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Motivation

 System design and fleet/portfolio 
modernization optimization for US 
Army clients

 Research sponsor: Program 
Executive Office (PEO) 
Ground Combat Systems (GCS)

 System design (WSTAT)
 Solve with multiobjective 

genetic algorithm

 Wish to interrogate 
multiobjective trade space

 Highly nonlinear

 Categorical variables

 Few, simple constraints

 Typically ignores fleet context

 Fleet modernization (CPAT)
 Solve as a MILP

 Highly constrained

 Mix of discrete and continuous 
variables

 Business rules linearizable

 One primary objective; need 
optimality certificate

 Typically assumes fixed designs



System/Fleet Design Interactions
 Individual system design and fleet modernization should be 

interdependent. Consider the following notional example:

 If we had this holistic fleet optimization capability, we could 
answer questions such as
 Of all possible ECP candidates, which one best integrates with the overall 

Ground Combat modernization plan?

 What Bradley upgrade configuration would allow for 
earliest/quickest/highest-density modernization?

 How much commonality amongst AMPV variants is desired by the 
optimal modernization plan? 
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Bradley ECP Option A
Cost: $2.0M per copy
Performance Score: 1.00

Bradley ECP Option B
Cost: $1.9M per copy
Performance Score: 0.96

Given its smaller cost, Option B might allow another
entire S&T program to fit under budget whereas 
Option A wouldn’t. Overall fleet performance could be 
higher with Option B, despite B’s lower performance.



Traditional Two-Stage Analysis

 The need for both an optimized fleet and optimized systems
within that fleet has traditionally been approached in two stages
 One stage optimizes the individual systems configurations

 The other optimizes the mix of systems within the fleet

 Traditionally, analysis stages don’t (directly) communicate
 WSTAT may influence Army’s planned system designs/requirements, which may 

eventually lead to CPAT data updates, but this process could take months

 With consistent value models, it should be possible to do automatically – and the 
system design insights can then be informed by the fleet perspective!

Optimized system designs Optimized fleet

WSTATWSTAT
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1) Technologies are 
selected to create 
configurations

Combine technologies into configurations; evolve in multiobjective GA

WSTAT Overview
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2) Each configuration is 
scored in lower-level 
metrics that contribute to 
higher-level dimensions
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mutated within a Genetic 
Algorithm (GA), evolving the 
population towards optimality
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Optimized system designs Optimized fleet

WSTATWSTAT
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 CPAT optimizes the mixture of systems within the entire fleet 
through time (the systems themselves are not modified)

 CPAT uses a multi-stage mixed-integer linear program (MILP) 
to perform this optimization
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Optimize fleet performance by updating/replacing systems over time

CPAT Introduction

 The fundamental unit of the 
Army fleet is the brigade.

 Each brigade has different 
mission roles, which are 
fulfilled by different 
specialized systems.

 There are multiple brigades 
of different types.



the optimization chooses a path over 
time for each mission role in each 
brigade

CPAT Approach
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(1) Value model aggregates 
performance for a  system type 
within a mission role, across multiple 
requirements areas 

(2) Multiple possible modernization 
paths exist within a given mission role; 

(3) As brigades of old systems are phased out 
and replaced by new systems, performance of 
that mission role increases.

Mission 2

Mission 3

Mission 4(4) Total fleet performance is the sum 
over all mission roles in all brigades; 
the optimization maximizes this area.

Mission 1

2021

2035
now

Modernization decisions are 
interdependent with detailed 
programmatic and production 
decisions subject to complex 

business rules.  Typical solution
space sizes of 10300 or more.



Modernization Schedule Example

 Population schedule 
shows the entire fleet 
modernization plan
 What’s in fleet
 What’s upgraded
 When 
 How many

 Quick comparison of 
performance vs. costs 
through time
 Costs broken down 

by R&D, 
Procurement, and 
O&S
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Optimized system designs Optimized fleet

WSTATWSTAT
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This part is tricky



 Let’s consider just a single system from WSTAT

 How could we get all the configuration possibilities into CPAT?

 Possibility 1: Naively enter every configuration from WSTAT as a separate 
system in CPAT

 Advantages:
 The ability to add new systems to CPAT already exists (though we would want to automate 

the input of 2000 systems)

 Disadvantages:
 Each system creates hundreds of integer and binary variables. Doing this for ~2000 variants is 

totally intractable

Communication Breakdown
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 Let’s consider just a single system from WSTAT 

 How could we get all the configuration possibilities into CPAT?

 Possibility 2: Naively enter a few configurations from WSTAT as a separate 
systems in CPAT

 Advantages:
 This functionality is already built-in, and with few systems can be done manually

 Disadvantages:
 Most of the WSTAT information is left behind and tradeoffs are made in a very coarse manner

 Complexity still grows very quickly with number of configurations

 Challenging to decide which configurations “best” represent tradeoffs

Communication Breakdown
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 Let’s consider just a single system from WSTAT 

 How could we get all the configuration possibilities into CPAT?

 Possibility 3: enter a linear approximation of the WSTAT Pareto solutions into 
CPAT

 Advantages:
 We are capturing a great deal about the WSTAT Pareto space without entering systems one-

by-one

 Disadvantages:
 Requires a new concept within CPAT (i.e. some systems are “adaptive”)

 “Adaptive” systems chosen by CPAT may not correspond with an actual WSTAT configuration

Communication Breakdown
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 Consider a WSTAT Pareto set and (recall it is in the 5 dimensions of 
performance, purchase cost, sustainment costs, risk, and growth potential).

 How would we linearize even the 2-D projection of this set? 

Purchase Cost
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 Start by forming  the convex hull 
of the Pareto set 

 CPAT could chose a 
performance/cost configuration 
anywhere inside this convex hull

 Actual WSTAT configurations 
falling close to the CPAT optimal 
approximation could be obtained 
as a post-processing step

 Good: It will choose the system’s 
optimal tradeoff of cost and 
performance holistically, relative 
to the needs of the entire fleet

 Bad: It may choose something far 
from an actual WSTAT 
configuration
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WSTAT Pareto Set Linearization



 We have found empirically that CPAT usually chooses a vertex point (makes 
sense if you think about it).  If it does not, choosing the nearest point may be 
acceptable (albeit suboptimal) for some applications.  Otherwise: 
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 Generate hyperplane that 
separates two nearest points
 Random for now
 Better methods likely exist

 Generate convex hulls of points 
on either side of the hyperplane

 Model union of disjoint polytopes 
using disjunctive technique of 
Balas 1979

 Re-solve MILP and repeat process 
as needed

 Guaranteed to converge 
eventually (although many 
iterations undesirable)

 Empirically, will usually converge 
in an iteration or two
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Post-processing



Computational Study

 Performed realistic tests @ different system design quantities

 WSTAT model based on Bradley Infantry Fighting Vehicle

 CPAT model based on PEO GCS fleet modernization problem

 At the edge of tractability in CPLEX 32-bit depending on inputs

 Includes two new attributes in addition to performance & purchase cost

 Up-front research, development, test and engineering costs

 Production start delays (informed by technology risk)

 WSTAT solutions in consistent order from run to run

 E.g., the first 16 designs are the same in the 32-design and the 16-design run

 Arbitrary order.  There are likely intelligent ways to order them so that the 
best coverage is achieved regardless of quantity

 Ran to zero optimality gap to prevent arbitrary selection of non-vertex 
system designs

 Compared against “naïve” method of injecting designs directly
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Computational Results

17*disjunctive post-processing method adds one variable each iteration
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Computational Results, cont’d

18*disjunctive post-processing method adds at least two constraints each iteration
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Computational Results, cont’d
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Conclusions
 Combining system design and fleet problems can result in better answers for 

both (improves fleet performance, better informs vehicle design selection)

 One way to approach this challenge is to bring more information about system 
configurations from the system design problem into the fleet optimization.

 Forming a linear approximation for a large quantity of discrete system design 
solutions can capture the richness of the trade space without overwhelming 
the portfolio formulation.

WSTATWSTAT
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