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Matrix Factorization
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ModelData

≈



Tensor Factorization (3-way)
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ModelData

≈

CP = CANDECOMP/PARAFAC or Canonical Polyadic

Hitchcock 1927, Harshman 1970, Carroll & Chang 1970



Tensor Factorization (𝒅-way)
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ModelData

≈

Hitchcock 1927, Harshman 1970, Carroll & Chang 1970
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Amino Acids Fluroescence
Dataset

▪ Fluorescence 
measurements of 5 
samples containing 3 
amino acids

▪ Tryptophan 

▪ Tyrosine

▪ Phenylalanine

▪ Tensor of size 5 x 51 x 201

▪ 5 samples

▪ 51 excitations

▪ 201 emissions
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R. Bro, PARAFAC: Tutorial and Applications, 
Chemometrics and Intelligent Laboratory Systems,  38:149-171, 1997

Unknown mixture of 
three amino acids



Rank-3 CP Factorization of 
Amino Acids Data
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𝐀 (5 × 3) 𝐁 (201 × 3) 𝐂 (51 × 3)



Hazardous Gases Sensor Dataset 
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A. Vergara, J. Fonollosa, J. Mahiques, M. Trincavelli, N. Rulkov and R. Huerta, On the 

performance of gas sensor arrays in open sampling systems using Inhibitory Support 
Vector Machines, Sensors and Actuators B: Chemical, 2013, doi:10.1016/j.snb.2013.05.027

71 Sensors (9 x 4 x 2 grid with one missing)

3 Fan Speeds

5 Room Temperatures

20 Replicates

Multiple Gases

Sampled to 1000 timepoints

http://doi.org/10.1016/j.snb.2013.05.027


Rank-5 CP Decomposition of Gas 
Data with 3 Gases
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𝐀 (71 × 5) 𝐁 (1000 × 5) 𝐂 (900 × 5)



Viz of Experiments using 𝐂
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Compute SVD of 𝐂
(of size 900 x 5)
and use first two left 
components to plot.



Tensor Factorization (3-way)
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ModelData

≈

We can rewrite this as a matrix equation in 𝐀, 𝐁, or 𝐂.



Details: Unfolding, Khatri-Rao 
Products, and Connections to CP
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Unfolding reorganizes the entries of the tensor into a matrix.

Connecting back to CP ModelKronecker Products, Unfolding, 
& Khatri-Rao Products



CP-ALS: Fitting CP Model via 
Alternating Least Squares

10/23/2017 Kolda @ Casa Matemática Oaxaca 13

Repeat until convergence…

Convex (linear least squares)
subproblems can be solved exactly



CP-ALS Least Squares Problem
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𝐗(1) −

Khatri-Rao Product

“right hand sides” “matrix”

𝐀 (𝐂⊙𝐁)

𝑛 × 𝑛𝑑−1 𝑛 × 𝑟 𝑟 × 𝑛𝑑−1

𝑛 × 𝑛2 𝑛 × 𝑟 𝑟 × 𝑛2



Details: Special Structure of the 
Least Squares Problem

10/23/2017 Kolda @ Casa Matemática Oaxaca 15

The most expensive step is 
not the backsolve.

Rather, it’s the formation of 
the Khatri-Rao product!

So, how will randomized 
methods help?

Battaglino, Ballard, & Kolda 2017

𝑛 × 𝑛𝑑−1 𝑛 × 𝑟 𝑟 × 𝑛𝑑−1



CP Least Squares Problem
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−

−

How to randomize this?

𝑛 × 𝑛𝑑−1 𝑛 × 𝑟 𝑟 × 𝑛𝑑−1



Aside: Sketching for Standard 
Least Squares 
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𝐀 𝐛𝐱

−
ො𝑛

𝑛

Backslash causes MATLAB to 
automatically call the best 
solver (cholesky, qr, etc.)

𝒪(ො𝑛𝑛2)
Sarlós 2006, Woodruff 2014



Sampled Least Squares 
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𝐀 𝐛𝐱

−

Choose 𝑞 rows, uniformly at random

𝐒𝐀 𝐒𝐛𝐱

−
𝑞

𝑛

𝒪(𝑞𝑛2)

approximate

Sampling only guaranteed to 
“work” if the 𝐀 is incoherent.

𝐒

𝒪(ො𝑛𝑛2)

ො𝑛

𝑛

Sarlós 2006, Woodruff 2014



Enforcing Incoherence
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𝐀 𝐛𝐱

−ො𝑛

𝑛

Mixing Matrix Mixing Matrix

ො𝑛

Sarlós 2006, Woodruff 2014

• Many good choices of mixing matrix, such as a matrix with entries 
chosen from a uniform random distribution.

• But no reduction in cost! 



Fast Johnson-Lindenstrauss
Transform (FJLT)
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𝐀 𝐛𝐱

−ො𝑛

𝑛

ℱ𝐃 ℱ𝐃

ො𝑛

Sarlós 2006, Woodruff 2014, Ailon & Chazelle 2006, Avron, Maymounkov, & Toledo 2010

• Instead, use FFT (ℱ) followed by random diagonal with +/- 1 entries (𝐃).
• Costs only 𝑛 log ො𝑛 to apply
• Practical application in Blendenpik, yielding ~4X speedup versus LAPACK



Sampled/Mixed Least Squares
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Ailon & Chazelle 2006; Avron, Maymounkov, & Toledo 2010

Sampling only,
No mixing.

Sampling +
Mixing



CP-ALS-RAND
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−

−

−

Battaglino, Ballard, & Kolda 2017



CP-ALS-RAND Trick #1: 
Avoid unfolding data tensor
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−

−

−

Data movement is often as expensive or more expensive than FLOPS.
Just move the minimum and no more.

Battaglino, Ballard, & Kolda 2017

Trick 1:

…



CP-ALS-RAND Trick #2: 
Don’t form Khatri-Rao Product
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−

−

−

The Khatri-Rao product is actually the most expensive part of CP-ALS.
Skip this and save lotsa time.

Each column in the 
sample is of the form:
(C(ℓ,:) .* B(𝑘,:))’

Battaglino, Ballard, & Kolda 2017

Trick 2:



CP-ALS-RAND (No Mixing)
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No mixing performed here, yet converges in many cases!

Type equation here.Theorem: Khatri-Rao product can do some mixing (see paper).
𝜇 𝐀⊙𝐁 ≤ 𝜇(𝐀)𝜇(𝐁)

Nevertheless, some problems still require mixing to converge.
Skipping details but can talk offline.

Battaglino, Ballard, & Kolda 2017



Randomizing the Convergence 
Check
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Estimate convergence of 
function values using small 
random subset of elements 

in function evaluation 
(use Chernoff-Hoeffding to 

bound accuracy)

16000 samples < 1% of full data

Battaglino, Ballard, & Kolda 2017



CP-ALS-RAND
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Randomized
Least
Squares

Use approximate
function value

Acar, Dunlavy & Kolda, 2011

Same sample every time

Different sampling matrices every time



Speed Advantage: Analysis of 
Hazardous Gas Data
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Data from Vergara et al. 2013; see also Vervliet and De Lathauwer (2016)
This mode scaled by component size Color-coded by gas type

900 experiments (with three different gas types) x 72 sensors x 25,900 time steps (13 GB)

Battaglino, Ballard, & Kolda 2017



Globalization Advantage? 
Amino Acids Data
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Benefits are not as clear without mixing.
Fit = 0.92

Fit = 0.97



Globalization Advantage? 
Comparison for Rank 4
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Other Randomized Methods
▪ Vervliet and De Lathauwer (2016) –

Select a random d-way sub-block of 
data rather than random elements
▪ Different  sub-block at every iteration

▪ Not contiguous as pictured

▪ Zhou, Cichocki, and Xie (2014) –
Random projections (sketch) to 
smaller tensor
▪ Project once and done
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CP-OPT: Fitting CP Model via 
Direct Optimization
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Define a tensor such that

We have that where

MTTKRP!



What if some data is missing?
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Ω = known entries (blue)

Redefine the tensor such that



Generalized CP
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“Standard” CP uses:

“Poisson” CP (Chi-Kolda 2012) uses:

“Exponential” CP uses :

“Boolean” CP uses:

Anderson-Bergman, Hong, and Kolda 2017



Fitting (Generalized) CP
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Compute
Gradient

Compute optimization 
step and take it

Use either checks on function value or gradient

Acar, Dunlavy & Kolda, 2011



Some Observations
▪ Can use any optimization method

▪ Showing steepest descent
▪ Can use 1st and 2nd-order methods
▪ Can add constraints

▪ Can easily add regularization

▪ G sparse ⇒ efficient gradient 
computation
▪ Known data Ω “sparse” ⇒ G sparse

▪ Sparse data tensor (X) ⇏ Sparse 
gradient tensor (G)
▪ Some choices for 𝑓 yield special 

structure that can be exploited
▪ But not generally the case

▪ Stochastic method yields sparse 
“known data”
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Fitting (Generalized) CP with 
SGD
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Compute 
Stochastic
Gradient

Take tiny step
(𝛼 is small)

Use approximate function value

Anderson-Bergman, Hong, Kolda (in progress)

Same sample every time

Different samples every time

Sparse MTTKRP, super cheap!



Gas Dataset: 1.7 GB
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A. Vergara, J. Fonollosa, J. Mahiques, M. Trincavelli, N. Rulkov and R. Huerta, On the 

performance of gas sensor arrays in open sampling systems using Inhibitory Support 
Vector Machines, Sensors and Actuators B: Chemical, 2013, doi:10.1016/j.snb.2013.05.027

71 (sensors) x 1000 (timepoints) x 5 temps x 3 fan speeds x 200 exps

(10 gases x 20 replicates)3.4% missing data

http://doi.org/10.1016/j.snb.2013.05.027


CP-ALS: 139s
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CP-ALS-RAND (no mixing): 18s
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CP-SGD + nonneg: 102s
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CP-SGD + nonneg + missing: 174s
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Questions to Ponder This Week
▪ Matrix and Tensor Factorizations

▪ Notion of “generalization error”?

▪ Contrasting and connections of the 
two approaches

▪ CP-ALS-RAND
▪ # column samples

▪ Sketching inside a larger algorithm?

▪ CP-SGD
▪ # samples for gradient estimate?

▪ Acceleration methods? (ADAM?)

▪ Stratified sampling for sparse data?

▪ Both
▪ # samples for function estimate?

▪ # iterations per epoch?

▪ # epochs w/o improvement before 
stopping?

▪ Choice or rank (# components)

▪ How to choose random samples
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