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Abstract 

 

Contact in structures with mechanical interfaces has the ability to significantly influence the system dynamics, such 

that the energy dissipation and resonant frequencies vary as a function of the response amplitude. Finite element 

analysis is commonly used to study the physics of such problems, particularly when examining the local behavior at 

the interfaces. These high fidelity, nonlinear models are computationally expensive to run with time-stepping solvers 

due to their large mesh densities at the interface and because of the high expense required to update the tangent 

operators. Hurty/Craig-Bampton substructuring and interface reduction techniques are commonly utilized to reduce 

computation time for jointed structures. In the past, these methods have only been applied to substructures rigidly 

attached to one another, resulting in a linear model. The present work explores the performance of a particular interface 

reduction technique (system-level characteristic constraint modes) on a nonlinear model with node-to-node contact 

for a benchmark structure consisting of two c-shape beams bolted together at each end.  

 

Keywords: Component Mode Synthesis, Substructuring, Hurty/Craig-Bampton Method, Interface Reduction, 

Mechanical Joints, Contact 

_____________________________________________________________________________________________ 

 

1. Introduction 

 

Contact in structures with mechanical interfaces can have a significant influence on the dynamic response to time 

varying loads. The magnitude of clamping forces near the contact due to bolt preloads influences the overall stiffness 

in the system, while frictional effects in joints typically contribute to the overall structural damping [1]. A common 

approach in interface modeling is to approximate contact areas with linear springs and dashpots, or with nonlinear 
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elements such as Jenkins elements [2] or Iwan elements [3]. These approaches are capable of simplifying the interface 

model at the expense of losing local kinematics and stresses at these locations. When higher interface fidelity is 

desired, the interfaces must be modeled in full detail with a fine mesh resolution to adequately resolve nonlinear 

contact and friction effects. Sophisticated models of this type are computationally expensive to run with transient 

solvers, due to the high number of degrees-of-freedom (DOF) required to accurately capture the local contact forces 

at the interface. Furthermore, the contact state can change in time, requiring continuous updating of internal force 

vectors and Jacobian operators within implicit integration schemes. This work seeks to address this issue by exploring 

model order reduction techniques to speed up transient simulations for structures with nonlinear contact. The current 

study focuses on the frictionless case such that there are no tangential loads due to friction. 

 

Component mode synthesis (CMS) methods in structural dynamics are used to reduce the linear portion of a model, 

while preserving the physical DOF at interfaces containing nonlinear elements [4,5]. One commonly used approach 

is the Hurty/Craig-Bampton (HCB) method, which was originally proposed by Hurty [6], and later simplified by Craig 

and Bampton [7]. The HCB method represents each subcomponent by a truncated set of dynamic fixed-interface 

modes, augmented with a static constraint mode for every physical interface DOF. For finite element models with a 

fine interfacial mesh, the number of constraint modes needed for the HCB method becomes excessively high and 

prohibits the effectiveness for applications involving contact. Furthermore, the critical time step for HCB models with 

explicit time solvers is dictated by the static constraint modes, which are localized in shape and therefore associated 

with high frequencies. As such, model reduction does little if anything to improve this [4].  

 

The objective of this research is to further decrease the HCB model order by performing a secondary reduction on the 

interface DOF using a set of mode shapes describing the interface kinematics.  Some of the authors have recently 

reviewed interface reduction methods for HCB models in [8], but these techniques were only applied to linear 

substructures with rigid compatibility enforced (i.e. linear assembly models). The review paper reveals that the system-

level characteristic constraint mode method originally developed by Craig and Chang [9], and later elaborated by 

Castanier et al. [10] is most accurate for rigidly connected boundary DOF. This modal basis is slightly modified in 

this work to preserve some of the physical boundary DOF in the subspace. A few other works have explored interface 

reduction techniques on contacting interfaces. Becker and Gaul [5] applied component mode synthesis to structure 

with bolted joints, but the number and type of interface modes needed to resolve the local and global response remains 

an open research question.  

 

In this research, the HCB method with a modified version of system-level interface reduction [9,10] is used to model 

a system consisting of two C-shape beams bolted together at each end (see Figure 1 in Section 3.1). Interface contact 

is considered frictionless here, modeled using node-to-node penalty springs [11] in the normal direction only. This 

work examines the necessary interface basis vectors to resolve the nonlinear kinematics at the frictionless contacting 

surfaces. Furthermore, this research examines the effect of interface reduction on transient solution accuracy and 

simulation time, relative to the full-interface HCB model. 

  

2. Theory 

 

2.1. Nonlinear Hurty/Craig-Bampton Method 

 

Modern finite element models tend to have extremely fine meshes, with potentially  hundreds of thousands of elements 

and millions of DOF. In models with substructures connected to one another via contacting boundary conditions, the 

interface DOF may control the dynamic response of the system, while the numerous interior (non-interface) DOF 

provide unnecessary model redundancy. As such, the interior DOF can be reduced through CMS methods, which 

approximate the substructure interior with a relatively small set of mode shapes, while leaving the interface DOF 

unchanged. One such method is the Hurty/Craig-Bampton technique, summarized below for the case when 

substructures are connected through nonlinear contact elements. 



 

Consider an arbitrary substructure in an assembly with nonlinear elements at the interface. In discretized form, the 

equations of motion for the substructure are written as 

 

𝐌𝐮̈ + 𝐊𝐮 + 𝐟N = 𝐟ext 

 

where 𝐌 and 𝐊 are respectively the mass and stiffness matrices, 𝐮 is the relative displacement vector, 𝐟N is the vector 

of displacement-dependent normal contact forces (discussed in Section 2.3), and 𝐟extis the externally applied loading 

vector. The matrices are n x n and the vectors are n x 1. Each dot placed over u represents its derivative with respect 

to time. These equations can be partitioned into interior i and interface b DOF as 

 

[
𝐌ii 𝐌ib

𝐌bi 𝐌bb
] {
𝐮̈i
𝐮̈b
} + [

𝐊ii 𝐊ib
𝐊bi 𝐊bb

] {
𝐮i
𝐮b
} + {

𝟎
𝐟N,b

} = {
𝐟ext,i
𝐟ext,b

} 

 

 

The mass and stiffness from the interior degrees of freedom are used to form the fixed-interface (FI) modes of the 

system through a partitioned eigenanalysis, i.e. 

 

[𝐊ii − (ωs
FI)2𝐌ii]𝛗s

FI = 𝟎 

 

The eigenvectors 𝛗s
FI (s = 1, 2, …, nFI) form the FI modal matrix 

 

𝚽FI = [𝛗1
FI 𝛗2

FI ⋯ 𝛗nFI
FI ] 

 

where nFI is an integer much smaller than the original number of DOF in set i. The truncation of modes in this step 

introduces the model reduction desired by the HCB process. The eigenshapes are combined with a set of static 

constraint modes that describe how the interior DOF respond when each interface DOF is moved independently. This 

is defined by the static condensation 

 

𝚿HCB = −𝐊ii
−1𝐊ib 

 

The combination of FI modes and constraint modes form a basis for the interior DOF of the substructure, and are 

arranged to form the HCB transformation matrix as 

 

𝐓HCB = [𝚽
FI 𝚿HCB

𝟎 𝐈
] 

 

which converts the interior DOF of the substructure to generalized HCB coordinates through the transformation 

 

𝐮 = 𝐓HCB𝐯 

 

{
𝐮i
𝐮b
} = [𝚽

FI 𝚿HCB

𝟎 𝐈
] {
𝐪i
𝐮b
} 

 

The vector 𝐯 is the HCB generalized coordinate and 𝐪i is the modal representation of the interior partition of the 

substructure. The reduced mass and stiffness matrices, as well as the reduced load vectors, are computed via 

 

 

 

 (1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7a) 

(7b) 



𝐌HCB = (𝐓HCB)T𝐌𝐓HCB, 𝐊HCB = (𝐓HCB)T𝐊𝐓HCB  

 

𝐟N
HCB = (𝐓HCB)T𝐟N, 𝐟ext

HCB = (𝐓HCB)T𝐟ext 

 

where T is the transpose operator. The dimension of the problem after HCB reduction is nFI + nb, where nFI is the 

number of retained fixed-interface modes, and nb is the total number of interface DOF. The equations of motion for 

a substructure in HCB coordinates are 

 

𝐌HCB𝐯̈ + 𝐊HCB𝐯 + 𝐟N
HCB = 𝐟ext

HCB 

 

[
𝐈ii 𝐌ib

HCB

𝐌bi
HCB 𝐌bb

HCB] {
𝐪̈i
𝐮̈b
} + [

𝚲ii
FI 𝟎

𝟎 𝐊bb
HCB] {

𝐪i
𝐮b
} + {

𝟎
𝐟N,b
HCB} = {

𝐟ext,i
HCB

𝐟ext,b
HCB} 

 

where 𝐈ii and 𝚲ii
FI are the identity matrix and diagonal matrix of fixed-interface eigenvalues, respectively. This form 

arises from the orthogonality properties of the modal matrix 𝚽FI in the HCB coordinate transformation. 

 

2.2. Interface Modal Basis 

 

Any interface reduction basis must satisfy a number of criteria: (1) allow for realistic deformations in the contact area, 

(2) reproduce the distribution of contact forces, (3) match the overall dynamic response of the HCB model within a 

reasonable margin of error, and (4) be efficient enough to provide overall computational savings. This research 

attempts to meet each of these criteria by utilizing an interface reduction technique that is a modification of the system-

level characteristic constraint modes [9,10]. In addition to these mode shapes, the basis is augmented with the static 

deformation shape obtained from a nonlinear static preload analysis, as it is inefficient to resolve the interface 

kinematics with dynamic modes alone.  

 

2.2.1 Extended System-Level Characteristic Constraint Modes About Preloaded State 

 

The traditional method of system-level characteristic constraint modes, or SCC method, transforms all physical 

interface DOF in the HCB model into truncated modal DOF, such that the resulting model is defined entirely in the 

modal domain. In some cases, it is desirable to retain some portion of the interface as physical DOF. For example, it 

may be necessary to retain physical DOF when loads are applied near substructure boundaries (e.g. bolt preload force). 

A novel method to achieve this is introduced here, and referred to as the extended system-level characteristic constraint 

mode method, or SCCe method. 

 

To reduce some of the interface DOF to modal DOF, and retain the rest as physical DOF, a given substructure must 

now be partitioned into three sets: the interior DOF i (i.e. fixed-interface mode partition), physical interface DOF p, 

and reduced interface DOF r. The HCB system mass and stiffness matrices, according to these partitions, are 

 

𝐌HCB = [

𝐈ii 𝐌ir
HCB 𝐌ip

HCB

𝐌ri
HCB 𝐌rr

HCB 𝐌rp
HCB

𝐌pi
HCB 𝐌pr

HCB 𝐌pp
HCB

] , 𝐊HCB = [

𝚲ii
FI 𝟎 𝟎

𝟎 𝐊rr
HCB 𝐊rp

HCB

𝟎 𝐊pr
HCB 𝐊pp

HCB

] 

 

The contact state of the model about its preloaded state is important to capturing the correct dynamic response, and 

hence the SCCe modal basis must account for this. This is achieved by linearizing the preloaded HCB model to include 

stiffness contributions from the contact areas that form upon fastening/preloading substructures coming into contact. 

The static deformation due to the preload force (denoted as 𝐯e in HCB coordinates) is solved using a nonlinear static 

(8) 

(9a) 

(9b) 

(10) 

(11) 



solver (see Section 2.2.2). A linearized stiffness matrix (denoted with –c due to the added constraints) is formed by 

summing the linear HCB stiffness matrix and the Jacobian of the normal contact force, evaluated about the deformed 

state,  

𝐊HCB−c = 𝐊HCB + [
∂𝐟N

HCB

∂𝐯
]
𝐯=𝐯e

 

 

A set of SCCe mode shapes is computed from a second partitioned eigenanalysis, employing the linearized stiffness 

matrix and isolating the reduced interface DOF r 

 

[𝐊rr
HCB−c − (ωSCCe−c)2𝐌rr

HCB]𝛗s
SCCe−c = 𝟎 

 

A limited set of eigenvectors 𝛗s
SCCe−c = (s = 1, 2, …, nS) are assembled into the columns of the constrained SCCe 

modal matrix 

 

𝚽SCCe−c = [𝛗1
SCCe−c 𝛗2

SCCe−c ⋯ 𝛗ns
SCCe−c] 

 

where nS is a number smaller than the original number of DOF in set r. 

 

The modes contained in 𝚽SCCe−c
 provide a good representation of the local interface dynamics when the interface is 

in contact due to the additional term in the contact stiffness, 𝐊HCB−c. If the interface loses contact during a vibration 

response, then these modes may be insufficient. In order to address this, the eigenanalysis can be repeated using the 

original stiffness matrix 𝐊HCB, such that a new set of unconstrained modes (denoted with –u) can be added to the 

reduction basis. 

 

[𝐊rr
HCB − (ωSCCe−u)2𝐌rr

HCB]𝛗s
SCCe−u = 𝟎 

 

The first nS unconstrained eigenvectors are used to build the unconstrained SCCe modal matrix as 

 

𝚽SCCe−u = [𝛗1
SCCe−u 𝛗2

SCCe−u ⋯ 𝛗ns
SCCe−u] 

 

Both sets of eigenmodes described in Eqs. (13) and (15) use the r-r partition of the system matrices, so they inherently 

fix the motion of the physical interface DOF (set p) to be zero.  To alleviate this issue, static constraint modes are 

added to the interface reduction set, similar to those in original the HCB method 

 

𝚿𝐒𝐂𝐂𝐞 = −(𝐊rr
HCB−c)−1𝐊rp

HCB−c 

 

Combining the dual set of eigenmodes with the constraint modes, along with appropriately-sized zero and identity 

partitions, the SCCe transformation matrix is formed as 

 

𝐓SCCe = [
𝐈 𝟎 𝟎 𝟎
𝟎 𝚽SCCe−c 𝚽SCCe−u 𝚿𝐒𝐂𝐂𝐞

𝟎 𝟎 𝟎 𝐈
] 

 

This transformation uses a combination of dynamic (𝚽SCCe−c, 𝚽SCCe−u) and static (𝚿𝐒𝐂𝐂𝐞)  shapes to convert the r 

portion of the model to modal DOF, while retaining the p portion as physical DOF. The transformation between HCB 

coordinates and SCCe coordinates becomes 

 

𝐯 = 𝐓SCCe𝐰 

(12) 

(13) 

(16) 

(17) 

(18a) 

(15) 

(14) 



 

{

𝐪i
𝐮r
𝐮p
} = [

𝐈 𝟎 𝟎 𝟎
𝟎 𝚽SCCe−c 𝚽SCCe−u 𝚿𝐒𝐂𝐂𝐞

𝟎 𝟎 𝟎 𝐈
] {

𝐪i
𝐪c
𝐪u
𝐮p

} 

 

where 𝐰 is the SCCe generalized coordinate vector, and 𝐪c and 𝐪u are the constrained and unconstrained modal DOF 

in the r partition, respectively. 

 

2.2.2 Static Preload Deformation 

 

The inclusion of the static preload shape 𝐯e in the reduction basis ensures that the SCCe model is exact for the initial 

preload analysis performed on the nonlinear HCB model in Eqs. (9a) and (9b). This shape is determined by solving 

the following equations for static equilibrium, stated in HCB coordinates 

 

𝐊HCB𝐯e + 𝐟N
HCB = 𝐛ef e 

where 𝐛e is a mapping vector that positions and orients the scalar preload force amplitude f e at the correct physical 

DOF. In partitioned form, the equations are 

 

[

𝚲ii
FI 𝟎 𝟎

𝟎 𝐊rr
HCB 𝐊rp

HCB

𝟎 𝐊pr
HCB 𝐊pp

HCB

] {

𝐪i
e

𝐮r
e

𝐮p
e
} + {

𝟎
𝐟N,r
HCB

𝐟N,p
HCB

} = {

𝟎
𝟎
𝐛p
e f e
} 

 

Due to the nonlinearity introduced by the contact force 𝐟N
HCB, the displacement vector 𝐯e = [𝐪i

e 𝐮r
e 𝐮p

e]T must be 

determined using an iterative solver. In this research, a damped Newton Raphson method was employed. 

 

2.2.3. Total SCCe Transformation Matrix 

 

The static deformation vector is concatenated at the end of 𝐓SCCe to build the final SCCe transformation matrix 𝐓SCCe+ 

 

𝐓SCCe+ = [𝐓SCCe 𝐯e] 

 

𝐓SCCe+ = [

𝐈 𝟎 𝟎 𝟎 𝐪i
e

𝟎 𝚽SCCe−c 𝚽SCCe−u 𝚿𝐒𝐂𝐂𝐞 𝐮r
e

𝟎 𝟎 𝟎 𝐈 𝐮p
e
] 

 

This matrix performs the same transformation as Eqs. (18a) and (18b), but adds one more DOF from the preload 

vector. The HCB coordinate 𝐯 is transformed to the new SCCe coordinates 𝐰+ via 

 

𝐯 = 𝐓SCCe+𝐰+ 

 

{

𝐪i
𝐮r
𝐮p
} = [

𝐈 𝟎 𝟎 𝟎 𝐪i
e

𝟎 𝚽SCCe−c 𝚽SCCe−u 𝚿𝐒𝐂𝐂𝐞 𝐮r
e

𝟎 𝟎 𝟎 𝐈 𝐮p
e
]

{
 
 

 
 
𝐪i
𝐪c
𝐪u
𝐮p
qe}
 
 

 
 

 

 

where qe is the scalar DOF introduced by the inclusion of 𝐯e. 

 

(19) 

(20) 

(21a) 

(21b) 

(22a) 

(22b) 

(18b) 



The variety of shapes that make up 𝐓SCCe+can lead to a basis set that is not necessarily linearly independent. The 

singular value decomposition (SVD) reforms 𝐓SCCe+ as 

 

𝐓SCCe+ = 𝐔SCCe+𝚺SCCe+𝐕SCCe+ 

 

where 𝐔SCCe+ and 𝐕SCCe+ are the left and right singular vectors, respectively, and 𝚺SCCe+ is a diagonal matrix of 

singular values. The vectors in 𝐔SCCe+ form an orthonormal basis for the column space of  𝐓SCCe+ , so they are taken 

as the final transformation matrix to convert between HCB and SCCe coordinates. Thus, the SCCe system matrices 

and load vectors are computed as 

 

𝐌SCCe = (𝐔SCCe+)T𝐌HCB𝐔SCCe+, 𝐊SCCe = (𝐔SCCe+)T𝐊𝐔SCCe+  

 

𝐟N
SCCe = (𝐔SCCe+)T𝐟N

HCB, 𝐟ext
SCCe = (𝐔SCCe+)T𝐟ext

HCB 

 

The dimension of the problem is now nFI  +  2nS  +  np  +  1, where nFI is the number of retained fixed-interface 

modes, nS is the number of retained SCCe modes (one set of constrained, one set of unconstrained), np is the 

number of physical interface DOF, and the 1 accounts for the static preload shape. 

 

The equations of motion for the system in SCCe coordinates are 

 

𝐌SCCe𝐰̈+ + 𝐊SCCe𝐰+ + 𝐟N
SCCe = 𝐟ext

SCCe 

 

[
 
 
 
 
 
 
𝐈ii 𝐌ic

SCCe 𝐌iu
SCCe 𝐌ip

SCCe 𝐌ie
SCCe

𝐌ci
SCCe 𝐌cc

SCCe 𝐌cu
SCCe 𝐌cp

SCCe 𝐌ce
SCCe

𝐌ui
SCCe 𝐌uc

SCCe 𝐌uu
SCCe 𝐌up

SCCe 𝐌ue
SCCe

𝐌pi
SCCe 𝐌pc

SCCe 𝐌pu
SCCe 𝐌pp

SCCe 𝐌pe
SCCe

𝐌ei
SCCe 𝐌ec

SCCe 𝐌eu
SCCe 𝐌ep

SCCe 𝐌ee
SCCe

]
 
 
 
 
 
 

{
 
 

 
 
𝐪ï
𝐪̈c
𝐪̈u
𝐮̈p
q̈e}
 
 

 
 

+

[
 
 
 
 
 
𝚲ii
FI 𝟎 𝟎 𝟎 𝟎

𝟎 𝐊cc
SCCe 𝐊cu

SCCe 𝐊cp
SCCe 𝐊ce

SCCe

𝟎 𝐊uc
SCCe 𝐊uu

SCCe 𝐊up
SCCe 𝐊ue

SCCe

𝟎 𝐊pc
SCCe 𝐊pu

SCCe 𝐊pp
SCCe 𝐊pe

SCCe

𝟎 𝐊ec
SCCe 𝐊eu

SCCe 𝐊ep
SCCe 𝐊ee

SCCe
]
 
 
 
 
 

{
 
 

 
 
𝐪i
𝐪c
𝐪u
𝐮p
qe}
 
 

 
 

+

{
 
 

 
 

𝟎
𝐟N,c
SCCe

𝐟N,u
SCCe

𝐟N,p
SCCe

𝐟N,e
SCCe

}
 
 

 
 

=

{
 
 

 
 
𝐟ext,i
SCCe

𝐟ext,c
SCCe

𝐟ext,u
SCCe

𝐟ext,p
SCCe

𝐟ext,e
SCCe}

 
 

 
 

 

 

 

Note that, although the normal contact force vector 𝐟N
SCCe has been reduced to SCCe coordinates, it must still be 

computed in HCB coordinates, where all interface DOF are physically represented. In nonlinear dynamic simulations, 

this requires a transformation from SCCe to HCB coordinates at every time step to evaluate the nonlinear forces.  The 

advantage that comes from this reduction is twofold: (1) the size of the equations to solve is smaller compared to the 

HCB model and (2) the high frequency content has been truncated and thus improves the critical time step in explicit 

solvers. 

 

2.3. Normal Contact Model 

 

Contact in the normal direction is modeled using a node-to-node approach with the penalty method [11]. In this 

method, the normal gap g between a contacting node pair can be either negative (in contact) or positive (out of contact). 

For a particular node pair j, the normal gap is 

 

gj = (Y1
j
+ ΔY1

j
) − (Y2

j
+ ΔY2

j
) 

 

where the Y’s are the undeformed normal coordinates, and the ΔY’s are the physical relative displacements in the 

normal direction. The subscripts 1 and 2 refer to the two nodes in node pair j. The penalty method states that the 

normal contact force at node j fN
j

 can be written as 

(23) 

(25a) 

(25b) 

(26) 

(24) 



 

fN
j
= {

kpeng
j

0

, gj < 0

, gj ≥ 0
 

 

where kpen is the penalty stiffness value. This defines the penalty force as proportional to the gap when the nodes are 

in contact (gj < 0), and zero when the nodes are out of contact (gj ≥ 0). The node-to-node contact model assumes that 

relative tangential displacements are small, and thus node pairs do not change during dynamic simulation. 

Construction of the normal contact force vector 𝐟N is a matter of positioning and orienting each nodal force fN
j
 using 

a corresponding mapping vector 𝐛N
j

 as 

 

𝐟N =∑𝐛N
j
fN
j

nn

j=1

 

where nn is the number of node pairs all interfaces of the system. 

 

2.4 Time Integration Schemes 

  

The response time histories of the reduced order models are computed using one of two different 2nd order accurate 

methods: an explicit scheme from Chung and Lee [12], and the implicit Hilber-Hughes-Taylor α (HHT- α) method 

extended to nonlinear systems [13]. The implicit method is implemented with α = 0, yielding the constant average 

acceleration method, which is unconditionally stable for linear systems. The Chung-Lee scheme is conditionally 

stable, with a critical time step requirement that is dependent on its single free parameter, βCL, 

 

∆tcr =
2

ωmax√4βCL − 3
 

 

where ∆tcr is the critical time step length, and ωmax is the largest natural circular frequency in the system. The Chung-

Lee parameter βCL is chosen to be 28/27, the maximum permissible value in the stability limit of 1 ≤ βCL ≤ 28/27. This 

selection improves stability by introducing slight numerical dissipation of high-frequency responses, which mitigates 

the amplification of numerical errors. 

 

3. Numerical Studies: Two-Beam Assembly with Frictionless Contact 

 

3.1. Model Description 

 

Figure 1a shows the benchmark finite element model under consideration, which consists of two identical C-beams 

bolted together at each end. Each individual C-beam is 50.8 cm long, 3.2 cm wide, 1.27 cm thick at its ends, and 0.95 

cm thick at the mid-section. A total of 24,944 first order hexahedral elements are used to model each individual C-

beam, and they are made of linear elastic structural steel. Table 1 provides a summary of material properties used for 

the C-beams. 

 

These are connected by 5/16-inch diameter steel bolts at each end that are modeled with 25 discretized beam elements 

along the y-axis, as depicted in Figure 1b. The bolt ends are connected rigidly to a circular patch of nodes on the C-

beams to represent clamping boundary conditions through a nut-washer-bolt assembly. The C-beam assembly has 

simply supported boundary conditions at all DOF along the z-directional line on the lower beam ends. The full fidelity 

finite element model has a total of 94,244 physical DOF.  

 

(27) 

(28) 

(29) 



The model has two areas where the C-beams come into contact; each is 3.2 cm wide by 5.0 cm long, as indicated in 

Figure 1b). The interface surfaces are meshed in such a way that their nodal locations are coincident and unmerged in 

the undeformed state, allowing for direct implementation of node-to-node contact elements. The Hurty/Craig-

Bampton model is defined such that the boundary DOF include the nodes along these interface surfaces and the four 

nodes at each end of the beam elements (to apply the preload force); the remaining DOF are partitioned to interior 

DOF. Three different reduced order models are generated with fixed-interface mode frequencies cut off at 2 kHz, 3 

kHz, and 4 kHz. The DOF count in the reduced model is dominated by the 3,660 boundary DOF that account for the 

contacting surfaces, while 24 DOF pertain to the bolt DOF and 8 to 16 DOF for the fixed-interface modes, depending 

on the cutoff frequency (see Section 3.3). The HCB reduction is performed using the Sierra Structural Dynamics 

(Sierra/SD) [14] finite element code developed at Sandia National Laboratories.  

 

  
 

 

Figure 1. (a) Finite element model of bolted C-beam assembly with coordinate axes. (b) Close-up view of 

interface surface with bolt DOF spider. 

 

Contact at the interface surfaces is considered through node-to-node penalty elements in the normal direction [11]. 

Selection of the penalty stiffness kpen is critical in the accuracy and stability of the penalty method - using a stiffness 

value that is too small allows excessive and non-physical nodal interpenetration, while a value that is too high can 

cause numerical ill-conditioning or instability. Preliminary studies indicated that a value of 3.78 × 109 N/m was 

sufficient to avoid excessive node overlap, while retaining stability and convergence. 

 

Table 1. Summary of material properties used in finite element model of C-beams. 

 

Symbol Description Numerical Value 

E Young's modulus 194 GPa 

ν Poisson's ratio 0.290   

ρ Mass density 8000 kg/m3 

 

3.2. Static Preloading of Bolt Elements 

 

A static preload force f e is applied to the ends of the bolt elements, to simulate the effect of bolt torque clamping the 

C-beams together. The preload force is obtained via an artificial strain εart, which leads to the following expression. 

 

f e = EAεart 

 

The cross-sectional area A of each bolt is 4.95 x 10-5 m2, and the Young’s modulus E is the same as that of the C-

beams (194 GPa). To ensure that a physically reasonable preload force is applied, a target internal bolt force is obtained 

using the DIN 946 standard [15] equation to convert applied torque T to transmitted axial force ftr. 

 

ftr =
T

0.159P + 0.578dμT + 0.5DfμH
 

(a) (b) 

y 

x 
z 

(30) 

(31) 



 

where P is the bolt thread pitch, d is the nominal bolt diameter, Df is the effective diameter in contact, μT is the thread 

friction coefficient, and μH is the head friction coefficient. Inputs for these variables are summarized in Table 2. For 

a typical applied torque of 18.5 ft-lb (25.1 N-m), the transmitted axial force is computed as 2.91 kN. 

 

The correct εart (and therefore f e) is obtained through an iterative procedure that incrementally alters εart, and applies 

the corresponding f e, until the resulting internal bolt axial force matches the theoretical transmitted force ftr. This 

procedure indicates that an artificial strain of 3.32·10-4 (corresponding to a preload force of 3.19 kN) is appropriate to 

produce an internal axial force equal to 2.91 kN. 

   

Table 2. Summary of bolt preload parameters. 

 

Symbol Description Numerical Value 

T Applied bolt torque 25.1 N-m 

P Bolt thread pitch 0.00106 m 

d Nominal bolt diameter 0.00794 m 

Df Effective diameter in contact 0.0191 m 

μT Thread friction coefficient 0.600   

μH Head friction coefficient 0.600   

ftr Transmitted axial force 2.91 kN 

εart Artificial preload strain 3.32E-04   

fe Preload force 3.19 kN 

 

A visualization of the preloaded deformation mapped to the full-field model is displayed in Figure 2, along with a 

close-up view of the interface, showing how the preload force indents the C-beam surfaces and causes receding of the 

contact area.  

 

 

                 
 

Figure 2. Amplified deformation after static preload, with close-up view of interface. 

 

3.3. Results: Full-interface Model 

 

A critical step in the Hurty/Craig-Bampton (HCB) reduction is determining the number of fixed-interface (FI) modes 

to retain, which is established by discarding FI modes with frequencies above a defined threshold. For a given loading 

bandwidth and pattern, the dynamic response of the system will converge to the “true” solution by increasing the 

frequency cut-off limit. The number of FI modes required for convergence is considered adequate to capture the 

important dynamic characteristics of the system. For this research, so-called “cutoff” frequencies of 2kHz, 3kHz, and 

4kHz are examined and summarized in Table 3. The lowest fixed-interface mode frequency in all cases is 288 Hz. 

 

y 

x 



Critical time step lengths are computed for the Chung-Lee scheme [12] using Eq. (29). The maximum natural circular 

frequency ωmax was determined using the regular HCB mass matrix and the linearized HCB stiffness matrix computed 

in Eq. (11). This method of computing the critical time step assumes a linear model, so the analysis time step ∆ta is 

taken as 90% of ∆tcr to ensure stability in the nonlinear case. 

 

Table 3 demonstrates that the critical time step length is controlled by the HCB constraint modes computed in Eq. (5), 

and remains unchanged as fixed-interface modes are truncated. This suggests that HCB substructuring with nonlinear 

interface DOF does not gain any computational advantage directly from explicit time integration, except for the lower 

order of equations solved. In other words, the critical time step is determined by the constraint modes.  

 

Table 3. HCB model comparison for different cutoff frequencies. 

 

Cutoff FI 

Frequency 

[Hz] 

FI Modes per 

Substructure 

Max FI 

Frequency 

[Hz] 

Max Model 

Frequency                  

[Hz] 

Model Size             

[DOF] 

Δtcr                     

[sec] 

Δta                  

[sec] 

2,000 4 1,544 9.14E+06 3692 3.25E-08 2.93E-08 

3,000 7 2,534 9.13E+06 3698 3.25E-08 2.93E-08 

4,000 8 3,763 9.13E+06 3700 3.25E-08 2.93E-08 

 

An externally applied loading pattern fext(t) was designed to excite the fundamental mode of the C-beam model, 

which has the displacement field shown in Figure 3a. This mode exhibits bending about the z-axis, with most of the 

deformation concentrated in the top beam. To excite this mode, a vertical haversine impulse was applied to a strip of 

nodes at center of the top C-beam. The impulse has a duration of 1 ms and was applied with various amplitudes. The 

loading pattern can be seen in Figure 3b. 

 

 
 

 

 

  
 

Figure 3. (a) Fundamental mode shape of the HCB model. (b) Dynamic loading pattern. 

 

Dynamic simulation results are presented for the three HCB models described in Table 3, and for three loading 

amplitudes of 15 N, 100 N, and 500 N. These loading amplitudes are selected to elicit linear, moderately nonlinear, 

and strongly nonlinear responses, respectively. It is important to study different loading amplitudes to ensure that the 

HCB models retain accuracy for varying degrees of nonlinear response. A viscous damping matrix with 1% damping 

in all modes is included in the system to simulate a more realistic system. 

 

 Response convergence is determined based on system-level and interface-level outputs: the drive point displacement 

(vertical displacement at the loading point) is used to evaluate the global response convergence, while contact area 

(a) 

(b) 

𝐟𝐞𝐱𝐭(𝐭) 

y 

x 

y 

x 

z 

x 



and summation of normal contact forces determine local interface-level convergence. Time histories are computed 

out to 10 ms to adequately show the transient vibration response of the system subjected to a 1 ms haversine impulse. 

 

  
 

 
 

 

 
 

 

 
 

Figure 4. Time history of (a) drive point displacement; (b) contact area (percentage of nodes in contact); (c) 

total normal contact force on one interface. Comparison between different HCB cutoff frequencies. 

 

A comparison of the different loading amplitudes and HCB models in Figure 4 reveals that increasing the cutoff 

frequency from 2 kHz to 3 kHz significantly alters the response at the system-level and interface-level. Drive point 

displacements, as well as contact area and interface forces, change dramatically in magnitude and frequency between 

the 2 kHz and 3 kHz models. Furthermore, a visual comparison shows strong similarity between the 3 kHz and 4 kHz 

results, indicating the reduced order models have converged. Similar to results from [4], the 2 kHz model is not 

accurate for this loading because the 2/τ impulse frequency is 2,000 Hz, but the model only kept frequencies up to 

1,544 Hz. Thus, the 2 kHz model cannot produce response frequencies in the range generated by the 1 ms impulse. 

 

(a) 

(b) 

(c) 



It is interesting to observe that for the 3 and 4 kHz models, the qualitative behavior of the drive point displacement 

does not change between different input levels (although the amplitude is scaled proportional to force). The contact 

area changes significantly with force level, and the total force at the interface oscillates considerably about the 2.91 

kN preload force level. A seemingly linear global response in fact contains nonlinearities that are hidden in the 

interface-level outputs. This implies that, should friction be included, the damping characteristics of the system would 

change dramatically in time as the interfaces come in and out of contact. 

 

The 3 kHz and 4 kHz models provide satisfactory starting points for interface reduction, and both would be suitable 

for the dynamic loading considered here. Nonetheless, the 4 kHz model provides roughly 1,200 Hz of increased 

frequency bandwidth over the 3 kHz model at the cost of only two more DOF, so the 4 kHz model is used for the 

following interface reduction studies. 

 

3.4. Results: Interface-reduced Model 

 

The dynamic analysis from the full-interface studies in Section 3.3 is repeated here, but now using the interface-

reduced models described by Eqs. (25a) and (25b) The base HCB model includes all fixed-interface frequencies up to 

4 kHz, which equates to 16 FI modes. The effect of interface fidelity is considered through several reduction cases 

that retain between 20 and 3,659 total SCCe modes (constrained + unconstrained). A few SCCe mode shapes with 

their corresponding frequencies are plotted in Figure 5 below. 

 

      
 

      
 

 

Figure 5. Amplified SCCe mode shapes. Constrained modes are formulated in Eqs. (12) and (13). 

Unconstrained modes are formulated in Eqs. (14) and (15). 

 

The same process shown in Section 3.3 is employed to determine ωmax and ∆tcr, but now the eigenvalue problem is 

formulated in the SCCe system using 𝐌SCCe and a linearized SCCe stiffness matrix 𝐊SCCe−c, obtained via 

 

𝐊SCCe−c = (𝐔SCCe+)T𝐊HCB−c𝐔SCCe+ 

 

Similar to Section 3.3, the analysis time step ∆ta is obtained by multiplying the critical time step ∆tcr by a factor of 

0.9. Table 4 summarizes the different SCCe models in terms of maximum frequency, number of DOF, and critical 

time step length. Note that the analysis time steps of the SCCe models are significantly larger than that of the HCB 

model (2.93E-08), which results in nearly an order of magnitude speed-up in explicit time solvers. 

 

 

 

 

 

 

 

 

 

(30) 

Constrained SCCe Mode 3 (723 Hz) Unconstrained SCCe Mode 5 (751 Hz) 

Unconstrained SCCe Mode 3 (721 Hz) Constrained SCCe Mode 1 (266 Hz) 



Table 4. Model comparison for various levels of SCCe interface reduction. Cases marked with * had some 

modes removed during the orthonormalization process. 

 

SCCe Modes 

Retained 

Max Constrained 

SCCe Frequency           

[Hz] 

Max Unconstrained 

SCCe Frequency           

[Hz] 

Max Model 

Frequency 

[Hz] 

Model Size 

[DOF] 

Δtcr                     

[sec] 

Δta                  

[sec] 

20 1.95E+03 1.90E+03 1.87E+05 61 2.51E-07 2.26E-07 

100 5.01E+04 4.18E+04 4.28E+05 141 1.37E-07 1.23E-07 

200 1.12E+05 1.06E+05 5.88E+05 241 9.54E-08 8.59E-08 

500 2.46E+05 2.23E+05 8.91E+05 541 6.46E-08 5.81E-08 

993* 3.77E+05 3.48E+05 1.19E+06 1,034 4.37E-08 3.93E-08 

3,659* 8.48E+05 7.97E+05 1.63E+06 3,700 3.26E-08 2.93E-08 

 

Drive point displacement, contact area, and normal contact force time histories for the different SCCe models are 

plotted against those of the 4 kHz HCB model, shown in Figure 6. 

 

Visual comparison of the drive point displacement histories in Figure 6a shows that all SCCe solutions lie on top of 

the HCB solution, with no observable deviations. For 500 or more SCCe modes, the normal contact force Figure 6c 

also shows near-perfect agreement. The contact area (percentage of nodes in contact) in Figure b is the slowest to 

converge to the HCB solution, with significant errors observed for the case of 20 and 100 SCCe modes. All results 

converge to the HCB solution when all SCCe modes (3,659 + 1 augmentation vector) are retained and the 

transformation basis is not truncated. 

 

Drive point displacements from the HCB and SCCe models match well because the loading excites vibrational modes 

with deformations concentrated away from the interfaces, regardless of loading amplitude. The contact area and 

contact force, however, show a strong dependence on the loading amplitude. Errors in these quantities are negligible 

for the linear excitation of 15 N, but become more significant as the loading increases to the nonlinear excitations of 

100 N and 500 N. This implies that the accuracy of the SCCe method not only depends on the number of modes in 

the reduction basis, but also on the degree of nonlinearity (and therefore the loading amplitude). If the only output of 

interest is some system-level displacement at a location sufficiently distant from the interfaces, then only a small 

number of SCCe modes is required. Still, the rapid changes in contact area (Figure 6b) would have a significant effect 

on the system-level damping if friction was included at the interface. In that case, more SCCe modes would be 

necessary to accurately capture system-level response. 

 

It is important to note that at certain levels of interface reduction, the total contact force (Figure 6c) may be accurate, 

while the contact area (Figure 6b) has significant errors. Interface forces in the SCCe model with 500 modes show 

near-perfect agreement with the HCB model, but the contact areas are in error by up to 20%. A relatively small number 

of SCCe modes are needed for convergence in overall contact forces, but more modes must be added to achieve 

suitably accurate interfacial stresses, which require accurate representation of the contact area. 

 

 

 

 

 

 

 

 



 
 

 
 

 
 

 
 

Figure 6. Time history of (a) drive point displacement; (b) contact area (percentage of nodes in contact); (c) 

total normal contact force on one interface. Various levels of SCCe reduction compared to full-

interface HCB model. 

 

This is confirmed by the distribution of contact forces plotted in Figure 7. The spread of contact forces over one 

interface surface is plotted at single instant in time (t = 3.10 ms), and under the most severe loading (500 N). At this 

selected time, the structure is transitioning from low to high contact area, a phenomenon that seemingly requires a 

high number of included SCCe modes. The sum of instantaneous contact forces quickly converges to around 3500 N, 

but doesn’t accurately represent the distribution of those forces within the interface until many more modes are added. 

(a) 

(b) 

(c) 



 

  
Figure 7.  Contact force distribution at one interface surface for full-interface HCB model and various levels 

of SCCe interface reduction. Snapshot is taken at t = 3.10 ms with loading amplitude 500 N. 

 

To the extent previously described, the interface reduction basis provides an acceptable level of accuracy relative to 

the full-interface HCB model. The final and arguably most important metric for gauging the effectiveness of the 

interface reduction is its potential for computational savings. The previous analyses were repeated using the implicit 

and explicit time integration schemes described in Section 2.4. Simulation run times for each of these cases are plotted 

in Figures 8 and 9. The solve time reduction factor is the ratio of HCB solve time to SCCe solve time. 

 

  
 

   

Implicit Explicit 

Figure 8. (a) Solve time and (b) solve time 

reduction factor for implicit 

simulations.  

Figure 9. (a) Solve time and (b) solve time 

reduction factor for explicit 

simulations.  

(a) 

(b) 

(a) 

(b) 



Explicit time integration is carried out using 90% of the critical time step as determined by Eq. (29). This resulted in 

a time step length of 2.93E-08 sec for the HCB model, and ranged from 2.26E-07 sec to 2.93E-08 sec for the SCCe 

models (see Table 4). The implicit scheme is unconditionally stable, so a time step length is chosen provide adequate 

resolution over a simulation time of 10 ms. For this study, a time step of 1.00E-05 sec was selected, such that the 

implicit scheme yields 1,000 equally-spaced solution points. 

 

Results from the implicit simulations in Figures 8a and 8b show that the SCCe interface reduction provides a wide 

range of computational savings. The SCCe method reduces solve time by a factor of approximately 19 when 20 modes 

are included, but the savings decrease rapidly as more modes are added. With 100, 200, and 500 SCCe modes retained, 

the solve time is reduced by a factor of 8, 4, and 2, respectively. The 993 mode case provides almost no reduction for 

the 15 N loading (reduction factor of about 1), and increases solve time for the 100 N and 500 N loadings (reduction 

factor less than 1). The “exact” case of 3,659 SCCe more than doubles the solve time for all loading amplitudes. This 

seemingly counterintuitive result comes from the fact that the implicit solver requires iterations at each time step to 

reach equilibrium with the nonlinear contact forces. The SCCe models require a costly coordinate transformation at 

every state determination, so eventually the cost of performing the transformation outweighs the savings from the 

reduced model size. Furthermore, higher-amplitude loadings are effected more by this phenomenon because the 

greater degree of nonlinearity inherently requires more iterations to reach equilibrium. 

 

The explicit simulation results in Figures 9a and 9b are drastically different than those of the implicit scheme. Firstly, 

the solve times are indifferent to the loading amplitude, which is due to the lower order of equations being solved 

relative to the implicit case. The cost savings are also much more significant, with reduction factors between 40 and 

220 for the cases of 20, 100, and 200 SCCe modes. The 500 mode case reduced the computation time by a factor of 

16, and the 993 mode case by a factor of 5. The cost reduction observed in the explicit results is due to the significant 

model size reduction (3700 reduced to 61, 141, 241, 541, or 1034), as well as the difference in time step length (see 

Table 4).  

 

In the “exact” case, where 3,659 modes are retained, the SCCe simulation ran about twice as long as the equivalent 

HCB analysis. This means that, somewhere between 993 and 3,659 retained SCCe modes, the reduced model will 

complete a simulation in the same time as the full-interface model. At this critical reduction level, the benefit of a 

reduced model size is exceeded by the cost of the HCB-SCCe coordinate transformation that must be performed at 

each time step.  

 

4. Conclusions 

 

The Hurty/Craig-Bampton (HCB) method was applied to a system with frictionless contact, and a novel expansion of 

the system-level characteristic constraint mode method (SCC) method was defined and used to further reduce the 

model size and simulation time. The new interface reduction technique, deemed the SCCe method, reduced most of 

the interface DOF in the HCB model to modal DOF, while leaving some as physical DOF. Contact at the interfaces 

was modeled using node-to-node penalty elements in the normal direction, with the interfaces meshed such that the 

contact surfaces are conforming and node pairs are known a priori. The SCCe method was demonstrated on an 

assembly of two beams bolted together and subjected to a 1-ms haversine impulse applied at its midspan. The base 

HCB model used for interface reduction included 16 fixed-interface modes, with a maximum fixed-interface 

frequency of 3763 Hz. 

 

Results from the SCCe reduced models indicate that only a small number of retained SCCe modes is required to 

reproduce system-level displacements and total contact force at the interfaces, but more SCCe modes are needed to 

converge to the HCB solution for contact area. Reduction in simulation time, relative to the HCB model, is most 

significant when using an explicit integration method. Use of an implicit scheme with the SCCe method yields much 

less computational savings, and even increases the simulation time where the explicit scheme would reduce it. 



 

This research serves as a numerical proof-of-concept, which explores the viability of interface reduction on contacting 

substructures when nonlinear elements are applied at the interface. Results from this work indicate moderate success 

of the reduction scheme, but more work is needed to determine the applicability of this method to other situations. 

Future work will examine different reduction bases, variation in dynamic loading patterns, more general contact 

models, non-conforming interfaces, and the inclusion of friction elements.  
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