differential equations

= Systems of differential algebraic equations

= Higher order differential equations and mixed partial derivatives
= Available discretization schemes

= Finite difference methods (Backward/Forward/Central)

= Collocation (Radau or Legendre roots)
= Extensible framework

= Write general implementations of custom discretization schemes

= Build frameworks/meta-algorithms including dynamic optimization
= |nterface with numerical simulators

= Scipy for simulating ODEs

= CasADi for simulating ODEs and DAEs

FCCR

Center for Computing Research

PySP) .,

= Framework for simplifying implementation of stochastic
programming models, only requiring:
= deterministic base model
= scenario tree defining the problem stages and uncertain parameters

= PySP provides two primary solution strategies
= build and solve the deterministic equivalent (extensive form)
= Progressive Hedging
= (plus beta implementations of others, including 2-stage Benders and
an interface to DDSIP)
= Parallel infrastructure for generating and solving subproblems
on parallel (distributed) computing platforms

FCCR

Center for Computing Research

Dynamic system under uncertainty) fees,

= Semibatch reactor!?!

: E E
A->B-C Cy =k1 exp (—mir)ca—kgexp ("R;’;.)C”
C, =k exp(E:)C
2 Fa e =h2 _RTr b
@ 4 v _ FaMw,
Tc P
—_—
y (prep,)Tr =M(Tf -T)
Twj — k1 exp (— Er) C,AH, — ks exp (— E) CyAH,
RT, RT,
/
‘/ A_] Ac
R o +ow Ty = Tr) + cwey—(Tuwe = Tr)
‘/ T, T,
}E-
= Two case studies
Model inputs (control variables) . ter estimation
E,: Inlet flow rate of A parameter estimatio
Ty c: Water temperature in cooling coil = optimal control under partial

Ty,;: Water temperature in cooling jacket system failure!?!

#CCR (2] Abel and Marquardt, AIChE Journal (2000)

Center for Computing Research

Dynamic model implementation) 2=

from pyomo.environ import *
from pyomo.dae import *

def build_semibatch_model(data):
m = ConcreteModel()

Continuous time domain
m.t = ContinuousSet(bounds=(0,21600), initialize=m.measT)

Other variable/parameter/constraint declarations

Differential Variable
m.Ca = Var(m.t)

m.dCa = DerivativeVar(m.Ca) Oa :& — ky exp (_ Eq)Ca

Differential equation
def _dCacon(m,t):
if t == 0o:
return Constraint.Skip
return m.dCa[t] == m.Fa[t]/m.Vr[t] - \
m.kl1*exp(-m.E1/(m.R*m.Tr[t]))*m.Ca[t]
m.dCa = Constraint(m.t, rule=_dCacon)

Automatically apply collocation over finite elements discretization
discretizer = TransformationFactory(‘dae.collocation’)
discretizer.apply_to(m, nfe=20, ncp=4)

return m

Parameter estimation i) ora_

Experiment 1 Experiment 2

=
£
L3

Stage 1

ki, ko
Eq E,

min Z:(errormeals)2 ‘ T_)

{k1,k2,E1,E2}
exp.

s.t. semibatch model equations

FCCR

Center for Computing Research

Parameter estimation

= Three different experiments

= different manipulated variables, different measured data

Experiment 1 Experiment 2
Fo £y
i yaihe

Step change: F, Step change: T, . Step change: F,, T, .
Measure: C,, Cp, C., T} Measure: T, Measure:Cy, T,

A95Y

#CCR

Center for Computing Research

Stochastic structure implementation (1/2) @ o

def pysp scenario_tree_model callback():
from pyomo.pysp.scenariotree.tree_structure_model \
import CreateConcreteTwoStageScenarioTreeModel

st_model

= CreateConcreteTwoStageScenarioTreeModel(scenarios)

first_stage = st_model.Stages.first()
second_stage = st_model.Stages.last()

First Stage

st_model.
st_model.
.StageVariables[first_stage].add('k2")
st_model.
st_model.

st_model

Second

st_model.

StageCost[first_stage] = 'FirstStageCost’
StageVariables[first_stage].add('k1l"')

StageVariables[first_stage].add('E1"')
StageVariables[first_stage].add('E2"')

Stage
StageCost[second _stage] = 'SecondStageCost'’

ZCCR return st_model

Center for Computing Research

Stochastic structure implementation (2/2) @

def pysp instance creation callback(scenario_name, node_names):

experiment = int(scenario_name.replace('Scenario',’'"'))

explist = [1,2,3]

experiment = explist[experiment-1]
instance = generate_semibatch_model paramest(experiment)

return instance

= Create and solve extensive form

Sandia
National
Laboratories

runef --solve --solver ipopt --output-solver-log -m semibatch.py

= Solve using progressive hedging

runph --solver ipopt --output-solver-log -m semibatch.py --default-rho=.25

#CCR

. . . Sandia
Semibatch parameter estimation results) s,

= Extensive form results

k, (1/s) k,(1/s) E,(kJ/kmol) E, (kJ/kmol) Objective

Actual 15.01 85.01 30,000 40,000 -
All Meas. 16.84 81.19 30,322 39,861 2.147
Missing Meas. 20.69 77.42 30,850 39,697 24.976

all: 47 IPOPT iterations, 2674 variables, 2670 constraints, 1.08 s to run
missing: 33 IPOPT iterations, 2674 variables, 2670 constraints, 0.87 s to run

= Progressive Hedging results”

k, (1/s) k,(1/s) E, (kJ/lkmol) E, (kJ/kmol) Obijective

Actual 15.01 85.01 30,000 40,000 -
All Meas. 15.72 30.59 30,146 37,017 3.170
Missing Meas. 24.38 69.49 31,302 39,400 25.051

all: 50 PH iterations, 15.08 s torun missing: 35 PH iterations, 11.05 s to run
IPOPT subproblem size: 890 variables, 886 constraints, ~7 iterations
#CCR * PH js not guaranteed to converge on nonconvex problems

Optimal control) 2=,

= Find the nominal control profiles such that the batch can be
‘saved’ given a partial cooling system failure at any point
during the batch time!2!

0 Fy
4

The
‘/"'—
Ty o
""’-"’F—.
/:E>E"
Tw,j (t) = Tw,c (t) t < trail
(PwCp, Vi)Tw,j = aw jsA; WTO (Tw,; = Tr) t> trau

HCCR (2] Abel and Marquardt, AIChE Journal (2000)

Center for Computing Research

Optimal control scenarios

Nonanticipativity Time
Constraints

Nominal

tan =4

tran = 3

tan = 2

ta = 1

#CCR

Center for Computing Research

n-Stage SP as a 2-stage problem

“First Stage”

“Recourse Decisions”

#CCR

Center for Computing Research

Nominal Scenario

>_ Failure
scenarios

Optimal control: t;;, =3 h =

16 A

14

12 ~

10 ~

Feed Fa (kmol/h)
o

101 — ca 4.
— b . |
84 = Cc

]

N ’ _ ra Coil Temp.
’ 0 - — Jacket Temp.
—— Reactor Temp.

Concentration (kmol/m™3)

“ =N 330 4

320 ~

Time (h) 110 |

(=]

N

N

h

™
Temperature (K)

300 ~

290 ~

#CCR

Center for Computing Research

Optimal control implementation

= 15 hours (including debugging)

= 300 lines of code
B (60%)Deterministic dynamic model specification

B (2%) Discretization
(18%) Stochastic problem formulation

(20%) Result plotting

Tron pyoma_enviran inpart =
fron pyomo.das inport

det generate senibatch model (tsbepfail)
R = Concretenodsl ()

Paranaters for seni-batch reactor model
k1 = Parem{initializesls 81) £ 1fs

RLR = Paran(initializes3.314) # KI/molK
R & Paran(initislizessa s) # kyimal
n.rhar = Paraniinitialize=1993.9) % ka/n3

n.deltaH] = Paren! initialize=-43002.0) # kikmol
n.deltaH? = Paren(initializes-£3203.0) # kifimol
n_algha) = Pareminitializesd 5) & K3fs/m 2K
n.alghac = Paron{initialize=d. T) & kIfs/m2/K

n.¥] = Parentinitialioe.2) £ w3
R_VC & Paran(initializes
- hod = Farangimitiat ioes7oR. o) ¥ kgt
n.cpu = Paran(initislizes: 1) # K,
R.Co6 = Faran(initializesd 6) ¥ knol/m3)
(0 = Paran(initialize=d.0) # knolfm"3)
R.CcB = Paran{initislize=3.6) # knal/n3)
R_TrS = Paran{initializes3st a) & K
VMG = Paraniinitislize=1.8) # w3

Cooling jacket failure paraneters

n.all_fail tines = Set{initializes[2163%4 for i in range(,11)1)

n_algma)_fatl = Param{initialiresd 75

n.tine_fail = Paran(initializesz160. atstepfail) # 5

* Time dependent variasles

initial_times = [2160.0 * 1 for 1 dn range(l. 21) if 2160 * 1 < 21600 + value(n.tine fail)]

n.tine = ContinuousSet{bounds=(9, 21695 + n.tine fail), initislizesinitisl tines) # Tine in seconds

n.Ca = Varin.tine, initializeen.Cof, boumds={d,15))

9. bounds={255,433))
. bounds={252,432)) # Coaling coil temp, control

tine, initialize=d.0. bounds=(0.0.35)) # Inlet flow rate. control ingut
n.Cnfa = War(n.tine, initialire=d) # cumlative Fa, used to specify total anount of A used

Dertvatives in the nodel
n.dCa = Derivativerarin.ca)
n_db = Derivativetarin (o)
n.dCc = Derivativevarin. £c)
Rdir = Dertvativerarin ¥l
n.dir = DerivativeVarin.
n.dl] = Derivativearin.Ti) # Only used after facket failure
n_doinfa & Deriuativewar(n conFa)

E

Extra componants o that PySP can be used to enforce the monanticipativity constraints
R.Tc_nanant = Var{n_all_fail_tines, initializes31 8, boundse(255,432))
n.Fa_nonant = Var(n.all fail tines. initializeed.d. bounds=(3.0.95))

ingut
tine, initializes31a 8, boundse| 255 None)) & Cooling jacket ten. follous cail tenp until fatlure

return Comstraint_Skip
dtalt] == n.Faltlm.Vrit] - n.kl%expi-n.ELf{m.Ron. Trlt]))"n.Calt]
e £ A TS o T b

def _dcocanin, t):
#if €=

return Constraint.Skip
return n_d(h[t] == m_KL*expi.n_ELf{n M Trit])) o Calt] . \
n_kz*expi -n.E2¢{n_R*n. Trit])) . Colt]
n_a0acon = Constraintin.time, rules dcncon)

skip
return n.dCclt] == n.k2%exn{-n.EZf{n.R'n. TrlE])) . colt]
n_doccon = Canstraintin. time, rules dCcoon)

return Constraint.Skip
raturn n_dvr(t] = n_Falt]"n.Ma/m_rhar
n.dircon « Constraintin. time, rule= dércon)

dat _dire
PRt
* retum Constraint.Skip
return n. ror.orn.dirt] =
n.Falt]*n.Mam.cor/m Ve[t] % TEnTrlt]) - 4
n_k1*expi . ELF{n.A%n. Tr(t1)"n. Cal t] . deltatl. -
N k2*exp(B2/ (M-A*A. Tr(t])) N (o[t]"n. deltaHz + 3
n_alohaj n.Aj fm.VrE*n. T [E]n.Trl]) +
Alphacn_sc/m vret(n. o] Trit])
n.dircon = Canstraintin. tine, rule= dircon)

nin, £ 2

det _singlecoslingin, t)
apply this constraint at tine_fail to set initial condition for Tj diff eg
if value(n.time fail) == 0 or t <= value(n.tine fail):
retura n.Tcit] = n_Tjlt]
wlse:
return Constraint.Skip
n.singlecooling = Constraintin.tine, rule= singlecoaling)

sat _adTenpcan(m,)2
return {n.Tadlt]-n.Trit])*in. thar*n.corm.vrit] +
oL Cput (e Ve)) =
nVr(E]*{{-n.deltaH] n.deltaiiz) *n.Calt] + {-n.celtaiiz)n.calt])
n_adTenpron = Constraint(m_tine, rules sdTempcon)

dat _dTjconin, t)
if value(n.time fail) == 8 or t <= value(n.tine fail):
retura Constraint . Skin
alsa:
. rhoun. oMLY LT E] =\
n.alpnaj_failsm.Aj'm.vriclm.vra*(n.1j] -n-1rit])
n.dTjcon = Constraintin.time, rules dfjcon)

det _dounFaconin, £):
if t == n.tine firs
ratarn Constraint.Skig
return n_domFait] = n_Faf;

n_dranfacon = Constraint(n.tine, rule= dounFacon)

Bound on cunnulatve Fa
n_cnfalinit = Constraint(expren. cunfaln.time. Last{)] == 73)

Bound on tinal Ca
n.cafinal = Constraint (epra.caln. tineLast() | <= 8.5}

Initial Conditions
dat _initcon(n)
yield n.Caln. tine. first{)] == n.Cad

yield n.Co[n. tine. first{)] == n.Ced
yield n.Coin. tine. first{)] == n.cca
yield n.Vrin. tine. first{)] == n.¥ra
yield n.Tr[n. tine. first{)] == n.Tra
ield n.cutFaln. tine. first)

n.initcon = Constraintiist{rubes_initcon)

Malper canctraints for enforcing nnanticigativity constraints
det T romantconin.t):

if value(n_tine fail) = 3 a value(n_tine fail):

n.Tc_nonantcon = Constraint(n.all fail tines, rule= Tc nonantcon)

def _Fa nonantcan(n,t):
if value(n.tine fail) = O or £ <= value(n.tine fail):
return n.fa nonant(t] == m-faft]
return Constraint. Skip
n.Fa nonantcon = Constraint(n.all fail tines, rules Fa nonantcon)

Stage-specific cost computations
daf ComputeFirstStagetost rulzinodel]

retura @
n.FirstStagetost = Expression!rulestomputeFirstStagetast_rule)
et Computesecandstagecast_rule(nodel):

return «n.caln. tine.Last ()]
n.SecondStagelast = Expression] rule=ConputeSecondstageCost_rule)

def tatal_cost_ruleinodel)
return modelFirststageCast + model SecondStagetast
n.Total Cost Objectave = Qbjectiveirulestotal_cost rule, sensesnininize)

Discretize nodel Mumber of finite elenents depends on the cooling failure tine
rumte = n.ting last()/z168.9

disc = TransfomationFactory(‘dae. col location')

disc.apply tojn, nfesmte, ncpet)

dizc. raduce_collocation pOINtE(n, VArn.F3, NCpel, COnNtEaten.tine)

disc. reduce_collocation paintsin, varen.Tc, ncpel, contseten.tine)

retura n

[

from pyono.environ inpart *

#rom pyons pysp scenariotres nanager import)
ScenariofresManagerClientSerial

from pyono.pysp.ef ANpart Create_ef_instance

thisdir = or.path.dirname{os.path.sbepathi_fila_))

options = ScenarioTreeManagerClientSerial register options{)

options_nodel_Location = oz_path.jein{thisdir, ‘senibatch.py’)

manager = ScenarioTreefanagerClientSerial ogtions)
manager_initializei)

@f_instance = Create ef_instance(nanager.sCENAric tree, VErDOSe ourptTrus)
print{ ‘Created EF instance')
sallver = Solvarfactary| *igegt)

salver.solveief_instance, teesTrue)

[# thumber o scenaraos
scenarios = 10

det pysn_scenaria tree nodel 03z
#ron gyona. pysp. scenariotree. tree structurs nodsl \
inpart. CraateConcretaTucstagescanarioT redadel

st_model. = CreateConcreteTunStagescenar ioTreeModel {scenardos)

first_stage = st_model Stages. firstq)
second stage = 5t nodel_Stages.Lastq)

First stage
st nodel_Stagefast|first stage] = “FirstStagelast
st_nodel_Stagevarisoles{first_stage].add{ Fa nonant
st_nodel._Stagevariatles] first_stage].add{ ‘Tc_nomant

* socand stage
e

condStagetast

raturn st_nodsl

dat pyso snstance creation callback{scenario nane, node nanes)
failtimestep = int{soenario_name.replace| ‘Scenaria’,
instance = generate_senibatch madel{failtinestes. 1)

raturn instance

n = ef_tnstance. Soenariot

nontime = [1£3500.9 for i in non_tine]
tine = [1/3600.9 for i in n_tine]

inport matplotlin.pyslet as plt

plt.sumplot(313)

plt.plotinoatine. (valueinon Calt]) for t in ron.tine]. colorsgreyl)
plt.plot{montine, [valueinon Colt]) for t in non.tine]. -, color-grey2)
plt.plot{montime, [valueinonCclt]) for t in mon.tine], -, color=grey3)
plt.plot(tine, [value(n.Calt]) for t in n.tine],Label="Ca’, color=greyl)
plt_plot(tine, [valuein Cht]) for t in n_tine], Labela'Co’,coloragrey2)
plt_plot tine, [valuein.Cclt]) for t in n.tine],Labele"Cc*, colar=grey3)
plLt. Legend(Loc= Dest)
plt.xlabel(‘Tine (n)
plt_ylabel { ‘Cancentration {imol fm
plt.xLim{amineg)

plt.ylamiyminea)|

plt. subplot{211)

glt.plot(tine(1:], [value{n.Falt]1*3508 for t in n.tine](1:],color=grey2)
olt.plot(montine(1:] , [valueinom. Falt]) 3509 for t in non_tine][1:],"--",color=grey2)
Pt Legend(Loca bast ")
plt.ylabel| ‘Foed Fa {kmol,
ple.xLimfmineg)
plt.yliniynined)

1

plt. subplat {312}

pLt.plot{montime[1:] , [valus{nom. Te[t]) for t in ron.time](1:], -, coloregreyl)
plt_plot(nontine]1:] . [valueinem T{[t]) for t in non_tine](1:]_ .. " coloregreyz)
plt.plot{montine, [valueinon.Trit]) for t in non.tine], - ,color-grey3)
plt.plot(tinel1:], [valueim.TclE]) for ¢ in n.time](1:],labelaCail Tenn. ", colar=greyl)
plt.plot(time(1:], [value(n.Ti[t]) for t in n.time](1:], labels Jacket Tenp. ', colorsgrey2)
plt plot{tine, [valuein TriE]) for t in n_tine] Labela'Reactar Temn. ', colarsgrey3)

plLt. Legend(Loc="best ")
ylabel (“Temperature ()"}
xblinismined)

_thau()

Bubbling Fluidized Bed (BFB) Model) 2=,

= Gas-solid, 3 region model
(Lee and Miller, 2013, Ind. Eng. Chem. Res.)

Gas Outlet

4 & |Bubble
) Heat Transfer Solid Inlet _
1 — Surface Reaction
$ «I» S | Cloud-wake
wn o
[}]

¢’ wm

{9 + S | Emulsio

wn o

= Modeled using system of partial
differential algebraic equations 11 Gasinlet
(PDAES)

#CCR

Center for Computing Research

BFB Parameter Estimation (1/2) (O}

: 2
min z (erroteqs)
{CT'lahth}

exp.

s.t. BFB model equations

Heat Exchanger Model Parameters

a, Emopirical factor for tube model

N A
% :

07 K2
) .

FCCR

Center for Computing Research

BFB Parameter Estimation (2/2)

= Solve using progressive hedging in parallel

mpirun -np 1 pyomo nhs : -np 1 dispatch srvr : -np 30 phsolverserver :

-np 1 runph --solver-manager=phpyro --shutdown-pyro \
-m bfb_paramest.py --solver=ipopt --default-rho=0.25

Sandia
National
Laboratories

C, ap, h,, Solve Time (s)
Actual 1.0 0.8 1500.0 -
Extensive Form 1.016 0.51 1450.35 604.45
Progressive Hedging 0.9824 0.7850 1501.74 610.98
(15 proc)
Progressive Hedging 0.9824 0.7850 1501.74 459.10

(30 proc)

FCCR

Summary (]

= Explicitly capturing high-level structure leads to significantly
easier, faster, and more flexible implementations

= Pyomo provides high-level modeling constructs that can be
easily combined to solve complex, structured optimization
problems. (www.pyomo.org)

On-going pyomo.dae work

= |nterface to DAE simulators
= Shooting methods for dynamic optimization
New challenges and open questions

= general implementations of meta-solvers to exploit
layered/nested structure

= scalability of these techniques

FCCR

Center for Computing Research

Questions?)

= Acknowledgements

= This work was conducted as part of the Institute for the Design of Advanced
Energy Systems (IDAES) with funding from the Office of Fossil Energy, Cross-
Cutting Research, U.S. Department of Energy

IDAES

Institute for the Design of
Advanced Energy Systems

N=TL .?:r}l ‘.’.\. ﬁa?_dia I Carnegie Mellon
— ationa .
Laboratories WW\@“&M

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

Disclaimer This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

