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Executive summary: Z data can benchmark models of emission @s...,

from photoionized accretion-powered plasmas

Understanding X-ray Binaries and AGN accretion disks requires
models that interpret observed spectra
- These models are largely untested in the laboratory

= A photoionized silicon plasma with a measured drive radiation
spectrum, density and temperature was created on Z
- the column density is adjustable, testing radiation transport

» AKkey approximation used in astrophysical models of radiation
transport appears to be inaccurate

» Models are unable to match the photoionized plasma emission and
absorption spectra without invoking unidentified experimental errors,
or model errors or both.

These results raise questions about the suitability of models
used to interpret astrophysical observations

emission spectrum
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Active Galactic Nuclei and X-ray Binaries are revealed through the

emission from their accretion disk
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Challenges:

Line identification

Blended spectra from multiple elements
Spatial and temporal integration

Radiation transport
Limited spectral resolution




Benchmark experiments do exist for collisional plasmas

W. Wiese et al., Phys. Rev. A, 6, (1972)
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Balmer line shapes measured with 6% error
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Few photoionized plasmas experiments exist @s..n
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There are numerous requirements for a benchmark emission experiment@,‘,,é.m..“.',Ial
Laberatories

For all photoionization experiments:

* large volumes for uniformity

* long duration for steady state

* demonstrated reproducibility

* independent diagnosis of plasma conditions and x-ray driving radiation

* demonstrated photoionization regime (CSD vs T,, £ > lerg.cm/s)

Specifically for emission:
* Large column density for high S/N
But column = density x length , density < 10¥° e"/cc = large ~1cm plasma size

Experiments on the Z Facility can meet all these criteria.

G. Loisel, J. Bailey, D. Liedahl et al., PRL 119 (2017)



All required measurements are obtained on a single Z shot

X-ray drive, flux and shape

lon density

Column density (adjustable)
Average charge

Electron temperature

Photoionization parameter

F~ 1.3 10" erg/cm?/s
Tco/or= [45, 80, 170] eV

n;=8x 10" cm-3

N, =[2.5, 5, 10] x 1017 cm™2
Z~10, Si*10

T,=26-40 eV

£~ 20-1000 erg.cm/s

Emission spectroscopy
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G. Loisel, J. Bailey, D. Liedahl et al., PRL 119 (2017)
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Measured relative absorption from different ion stages tests model Sandn
ionization predictions @m
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Z transmission data is reproducible to 4.7% with A/3A ~2400.
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Agreement can be obtained by adjusting parameters that increase

recombination

Transmission
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How accurately can models predict ionization?
= NLTE-10 workshop, Dec. 2017



Measured emission at 3 column densities enables radlatlon transport tests
3mm foil Column density 5| 1/6A=4400
2.5x10"7 Si/lcm?

2 separate
Z experiments

Intensity [a.u.]

std. dev. =5.7%

6mm foil 3 separate

Z experiments

5.0x10"'7 Si/lcm?

Intensity [a.u.]

std. dev. =5.2%

‘lllllllllllllllllllllllll lllllllllllllll

12mm foil

3 separate

1nv41017 Sj 2
10"" Si/cm Z experiments

Intensity [a.u.]

std. dev. =11.2%

| lllllllllllllllll1Illllllllll

S
;r,/




The emission is not reproduced by any model even with conditions Sandin
adjusted to match absorption spectra @m
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The effect of the different atomic physics data must also be evaluated.




Open questions @s..n

How much of the predictive difficulty is unique to our experiments
and how does it impact astrophysical models?

Possible needed improvements in understanding the experiment

* Could electron density be higher than the value measured with radiography?

* Transient kinetics appear relatively unimportant, but further evaluation is needed

The bulk of x-ray drive in 0.1 -1keV is measured to £20%, but accuracy in >1.7keV photon spectrum needs
more evaluation.

Accounting for geometrical dilution of drive requires attention

Velocity impact on line optical depths appears small, but further investigation needed

Scrutiny is required for the models
* Accuracy of the recombination rates? dielectronic recombination rates?
* |Is the atomic data complete?
* Are approximations in the radiation transport valid?
e.g. escape factors, escape geometry, self-consistency...



Announcement 1: We measured emission at very high spectral resolution
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We can study very detailed level structure and more precise radiation
transport effects on lines that have variable optical depth.




Announcement 2: We successfully fielded a Si sample closer to the Sonda
source, providing higher photoionization regime (~10x &) @m
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- Higher ionization was obtained, testing ionization at different &
- This experiment is a surrogate to study Fe in the laboratory.




Announcement 3: First observation of high-n, up to n=14, He-like transitions with
merging into the continuum in a photoionized plasma
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- We can test the relative importance of photoexcitation vs photoionization
- Effect of line shape, line broadening, continuum lowering can be studied. High-n
lines getting broader with n (preliminary).




Announcement 4: First observation of RRC (~10-8 Z-pinch energy) in a
photoionized plasma

Cygnus X-3 Vela X-1 Earth: Z data
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- The RRC is considered the most reliable temperature diagnostic, untested in the laboratory
in the photoionization regime.

- We can test RRC accuracy at inferring temperature and the PLTE assumption in absorption.




Executive summary: Z data can benchmark models of emission @s...,

from photoionized accretion-powered plasmas

Understanding X-ray Binaries and AGN accretion disks requires
models that interpret observed spectra
- These models are largely untested in the laboratory

= A photoionized silicon plasma with a measured drive radiation
spectrum, density and temperature was created on Z
- the column density is adjustable, testing radiation transport

» AKkey approximation used in astrophysical models of radiation
transport appears to be inaccurate

» Models are unable to match the photoionized plasma emission and
absorption spectra without invoking unidentified experimental errors,
or model errors or both.

These results raise questions about the suitability of models
used to interpret astrophysical observations.
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Backup slides




The measured ionization balance and the electron temperature —
inferred from the data confirm Si plasma is photoionized @m
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The plasma is over-ionized compared to collisional plasma at the same temperature




lon density is measured from the sample areal mass and sample expansion

expansion

Absorption
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Accounting for transient effects helps but does not resolve the model- Sandn

data discrepancy Iapratros
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Measured emission variations with plasma column density test model

radiation transport predlctlons
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The line intensity grows faster than code predicts as plasma column @m
. . National
density increases Laboratories
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An evaluation of the differences in line optical depths that contribute is in progress



