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Implement this…

2

Dynamic Model

Dynamic Optimization

Disjunction

V

Generalized Disjuntive
Programming

Scenario 1

Scenario 2

Scenario 3

Stochastic Programming

Scenario 1

Dynamic 
Model

Scenario 2
Dynamic 

Model
Scenario 3

Dynamic 
Model



 Challenges with a flat representation
 manual reformulation is required to write a ‘solvable’ model 

 difficult to reverse engineer the intent or goal of the original problem

 tedious to experiment with alternative model reformulations

 Benefits to explicitly capturing structure
 models are formulated in a more natural, intuitive form

 fewer coding mistakes 

 separates model specification from the solution approach

 easy to experiment with different model reformulations 

 encourages general implementations of common solution approaches

Why capture model structure?
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 Pyomo: Python Optimization Modeling Objects
 Formulate optimization models within Python

 Utilize high-level programming language to write scripts and 
manipulate model objects
 Leverage third-party Python libraries

e.g. SciPy, NumPy, MatPlotLib, Pandas

Software platform 
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from pyomo.environ import *

m = ConcreteModel()

m.x1 = Var()
m.x2 = Var(bounds=(-1,1))
m.x3 = Var(bounds=(1,2))

m.obj = Objective(sense = minimize,
expr = m.x1**2 + (m.x2*m.x3)**4 + m.x1*m.x3 
+ m.x2 + m.x2*sin(m.x1+m.x3) )



Pyomo at a Glance
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Solver Interfaces

GLPK

BARON

CBC

CPLEX

Gurobi

NEOS

Ipopt

KNITRO

Bonmin

Core Modeling 
Objects

Couenne

Meta-Solvers
• Generalized Benders
• Progressive Hedging
• Linear bilevel
• Linear MPEC

Modeling Extensions
• Disjunctive programming
• Stochastic programming
• Bilevel programming
• Differential equations
• Equilibrium constraints

Core Optimization 
Objects

Model 
Transformations

DAKOTA

DICOPT

ANTIGONE

⋅⋅⋅

⋅⋅⋅

AMPL Solver Library

GAMS Solver Library



Solving dynamic optimization problems
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Solving dynamic optimization problems
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Automated with Pyomo.DAE



 Extend Pyomo syntax to represent: 
 Continuous domains

 Ordinary differential equations

 Partial differential equations

 Systems of differential algebraic equations

 Higher order differential equations and mixed partial derivatives

 Available discretization schemes
 Finite difference methods (Backward/Forward/Central)

 Collocation (Radau or Legendre roots)

 Extensible framework
 Write general implementations of custom discretization schemes

 Build frameworks/meta-algorithms including dynamic optimization 

 Interface with numerical simulators
 Scipy for simulating ODEs

 CasADi for simulating ODEs and DAEs

Pyomo.dae
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 Framework for simplifying implementation of stochastic 
programming models, only requiring:
 deterministic base model

 scenario tree defining the problem stages and uncertain parameters

 PySP provides two primary solution strategies
 build and solve the deterministic equivalent (extensive form)

 Progressive Hedging

 (plus beta implementations of others, including 2-stage Benders and 
an interface to DDSIP)

 Parallel infrastructure for generating and solving subproblems
on parallel (distributed) computing platforms

PySP
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 Semibatch reactor[2]

Dynamic system under uncertainty 
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[2] Abel and Marquardt, AIChE Journal (2000)

Model inputs (control variables)
��: Inlet flow rate of A
��,�: Water temperature in cooling coil

��,�: Water temperature in cooling jacket

 Two case studies
 parameter estimation

 optimal control under partial 
system failure[2]



Dynamic model implementation
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from pyomo.environ import *
from pyomo.dae import *

def build_semibatch_model(data):

m = ConcreteModel()

# Continuous time domain
m.t = ContinuousSet(bounds=(0,21600), initialize=m.measT)

# Other variable/parameter/constraint declarations
…

# Differential Variable
m.Ca = Var(m.t)
m.dCa = DerivativeVar(m.Ca)

# Differential equation
def _dCacon(m,t):

if t == 0:
return Constraint.Skip

return m.dCa[t] == m.Fa[t]/m.Vr[t] - \
m.k1*exp(-m.E1/(m.R*m.Tr[t]))*m.Ca[t]

m.dCa = Constraint(m.t, rule=_dCacon)

# Automatically apply collocation over finite elements discretization
discretizer = TransformationFactory(‘dae.collocation’)
discretizer.apply_to(m, nfe=20, ncp=4)

return m



Parameter estimation
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 Three different experiments
 different manipulated variables, different measured data

Parameter estimation
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Stochastic structure implementation (1/2)

14

def pysp_scenario_tree_model_callback():
from pyomo.pysp.scenariotree.tree_structure_model \

import CreateConcreteTwoStageScenarioTreeModel

st_model = CreateConcreteTwoStageScenarioTreeModel(scenarios)

first_stage = st_model.Stages.first()
second_stage = st_model.Stages.last()

# First Stage
st_model.StageCost[first_stage] = 'FirstStageCost'
st_model.StageVariables[first_stage].add('k1')
st_model.StageVariables[first_stage].add('k2')
st_model.StageVariables[first_stage].add('E1')
st_model.StageVariables[first_stage].add('E2')

# Second Stage
st_model.StageCost[second_stage] = 'SecondStageCost'

return st_model



Stochastic structure implementation (2/2)
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def pysp_instance_creation_callback(scenario_name, node_names):
experiment = int(scenario_name.replace('Scenario',''))

# Experiments with measurement noise
explist = [1,2,3] # Different step changes in control inputs

experiment = explist[experiment-1]
instance = generate_semibatch_model_paramest(experiment)

return instance

runph --solver ipopt --output-solver-log -m semibatch.py --default-rho=.25

runef --solve --solver ipopt --output-solver-log -m semibatch.py

 Create and solve extensive form

 Solve using progressive hedging



Semibatch parameter estimation results
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 Extensive form results

all: 47 IPOPT iterations, 2674 variables, 2670 constraints, 1.08 s to run

missing: 33 IPOPT iterations, 2674 variables, 2670 constraints, 0.87 s to run

 Progressive Hedging results*

all: 50 PH iterations, 15.08 s to run       missing: 35 PH iterations, 11.05 s to run

IPOPT subproblem size: 890 variables, 886 constraints, ~7 iterations

* PH is not guaranteed to converge on nonconvex problems

k1 (1/s) k2 (1/s) E1 (kJ/kmol) E2 (kJ/kmol) Objective

Actual 15.01 85.01 30,000 40,000 -

All Meas. 16.84 81.19 30,322 39,861 2.147

Missing Meas. 20.69 77.42 30,850 39,697 24.976

k1 (1/s) k2 (1/s) E1 (kJ/kmol) E2 (kJ/kmol) Objective 

Actual 15.01 85.01 30,000 40,000 -

All Meas. 15.72 30.59 30,146 37,017 3.170

Missing Meas. 24.38 69.49 31,302 39,400 25.051



 Find the nominal control profiles such that the batch can be 
‘saved’ given a partial cooling system failure at any point 
during the batch time[2]

Optimal control
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Optimal control scenarios
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Tw,j(1)Nominal Tw,j(2) Tw,j(3) Tw,j(4) Tw,j(5)

tfail = 4 Tw,j(1) Tw,j(2) Tw,j(3) Tw,j(4) Tw,j(5)

Tw,j(1) Tw,j(2) Tw,j(3) Tw,j(4) Tw,j(5)tfail = 3

Tw,j(1) Tw,j(2) Tw,j(3) Tw,j(4) Tw,j(5)tfail = 2

Tw,j(1) Tw,j(2) Tw,j(3) Tw,j(4) Tw,j(5)tfail = 1

Time Nonanticipativity
Constraints



n-Stage SP as a 2-stage problem
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Nominal Scenario

Failure 
scenarios

“First Stage”

“Recourse Decisions”



Optimal control: tfail = 3 h
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 15 hours (including debugging)

 300 lines of code
 (60%)Deterministic dynamic model specification

 (2%) Discretization

 (18%) Stochastic problem formulation

 (20%) Result plotting

Optimal control implementation
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 Gas-solid, 3 region model

(Lee and Miller, 2013, Ind. Eng. Chem. Res.)

 Modeled using system of partial 
differential algebraic equations 
(PDAEs)

Bubbling Fluidized Bed (BFB) Model
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BFB Parameter Estimation (1/2)



BFB Parameter Estimation (2/2)

Cr ah hw Solve Time (s)

Actual 1.0 0.8 1500.0 -

Extensive Form 1.016 0.51 1450.35 604.45

Progressive Hedging 
(15 proc)

0.9824 0.7850 1501.74 610.98

Progressive Hedging 
(30 proc)

0.9824 0.7850 1501.74 459.10

mpirun -np 1 pyomo_ns : -np 1 dispatch_srvr : -np 30 phsolverserver : \
-np 1 runph --solver-manager=phpyro --shutdown-pyro \
-m bfb_paramest.py --solver=ipopt --default-rho=0.25

 Solve using progressive hedging in parallel



 Explicitly capturing high-level structure leads to significantly 
easier, faster, and more flexible implementations

 Pyomo provides high-level modeling constructs that can be 
easily combined to solve complex, structured optimization 
problems. (www.pyomo.org)

On-going pyomo.dae work

 Interface to DAE simulators

 Shooting methods for dynamic optimization

New challenges and open questions

 general implementations of meta-solvers to exploit 
layered/nested structure

 scalability of these techniques

Summary
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