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Material and Fracture Property Analyses
Linked multi-scale analyses on pre-SPE-1 and post SPE-2, 3 and 5 granite

* Optical Microscopy
* defines extent of damage and controls on surface effects
» provides damage history (tectonic vs explosion)
* constrains anisotropy

* Core-scale Material Property Testing
* Unconfined and Triaxial compression (Hydrocode model development)
* Dynamic and Quasi-static Brazilian Disc Tension (Hydrocode model development)
* Triaxial compression to investigate permeability and damage relationship

* Core-scale Fracture Property Testing
* Direct Shear tests on natural fractures
* Triaxial shear on natural fractures (incorporating pore pressure and confining pressure on
natural fractures)
e P&S velocity as a function of fracture aperture with water as coupling medium




Material and Fracture Property Analyses
Linked multi-scale analyses on pre-SPE-1 and post SPE-2, 3 and 5
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Microscale Material and Fracture Property Analyses

Linked multi-scale analyses on pre-SPE-1 and post SPE-2, 3 and 5
granite demonstrate rock behavior that controls surface effects
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Microscale Material and Fracture Property Analyses
Optical Microscopy: anisotropy and damage history
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Core Scale Material Property Analyses

Uniaxial Uniaxial and Triaxial compression
-Performed from source hole U-15n
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Core Scale Material Property Analyses
Dynamic/Quasi-static Disc Tension

Dynamic
-Performed from source
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Core Scale Material Property Analyses
Triaxial compression to investigate permeability and damage relationship

Load frame

Pressure vessel

Upstream helium source

Flow bench
Helium leak detector

Data Acquisition System




Core Scale Material Property Analyses
Triaxial compression to investigate permeability and damage relationship
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Core Scale Material Property Analyses

Unconfined compressive strength varies with water content
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Core Scale Fracture Property Analyses

P&S velocity as a function of fracture aperture with water as coupling medium
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Core Scale Fracture Property Analyses
Direct Shear on Natural Fractures

e Core from source hole U-15n (pre SPE) and U-15n#10 (post SPE2)
e Determine Friction angle and cohesion of natural fractures

e Dry and saturated testing conditions

e Repetitive shearing performed
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Core Scale Fracture Property Analyses
Triaxial Shear on Natural Fractures

e Core from source hole U-15n (pre SPE) and U-15n#10 (post SPE2)
e Determine Friction angle and cohesion

e Incorporate fracture surface fluid pressure and confining pressure
e Characterization of wet weathered material possible
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Linking Micro to Core Scale Material Properties
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Micro-scale Material and Fracture Proper

'y Analyses

Optical microscopy data incorporated into models

Anisotropic Medium Isotropic Medium
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Normalized SPE Phase 1 Material Properties
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