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Abstract

Contact in structures with mechanical interfaces has the ability to significantly influence the system dynamics, such
that the energy dissipation and resonant frequencies vary as a function of the response amplitude. Finite element
analysis is commonly used to study the physics of such problems, particularly when examining the local behavior at
the interfaces. These high fidelity, nonlinear models are computationally expensive to run with time-stepping solvers
due to their large mesh densities at the interface and because of the high expense required to update the tangent
operators. Hurty/Craig-Bampton substructuring and interface reduction techniques are commonly utilized to reduce
computation time for jointed structures. In the past, these methods have only been applied to substructures rigidly
attached to one another, resulting in a linear model. The present work explores the performance of a particular interface
reduction technique (system-level characteristic constraint modes) on a nonlinear model with node-to-node contact
for a benchmark structure consisting of two c-shape beams bolted together at each end.
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1. Introduction

Contact in structures with mechanical interfaces can have a significant influence on the dynamic response to time
varying loads. The magnitude of clamping forces near the contact due to bolt preloads influences the overall stiffness
in the system, while frictional effects in joints typically contribute to the overall structural damping [1]. A common
approach in interface modeling is to approximate contact areas with linear springs and dashpots, or with nonlinear



elements such as Jenkins elements [2] or lwan elements [3]. These approaches are capable of simplifying the interface
model at the expense of losing local kinematics and stresses at these locations. When higher interface fidelity is
desired, the interfaces must be modeled in full detail with a fine mesh resolution to adequately resolve nonlinear
contact and friction effects. Sophisticated models of this type are computationally expensive to run with transient
solvers, due to the high number of degrees-of-freedom (DOF) required to accurately capture the local contact forces
at the interface. Furthermore, the contact state can change in time, requiring continuous updating of internal force
vectors and Jacobian operators within implicit integration schemes. This work seeks to address this issue by exploring
model order reduction techniques to speed up transient simulations for structures with nonlinear contact. The current
study focuses on the frictionless case such that there are no tangential loads due to friction.

Component mode synthesis (CMS) methods in structural dynamics are used to reduce the linear portion of a model,
while preserving the physical DOF at interfaces containing nonlinear elements [4,5]. One commonly used approach
is the Hurty/Craig-Bampton (HCB) method, which was originally proposed by Hurty [6], and later simplified by Craig
and Bampton [7]. The HCB method represents each subcomponent by a truncated set of dynamic fixed-interface
modes, augmented with a static constraint mode for every physical interface DOF. For finite element models with a
fine interfacial mesh, the number of constraint modes needed for the HCB method becomes excessively high and
prohibits the effectiveness for applications involving contact. Furthermore, the critical time step for HCB models with
explicit time solvers is dictated by the static constraint modes, which are localized in shape and therefore associated
with high frequencies. As such, model reduction does little if anything to improve this [4].

The objective of this research is to further decrease the HCB model order by performing a secondary reduction on the
interface DOF using a set of mode shapes describing the interface kinematics. Some of the authors have recently
reviewed interface reduction methods for HCB models in [8], but these techniques were only applied to linear
substructures with rigid compatibility enforced (i.e. linear assembly models). The review paper reveals that the system-
level characteristic constraint mode method originally developed by Craig and Chang [9], and later elaborated by
Castanier et al. [10] is most accurate for rigidly connected boundary DOF. This modal basis is slightly modified in
this work to preserve some of the physical boundary DOF in the subspace. A few other works have explored interface
reduction techniques on contacting interfaces. Becker and Gaul [5] applied component mode synthesis to structure
with bolted joints, but the number and type of interface modes needed to resolve the local and global response remains
an open research question.

In this research, the HCB method with a modified version of system-level interface reduction [9,10] is used to model
a system consisting of two C-shape beams bolted together at each end (see Figure 1 in Section 3.1). Interface contact
is considered frictionless here, modeled using node-to-node penalty springs [11] in the normal direction only. This
work examines the necessary interface basis vectors to resolve the nonlinear kinematics at the frictionless contacting
surfaces. Furthermore, this research examines the effect of interface reduction on transient solution accuracy and
simulation time, relative to the full-interface HCB model.

2. Theory
2.1. Nonlinear Hurty/Craig-Bampton Method

Modern finite element models tend to have extremely fine meshes, with potentially hundreds of thousands of elements
and millions of DOF. In models with substructures connected to one another via contacting boundary conditions, the
interface DOF may control the dynamic response of the system, while the numerous interior (non-interface) DOF
provide unnecessary model redundancy. As such, the interior DOF can be reduced through CMS methods, which
approximate the substructure interior with a relatively small set of mode shapes, while leaving the interface DOF
unchanged. One such method is the Hurty/Craig-Bampton technique, summarized below for the case when
substructures are connected through nonlinear contact elements.



Consider an arbitrary substructure in an assembly with nonlinear elements at the interface. In discretized form, the
equations of motion for the substructure are written as

Mii 4+ Ku + fy = fop, )
where M and K are respectively the mass and stiffness matrices, u is the relative displacement vector, fy is the vector
of displacement-dependent normal contact forces (discussed in Section 2.3), and f..is the externally applied loading

vector. The matrices are n x n and the vectors are n x 1. Each dot placed over u represents its derivative with respect
to time. These equations can be partitioned into interior i and interface b DOF as
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The mass and stiffness from the interior degrees of freedom are used to form the fixed-interface (FI) modes of the
system through a partitioned eigenanalysis, i.e.

[Kii — (w¢)*M;]e@s" = 0 (€))
The eigenvectors @f! (s =1, 2, ..., nr) form the FI modal matrix
o™ =[o' @3 - @ (O]
where ng is an integer much smaller than the original number of DOF in set i. The truncation of modes in this step
introduces the model reduction desired by the HCB process. The eigenshapes are combined with a set of static
constraint modes that describe how the interior DOF respond when each interface DOF is moved independently. This
is defined by the static condensation

PHEP = —K{'Kj, ®)

The combination of FI modes and constraint modes form a basis for the interior DOF of the substructure, and are
arranged to form the HCB transformation matrix as

THCB _ I:(DFI IPHCB]

0 I )
which converts the interior DOF of the substructure to generalized HCB coordinates through the transformation
u = THCBy (72)
i) _ [@ff @HCB] (q;
tue} = [ 0 1 ] {u) (7b)

The vector v is the HCB generalized coordinate and q; is the modal representation of the interior partition of the
substructure. The reduced mass and stiffness matrices, as well as the reduced load vectors, are computed via



MHCB — (THCB)TMTHCB KHCB — (THCB)TKTHCB
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fSCB = (THCB)TfN, fglx(%B = (THCB)Tfext
where Tis the transpose operator. The dimension of the problem after HCB reduction is ng; + ny,, where ng; is the

number of retained fixed-interface modes, and ny, is the total number of interface DOF. The equations of motion for
a substructure in HCB coordinates are

MHCBV + KHCBV + fII\-IlCB — fg((éB (ga)
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where I;; and A are the identity matrix and diagonal matrix of fixed-interface eigenvalues, respectively. This form
arises from the orthogonality properties of the modal matrix ®*! in the HCB coordinate transformation.

2.2. Interface Modal Basis

Any interface reduction basis must satisfy a number of criteria: (1) allow for realistic deformations in the contact area,
(2) reproduce the distribution of contact forces, (3) match the overall dynamic response of the HCB model within a
reasonable margin of error, and (4) be efficient enough to provide overall computational savings. This research
attempts to meet each of these criteria by utilizing an interface reduction technique that is a modification of the system-
level characteristic constraint modes [9,10]. In addition to these mode shapes, the basis is augmented with the static
deformation shape obtained from a nonlinear static preload analysis, as it is inefficient to resolve the interface
kinematics with dynamic modes alone.

2.2.1 Extended System-Level Characteristic Constraint Modes About Preloaded State

The traditional method of system-level characteristic constraint modes, or SCC method, transforms all physical
interface DOF in the HCB model into truncated modal DOF, such that the resulting model is defined entirely in the
modal domain. In some cases, it is desirable to retain some portion of the interface as physical DOF. For example, it
may be necessary to retain physical DOF when loads are applied near substructure boundaries (e.g. bolt preload force).
A novel method to achieve this is introduced here, and referred to as the extended system-level characteristic constraint
mode method, or SCCe method.

To reduce some of the interface DOF to modal DOF, and retain the rest as physical DOF, a given substructure must
now be partitioned into three sets: the interior DOF i (i.e. fixed-interface mode partition), physical interface DOF p,
and reduced interface DOF r. The HCB system mass and stiffness matrices, according to these partitions, are

HCB HCB
I;; M;; Mip All-? 0 0
HCB HCB HCB HCB HCB
MHCB — M M, Mrp , KHCB = [ 0 Kir Krp (10)
MH_CB MHCB MHCB 0 K;IEB KI{)II():B
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The contact state of the model about its preloaded state is important to capturing the correct dynamic response, and
hence the SCCe modal basis must account for this. This is achieved by linearizing the preloaded HCB model to include
stiffness contributions from the contact areas that form upon fastening/preloading substructures coming into contact.
The static deformation due to the preload force (denoted as v in HCB coordinates) is solved using a nonlinear static
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solver (see Section 2.2.2). A linearized stiffness matrix (denoted with —c due to the added constraints) is formed by
summing the linear HCB stiffness matrix and the Jacobian of the normal contact force, evaluated about the deformed
state,

KHCB—C — KHCB +
ov

af§‘CB]
v=v®

A set of SCCe mode shapes is computed from a second partitioned eigenanalysis, employing the linearized stiffness
matrix and isolating the reduced interface DOF r

[KEFCB—C _ (wSCCe—c)ZMII:;CB](pECCe—c =0 (12)

A limited set of eigenvectors @5¢Ce~¢ = (s =1, 2, ..., ng) are assembled into the columns of the constrained SCCe
modal matrix

d)SCCe—c:[(piCCe—c q,gCCe—c (prSéZCe—c] (]_3)

where ng is a number smaller than the original number of DOF in set r.

The modes contained in ®5¢C¢=¢ provide a good representation of the local interface dynamics when the interface is
in contact due to the additional term in the contact stiffness, KHCE=¢, If the interface loses contact during a vibration
response, then these modes may be insufficient. In order to address this, the eigenanalysis can be repeated using the
original stiffness matrix KH¢B, such that a new set of unconstrained modes (denoted with —u) can be added to the
reduction basis.

[KHCB — ((ySCCe—u)2MHCB]SCCe—u = @ (14)
The first ng unconstrained eigenvectors are used to build the unconstrained SCCe modal matrix as

¢SCCe—u:[(P§CCe—u (p§CCe—u (pISl(S:Ce—u] (15)

Both sets of eigenmodes described in Eqgs. (13) and (15) use the r-r partition of the system matrices, so they inherently
fix the motion of the physical interface DOF (set p) to be zero. To alleviate this issue, static constraint modes are
added to the interface reduction set, similar to those in original the HCB method

ySCCe _ _(KII:IrCB—C)—lKerCB—c (16)

Combining the dual set of eigenmodes with the constraint modes, along with appropriately-sized zero and identity
partitions, the SCCe transformation matrix is formed as

I 0 0 0
TSCCe — 0 pSCCe—c pSCCe—u ypSCCe (17)
0 0 0 I

This transformation uses a combination of dynamic (dS¢¢e=¢, @SCCe-u) and static (WSCC®) shapes to convert the r
portion of the model to modal DOF, while retaining the p portion as physical DOF. The transformation between HCB
coordinates and SCCe coordinates becomes

v = TSCCew (18a)
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where w is the SCCe generalized coordinate vector, and q. and q,, are the constrained and unconstrained modal DOF
in the r partition, respectively.

2.2.2 Static Preload Deformation

The inclusion of the static preload shape v€ in the reduction basis ensures that the SCCe model is exact for the initial
preload analysis performed on the nonlinear HCB model in Egs. (9a) and (9b). This shape is determined by solving
the following equations for static equilibrium, stated in HCB coordinates

KHCBye + fHICB = pefe (19)
where b is a mapping vector that positions and orients the scalar preload force amplitude f€ at the correct physical
DOF. In partitioned form, the equations are

A0 0 |(q¢ HOC . 0
0 KHB KHCB|Juel 4 {fnr —{ 0 } (20)
o e guee|(ug) (f5?)  (bpre

Due to the nonlinearity introduced by the contact force f{°B, the displacement vector vé = [qf uf uj]T must be

determined using an iterative solver. In this research, a damped Newton Raphson method was employed.
2.2.3. Total SCCe Transformation Matrix

The static deformation vector is concatenated at the end of TSCC€ to build the final SCCe transformation matrix TSCCe+

TSCCe+ — [Tscce Ve]

(21a)
I 0 0 0 qf
SCCe+ _— SCCe-c SCCe—u SCCe e
r

T =0 @ ® L 4 u (21b)
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This matrix performs the same transformation as Eqgs. (18a) and (18b), but adds one more DOF from the preload
vector. The HCB coordinate v is transformed to the new SCCe coordinates w™ via

V= TSCCe+w+ (22&)
di

gy [0 0 0 qf]|a (22b)
{ur]= 0 pSCCe—c pSCCe—u ypSCCe us dQu
Up 0 0 0 I u§ lupJ
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where g is the scalar DOF introduced by the inclusion of ve.



The variety of shapes that make up TS¢“®*can lead to a basis set that is not necessarily linearly independent. The
singular value decomposition (SVD) reforms TSC¢e* as

TSCCe+ — [JSCCe+ySCCe+ySCCe+ (23)

where USCCet and VSCCet are the left and right singular vectors, respectively, and £5¢¢¢* is a diagonal matrix of
singular values. The vectors in US¢¢e* form an orthonormal basis for the column space of TS¢Ce* | so they are taken
as the final transformation matrix to convert between HCB and SCCe coordinates. Thus, the SCCe system matrices
and load vectors are computed as

MSCCe — (USCCe+)TMHCBUsCCe+ KSCCe — (USCCe+)TKUsCCe+

(24)
fEICCe — (USCCe+)TfII\-IlCB’ fg)((ItCe — (USCCe+)ng(CtB

The dimension of the problem is now ng; + 2ng + n, + 1, where ng is the number of retained fixed-interface
modes, ng is the number of retained SCCe modes (one set of constrained, one set of unconstrained), n,, is the
number of physical interface DOF, and the 1 accounts for the static preload shape.

The equations of motion for the system in SCCe coordinates are

MSCCew+ + KSCCew+ + fI%CCe - fg)gtCe (25&)
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Note that, although the normal contact force vector f3¢¢¢ has been reduced to SCCe coordinates, it must still be
computed in HCB coordinates, where all interface DOF are physically represented. In nonlinear dynamic simulations,
this requires a transformation from SCCe to HCB coordinates at every time step to evaluate the nonlinear forces. The
advantage that comes from this reduction is twofold: (1) the size of the equations to solve is smaller compared to the
HCB model and (2) the high frequency content has been truncated and thus improves the critical time step in explicit
solvers.

2.3. Normal Contact Model
Contact in the normal direction is modeled using a node-to-node approach with the penalty method [11]. In this

method, the normal gap g between a contacting node pair can be either negative (in contact) or positive (out of contact).
For a particular node pair j, the normal gap is

g = (Y, + oY) — (Y} + aY) (26)
where the Y’s are the undeformed normal coordinates, and the AY’s are the physical relative displacements in the

normal direction. The subscripts 1 and 2 refer to the two nodes in node pair j. The penalty method states that the
normal contact force at node j flj\I can be written as
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where k., is the penalty stiffness value. This defines the penalty force as proportional to the gap when the nodes are
in contact (g/ < 0), and zero when the nodes are out of contact (g/ > 0). The node-to-node contact model assumes that
relative tangential displacements are small, and thus node pairs do not change during dynamic simulation.
Construction of the normal contact force vector fy is a matter of positioning and orienting each nodal force flj\I using
a corresponding mapping vector ij as

Np
fy = Z bl £ (28)
=1
where n,, is the number of node pairs all interfaces of the system.

2.4 Time Integration Schemes

The response time histories of the reduced order models are computed using one of two different 2™ order accurate
methods: an explicit scheme from Chung and Lee [12], and the implicit Hilber-Hughes-Taylor a (HHT- a) method
extended to nonlinear systems [13]. The implicit method is implemented with a = 0, yielding the constant average
acceleration method, which is unconditionally stable for linear systems. The Chung-Lee scheme is conditionally
stable, with a critical time step requirement that is dependent on its single free parameter, B¢,

2

Wmaxy/ 4'BCL -3

where At is the critical time step length, and w . is the largest natural circular frequency in the system. The Chung-
Lee parameter ¢y, is chosen to be 28/27, the maximum permissible value in the stability limit of 1 < B¢, <28/27. This
selection improves stability by introducing slight numerical dissipation of high-frequency responses, which mitigates
the amplification of numerical errors.

At = (29

3. Numerical Studies: Two-Beam Assembly with Frictionless Contact
3.1. Model Description

Figure 1a shows the benchmark finite element model under consideration, which consists of two identical C-beams
bolted together at each end. Each individual C-beam is 50.8 cm long, 3.2 cm wide, 1.27 c¢m thick at its ends, and 0.95
cm thick at the mid-section. A total of 24,944 first order hexahedral elements are used to model each individual C-
beam, and they are made of linear elastic structural steel. Table 1 provides a summary of material properties used for
the C-beams.

These are connected by 5/16-inch diameter steel bolts at each end that are modeled with 25 discretized beam elements
along the y-axis, as depicted in Figure 1b. The bolt ends are connected rigidly to a circular patch of nodes on the C-
beams to represent clamping boundary conditions through a nut-washer-bolt assembly. The C-beam assembly has
simply supported boundary conditions at all DOF along the z-directional line on the lower beam ends. The full fidelity
finite element model has a total of 94,244 physical DOF.



The model has two areas where the C-beams come into contact; each is 3.2 cm wide by 5.0 cm long, as indicated in
Figure 1b). The interface surfaces are meshed in such a way that their nodal locations are coincident and unmerged in
the undeformed state, allowing for direct implementation of node-to-node contact elements. The Hurty/Craig-
Bampton model is defined such that the boundary DOF include the nodes along these interface surfaces and the four
nodes at each end of the beam elements (to apply the preload force); the remaining DOF are partitioned to interior
DOF. Three different reduced order models are generated with fixed-interface mode frequencies cut off at 2 kHz, 3
kHz, and 4 kHz. The DOF count in the reduced model is dominated by the 3,660 boundary DOF that account for the
contacting surfaces, while 24 DOF pertain to the bolt DOF and 8 to 16 DOF for the fixed-interface modes, depending
on the cutoff frequency (see Section 3.3). The HCB reduction is performed using the Sierra Structural Dynamics
(Sierra/SD) [14] finite element code developed at Sandia National Laboratories.

@) (b)

Figure 1. (a) Finite element model of bolted C-beam assembly with coordinate axes. (b) Close-up view of
interface surface with bolt DOF spider.

Contact at the interface surfaces is considered through node-to-node penalty elements in the normal direction [11].
Selection of the penalty stiffness k., is critical in the accuracy and stability of the penalty method - using a stiffness
value that is too small allows excessive and non-physical nodal interpenetration, while a value that is too high can
cause numerical ill-conditioning or instability. Preliminary studies indicated that a value of 3.78 x 10° N/m was
sufficient to avoid excessive node overlap, while retaining stability and convergence.

Table 1. Summary of material properties used in finite element model of C-beams.

Symbol  Description Numerical Value
E Young's modulus 194 GPa
\Y Poisson's ratio 0.290

) Mass density 8000 kg/md

3.2. Static Preloading of Bolt Elements

A static preload force € is applied to the ends of the bolt elements, to simulate the effect of bolt torque clamping the
C-beams together. The preload force is obtained via an artificial strain e,,, which leads to the following expression.

fe = EAgp (30)

The cross-sectional area A of each bolt is 4.95 x 10 m?, and the Young’s modulus E is the same as that of the C-
beams (194 GPa). To ensure that a physically reasonable preload force is applied, a target internal bolt force is obtained
using the DIN 946 standard [15] equation to convert applied torque T to transmitted axial force fi,.

T

fr = 5159P + 057841y + 0.5Dig

@D



where P is the bolt thread pitch, d is the nominal bolt diameter, Dy is the effective diameter in contact, py is the thread
friction coefficient, and py is the head friction coefficient. Inputs for these variables are summarized in Table 2. For
a typical applied torque of 18.5 ft-1b (25.1 N-m), the transmitted axial force is computed as 2.91 kN.

The correct €, (and therefore £€) is obtained through an iterative procedure that incrementally alters .., and applies
the corresponding f€, until the resulting internal bolt axial force matches the theoretical transmitted force fi.. This
procedure indicates that an artificial strain of 3.32-10* (corresponding to a preload force of 3.19 kN) is appropriate to
produce an internal axial force equal to 2.91 kN.

Table 2. Summary of bolt preload parameters.

Symbol  Description Numerical Value
T Applied bolt torque 25.1 N-m
P Bolt thread pitch 0.00106 m

d Nominal bolt diameter 0.00794 m
Dr Effective diameter in contact 0.0191 m
Ty Thread friction coefficient 0.600

HH Head friction coefficient 0.600

fur Transmitted axial force 2.91 kN
Eart Artificial preload strain 3.32E-04

fe Preload force 3.19 kN

A visualization of the preloaded deformation mapped to the full-field model is displayed in Figure 2, along with a
close-up view of the interface, showing how the preload force indents the C-beam surfaces and causes receding of the
contact area.

Figure 2. Amplified deformation after static preload, with close-up view of interface.

3.3. Results: Full-interface Model

A critical step in the Hurty/Craig-Bampton (HCB) reduction is determining the number of fixed-interface (FI) modes
to retain, which is established by discarding FI modes with frequencies above a defined threshold. For a given loading
bandwidth and pattern, the dynamic response of the system will converge to the “true” solution by increasing the
frequency cut-off limit. The number of FI modes required for convergence is considered adequate to capture the
important dynamic characteristics of the system. For this research, so-called “cutoff” frequencies of 2kHz, 3kHz, and
4kHz are examined and summarized in Table 3. The lowest fixed-interface mode frequency in all cases is 288 Hz.



Critical time step lengths are computed for the Chung-Lee scheme [12] using Eqg. (29). The maximum natural circular
frequency w, ., Was determined using the regular HCB mass matrix and the linearized HCB stiffness matrix computed
in Eq. (11). This method of computing the critical time step assumes a linear model, so the analysis time step At, is
taken as 90% of At to ensure stability in the nonlinear case.

Table 3 demonstrates that the critical time step length is controlled by the HCB constraint modes computed in Eq. (5),
and remains unchanged as fixed-interface modes are truncated. This suggests that HCB substructuring with nonlinear
interface DOF does not gain any computational advantage directly from explicit time integration, except for the lower
order of equations solved. In other words, the critical time step is determined by the constraint modes.

Table 3. HCB model comparison for different cutoff frequencies.

Fci :;ngnz; FI Modes per F:\:g:elrj::y I\gra;m?]gsl Model Size Ater Aty
[H2] Substructure [Hz] [Hz] [DOF] [sec] [sec]
2,000 4 1,544 9.14E+06 3692 3.25E-08 2.93E-08
3,000 7 2,534 9.13E+06 3698 3.25E-08 2.93E-08
4,000 8 3,763 9.13E+06 3700 3.25E-08 2.93E-08

An externally applied loading pattern f,,.(t) was designed to excite the fundamental mode of the C-beam model,
which has the displacement field shown in Figure 3a. This mode exhibits bending about the z-axis, with most of the
deformation concentrated in the top beam. To excite this mode, a vertical haversine impulse was applied to a strip of
nodes at center of the top C-beam. The impulse has a duration of 1 ms and was applied with various amplitudes. The
loading pattern can be seen in Figure 3b.

(@)
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Figure 3. (a) Fundamental mode shape of the HCB model. (b) Dynamic loading pattern.

Dynamic simulation results are presented for the three HCB models described in Table 3, and for three loading
amplitudes of 15 N, 100 N, and 500 N. These loading amplitudes are selected to elicit linear, moderately nonlinear,
and strongly nonlinear responses, respectively. It is important to study different loading amplitudes to ensure that the
HCB models retain accuracy for varying degrees of nonlinear response. A viscous damping matrix with 1% damping
in all modes is included in the system to simulate a more realistic system.

Response convergence is determined based on system-level and interface-level outputs: the drive point displacement
(vertical displacement at the loading point) is used to evaluate the global response convergence, while contact area



and summation of normal contact forces determine local interface-level convergence. Time histories are computed
out to 10 ms to adequately show the transient vibration response of the system subjected to a 1 ms haversine impulse.
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Figure 4. Time history of (a) drive point displacement; (b) contact area (percentage of nodes in contact); (c)
total normal contact force on one interface. Comparison between different HCB cutoff frequencies.

A comparison of the different loading amplitudes and HCB models in Figure 4 reveals that increasing the cutoff
frequency from 2 kHz to 3 kHz significantly alters the response at the system-level and interface-level. Drive point
displacements, as well as contact area and interface forces, change dramatically in magnitude and frequency between
the 2 kHz and 3 kHz models. Furthermore, a visual comparison shows strong similarity between the 3 kHz and 4 kHz
results, indicating the reduced order models have converged. Similar to results from [4], the 2 kHz model is not
accurate for this loading because the 2/t impulse frequency is 2,000 Hz, but the model only kept frequencies up to
1,544 Hz. Thus, the 2 kHz model cannot produce response frequencies in the range generated by the 1 ms impulse.



It is interesting to observe that for the 3 and 4 kHz models, the qualitative behavior of the drive point displacement
does not change between different input levels (although the amplitude is scaled proportional to force). The contact
area changes significantly with force level, and the total force at the interface oscillates considerably about the 2.91
kN preload force level. A seemingly linear global response in fact contains nonlinearities that are hidden in the
interface-level outputs. This implies that, should friction be included, the damping characteristics of the system would
change dramatically in time as the interfaces come in and out of contact.

The 3 kHz and 4 kHz models provide satisfactory starting points for interface reduction, and both would be suitable
for the dynamic loading considered here. Nonetheless, the 4 kHz model provides roughly 1,200 Hz of increased
frequency bandwidth over the 3 kHz model at the cost of only two more DOF, so the 4 kHz model is used for the
following interface reduction studies.

3.4. Results: Interface-reduced Model

The dynamic analysis from the full-interface studies in Section 3.3 is repeated here, but now using the interface-
reduced models described by Egs. (25a) and (25b) The base HCB model includes all fixed-interface frequencies up to
4 kHz, which equates to 16 FI modes. The effect of interface fidelity is considered through several reduction cases
that retain between 20 and 3,659 total SCCe modes (constrained + unconstrained). A few SCCe mode shapes with
their corresponding frequencies are plotted in Figure 5 below.
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Figure 5. Amplified SCCe mode shapes. Constrained modes are formulated in Egs. (12) and (13).
Unconstrained modes are formulated in Egs. (14) and (15).

The same process shown in Section 3.3 is employed to determine w4 and At.., but now the eigenvalue problem is
formulated in the SCCe system using MS¢¢® and a linearized SCCe stiffness matrix KS¢¢e=¢  obtained via

KSCCe—C — (USCCe+)TKHCB—CUsCCe+ (30)

Similar to Section 3.3, the analysis time step At, is obtained by multiplying the critical time step At by a factor of
0.9. Table 4 summarizes the different SCCe models in terms of maximum frequency, number of DOF, and critical
time step length. Note that the analysis time steps of the SCCe models are significantly larger than that of the HCB
model (2.93E-08), which results in nearly an order of magnitude speed-up in explicit time solvers.



Table 4. Model comparison for various levels of SCCe interface reduction. Cases marked with * had some
modes removed during the orthonormalization process.

Max Constrained  Max Unconstrained Max Model

SCCe Modes Model Size Ater Aty
Retained SCCe [F|_r|§§1uency SCCe E_ré?uency Fre[q|_L|qu]ncy [DOF] [sec] [sec]
20 1.95E+03 1.90E+03 1.87E+05 61 2.51E-07 2.26E-07
100 5.01E+04 4.18E+04 4.28E+05 141 1.37E-07 1.23E-07
200 1.12E+05 1.06E+05 5.88E+05 241 9.54E-08 8.59E-08
500 2.46E+05 2.23E+05 8.91E+05 541 6.46E-08 5.81E-08
993* 3.77E+05 3.48E+05 1.19E+06 1,034 4.37E-08 3.93E-08
3,659* 8.48E+05 7.97E+05 1.63E+06 3,700 3.26E-08 2.93E-08

Drive point displacement, contact area, and normal contact force time histories for the different SCCe models are
plotted against those of the 4 kHz HCB model, shown in Figure 6.

Visual comparison of the drive point displacement histories in Figure 6a shows that all SCCe solutions lie on top of
the HCB solution, with no observable deviations. For 500 or more SCCe modes, the normal contact force Figure 6¢
also shows near-perfect agreement. The contact area (percentage of nodes in contact) in Figure b is the slowest to
converge to the HCB solution, with significant errors observed for the case of 20 and 100 SCCe modes. All results
converge to the HCB solution when all SCCe modes (3,659 + 1 augmentation vector) are retained and the
transformation basis is not truncated.

Drive point displacements from the HCB and SCCe models match well because the loading excites vibrational modes
with deformations concentrated away from the interfaces, regardless of loading amplitude. The contact area and
contact force, however, show a strong dependence on the loading amplitude. Errors in these quantities are negligible
for the linear excitation of 15 N, but become more significant as the loading increases to the nonlinear excitations of
100 N and 500 N. This implies that the accuracy of the SCCe method not only depends on the number of modes in
the reduction basis, but also on the degree of nonlinearity (and therefore the loading amplitude). If the only output of
interest is some system-level displacement at a location sufficiently distant from the interfaces, then only a small
number of SCCe modes is required. Still, the rapid changes in contact area (Figure 6b) would have a significant effect
on the system-level damping if friction was included at the interface. In that case, more SCCe modes would be
necessary to accurately capture system-level response.

It is important to note that at certain levels of interface reduction, the total contact force (Figure 6¢) may be accurate,
while the contact area (Figure 6b) has significant errors. Interface forces in the SCCe model with 500 modes show
near-perfect agreement with the HCB model, but the contact areas are in error by up to 20%. A relatively small number
of SCCe modes are needed for convergence in overall contact forces, but more modes must be added to achieve
suitably accurate interfacial stresses, which require accurate representation of the contact area.
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Figure 6. Time history of (a) drive point displacement; (b) contact area (percentage of nodes in contact); (c)
total normal contact force on one interface. Various levels of SCCe reduction compared to full-
interface HCB model.

This is confirmed by the distribution of contact forces plotted in Figure 7. The spread of contact forces over one
interface surface is plotted at single instant in time (t = 3.10 ms), and under the most severe loading (500 N). At this
selected time, the structure is transitioning from low to high contact area, a phenomenon that seemingly requires a
high number of included SCCe modes. The sum of instantaneous contact forces quickly converges to around 3500 N,
but doesn’t accurately represent the distribution of those forces within the interface until many more modes are added.
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Figure 7. Contact force distribution at one interface surface for full-interface HCB model and various levels
of SCCe interface reduction. Snapshot is taken at t = 3.10 ms with loading amplitude 500 N.

To the extent previously described, the interface reduction basis provides an acceptable level of accuracy relative to
the full-interface HCB model. The final and arguably most important metric for gauging the effectiveness of the
interface reduction is its potential for computational savings. The previous analyses were repeated using the implicit
and explicit time integration schemes described in Section 2.4. Simulation run times for each of these cases are plotted
in Figures 8 and 9. The solve time reduction factor is the ratio of HCB solve time to SCCe solve time.
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Explicit time integration is carried out using 90% of the critical time step as determined by Eq. (29). This resulted in
a time step length of 2.93E-08 sec for the HCB model, and ranged from 2.26E-07 sec to 2.93E-08 sec for the SCCe
models (see Table 4). The implicit scheme is unconditionally stable, so a time step length is chosen provide adequate
resolution over a simulation time of 10 ms. For this study, a time step of 1.00E-05 sec was selected, such that the
implicit scheme yields 1,000 equally-spaced solution points.

Results from the implicit simulations in Figures 8a and 8b show that the SCCe interface reduction provides a wide
range of computational savings. The SCCe method reduces solve time by a factor of approximately 19 when 20 modes
are included, but the savings decrease rapidly as more modes are added. With 100, 200, and 500 SCCe modes retained,
the solve time is reduced by a factor of 8, 4, and 2, respectively. The 993 mode case provides almost no reduction for
the 15 N loading (reduction factor of about 1), and increases solve time for the 100 N and 500 N loadings (reduction
factor less than 1). The “exact” case of 3,659 SCCe more than doubles the solve time for all loading amplitudes. This
seemingly counterintuitive result comes from the fact that the implicit solver requires iterations at each time step to
reach equilibrium with the nonlinear contact forces. The SCCe models require a costly coordinate transformation at
every state determination, so eventually the cost of performing the transformation outweighs the savings from the
reduced model size. Furthermore, higher-amplitude loadings are effected more by this phenomenon because the
greater degree of nonlinearity inherently requires more iterations to reach equilibrium.

The explicit simulation results in Figures 9a and 9b are drastically different than those of the implicit scheme. Firstly,
the solve times are indifferent to the loading amplitude, which is due to the lower order of equations being solved
relative to the implicit case. The cost savings are also much more significant, with reduction factors between 40 and
220 for the cases of 20, 100, and 200 SCCe modes. The 500 mode case reduced the computation time by a factor of
16, and the 993 mode case by a factor of 5. The cost reduction observed in the explicit results is due to the significant
model size reduction (3700 reduced to 61, 141, 241, 541, or 1034), as well as the difference in time step length (see
Table 4).

In the “exact” case, where 3,659 modes are retained, the SCCe simulation ran about twice as long as the equivalent
HCB analysis. This means that, somewhere between 993 and 3,659 retained SCCe modes, the reduced model will
complete a simulation in the same time as the full-interface model. At this critical reduction level, the benefit of a
reduced model size is exceeded by the cost of the HCB-SCCe coordinate transformation that must be performed at
each time step.

4. Conclusions

The Hurty/Craig-Bampton (HCB) method was applied to a system with frictionless contact, and a novel expansion of
the system-level characteristic constraint mode method (SCC) method was defined and used to further reduce the
model size and simulation time. The new interface reduction technique, deemed the SCCe method, reduced most of
the interface DOF in the HCB model to modal DOF, while leaving some as physical DOF. Contact at the interfaces
was modeled using node-to-node penalty elements in the normal direction, with the interfaces meshed such that the
contact surfaces are conforming and node pairs are known a priori. The SCCe method was demonstrated on an
assembly of two beams bolted together and subjected to a 1-ms haversine impulse applied at its midspan. The base
HCB model used for interface reduction included 16 fixed-interface modes, with a maximum fixed-interface
frequency of 3763 Hz.

Results from the SCCe reduced models indicate that only a small number of retained SCCe modes is required to
reproduce system-level displacements and total contact force at the interfaces, but more SCCe modes are needed to
converge to the HCB solution for contact area. Reduction in simulation time, relative to the HCB model, is most
significant when using an explicit integration method. Use of an implicit scheme with the SCCe method yields much
less computational savings, and even increases the simulation time where the explicit scheme would reduce it.



This research serves as a numerical proof-of-concept, which explores the viability of interface reduction on contacting
substructures when nonlinear elements are applied at the interface. Results from this work indicate moderate success
of the reduction scheme, but more work is needed to determine the applicability of this method to other situations.
Future work will examine different reduction bases, variation in dynamic loading patterns, more general contact
models, non-conforming interfaces, and the inclusion of friction elements.
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