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The Von Neumann Bottleneck @

N

l Cross chip communications ~ 1 pJ
DRAM Access >10 pJ
Current Transistors ~ 10 aJ Ethernet ~ 1nJ

40kT Noise Limit~ 0.2 aJ

Communications require
orders of magnitude more
energy!

Processor Layer - Photonic Layer

Optical interconnects 100 fJ to 1 pJ




Use Resistive Memories for Local 7
Computation -

._JVV\,_. »  Aresistive memory or ReRAM is a

programmable resistor

V=1xR - Apply small voltages allows the conductance
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Directly Process in the Memory Itself @i

Analog is efficiently and naturally
able to combine computation and
data access

Effectively, large-scale processing in
memory with a multiplier and adder
at each real-valued memory location




Crossbars Can Perform Parallel Reads e,
and Writes
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Energy to charge the crossbar is CV?
E « C «x number of RRAMs « NxM

E ~ O(NxM)




SRAM Arrays Require Charging i
Columns Multiple Times

‘WL[zlLE L'lE L‘LE 1
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M columns
SRAMs must be read one row at a time, charging M columns
Each column wire length is O(N).

==

N rows
A

J

Energy = N Rows x M Columns x O(N) wire length
Energy ~ O(N?xM)
O(N) times worse than a crossbar!




Want To Accelerate Many Different @&s.
Neural Algorithms

Sparse Liquid State
Coding Machine

Backpropagation




Crossbars Can Perform Parallel Readsmgs.,
and Writes
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Energy to charge the crossbar is CV?
E < C « number of RRAMs o« NxM

E ~ O(NxM)




General Purpose Neural Architecture

Run any neural algorithm on the cositive [D/A| A \
same hardware . _
weights
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Neuromorphic core: Digital Core:
« Evaluate vector matrix multiplies along * Process neural core inputs/outputs
rows or columns  For NxN crossbar, the crossbar accelerates
* Train based on input vectors O(N?) operations leaving only O(N) operations

for the digital core




Can Run Neural Networks on this e
Architecture
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Back Propagation e
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Design & Model Detailed Architecture (&
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Row & Column Driver Circuitry
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Compare Architectures ) i,

1024 x1024 = 1M array operations, sum over 1 training cycle, 3 operations:
* Vector Matrix Multiply
* Matrix Vector Multiply
* Quter Product Update

Energy Latency Area
430 — 6,900X over SRAM 35 - 800X over SRAM 11 — 20X over SRAM
1@5 T T T | 10% — T T | 10° - -
10°} 4
= ; ; —-
£10%] {1 = i3
> N : 0 =10°
%1@ 1 F g
0°

Analog Digital SRAM Analog Digital SRAM Analog Digital SRAM
ReRAM ReRAM ReRAM ReRAM ReRAM ReRAM

8 bit in/out 4 bit in/out 2 bit in/fout
B g it weights ™ g it weights B8 g it weights

Used a commercial 14/16 nm PDK ***Requires 100 MQ on state devices




Neural Core Energy Analysis e

8 bits In/out 4 bits In/out 2 bits In/out
8 bit weights 8 bit weights 8 bit weights

ADC

Integrator

Array Write
Array Read
Temporal Drivers
Voltage Drivers
Data Movement

Analog
ReRAM

1.3 nd

Multiply & Add
Data Movement
Write Memory
Read Memory

Digital
ReRAM

BONE (NONRECE

4,340 nJ

Multiply & Add
Data Movement
Write Memory
Read Memory
Read Transpose

SRAM

12,010 nJ 10,150 nJ 8,970 nJ



Multiscale Model of a
Neural Training Accelerator
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ZROSS SI

https://cross-sim.sandia.gov

Sandia Naticnal Laboratories: .. < | 4+

ia.gov c@ | Q Search

Sandia Locations ~ ContactUs  Employes Locato
National
Lahoratories CROSS SIM

Crosshar Simulator

ZROSS SIM

About CrossSim

CrossSim is a crossbar simulator designed to model resistive memory v )
=X
c 1

e o RS

es a clean python API so that different VZ:XZG 5 5 ‘ 5

bars while modeling realistic device D Walt Wasl Wasl Wy

an be modeled using muttiple V3=x3@ R e e

up tables Aslanr but V,= .fl\wn i3] Wl W

more accurate circuit simulation of the devices using the parallel spice A UWA} W-«} WA} W;‘i‘
simulatar Xyce is also being developed and will be included in a future L 2 2 2R

Download

Download the user manual here: CrossSim_manual.pdf
Download CrossSim v0 2 here: cross_sim-0 2 0 tar gz

Contact Us

Please email Sapan Agarwal for any questions or if you would like to contribute to the source code: sagarwa@sandia.gov.

Selected Publications Using CrossSim

+ 5. Agarwal, R B. Jacobs-Gedrim, A H. Hsia, D. R. Hughart, E. J_ Fuller, A. A Talin, C. D. James, S.J. Plimpton, and M.
J. Marinella, "Achieving Ideal Accuracies in Analog Neuromorphic Computing Using Periodic Carry," in 2017 IEEE
Symposium on VL3I Technoiogy Kyoto, Japan, 2017.
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Xyce
Crossbar
Circuit Model
Detailed but
slow

Fast but

approximate

Simple Python API:
# Do a matrix vector multiplication

result = neural_core.run_xbar_mvm(vector)

Algorithmic
Performance
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Simple APl to model crossbars e

# kkkkkkkkkkkkkk

set parameters defining the crossbar

params.algorithm_params.weights.sim_type = “XYCE” # Use a XYCE based sim
params.algorithm_params.weights.maximum = 10 # clipping limits
params.algorithm_params.weights.minimum = -10 # clipping limits

params.xyce parameters.xbar.device. TAHA A1 = 4e-4 # Xyce Parameters

g Freemeemeesee® APl for running neural operations
# All crossbar details are transparent to the user

# Create a neural _core object that models a crossbar
neural_core = MakeCore(params=params)

neural _core.set_matrix(weights) # set the initial weights

result = neural_core.run_xbar_vmm(vector) # Do a vector matrix multiply

result = neural_core.run_xbar_mvm(vector) # Do the transpose, a matrix vector mult.
neural_core.update_matrix(vector1,vector2) # Do an outer product update

18



Go from Measurement to Accuracy LR
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Multi-ReRAM Synapse: Periodic Carry

If we need more bits per synapse, use multiple memristors

 Three 10 level ReRAMs could represent 1-1000!
« Adding to the weight requires reading every

ReRAM to account for any carries and serially
programming each ReRAM: VERY EXPENSIVE

x100 x10 x1 « Use >10 levels to represent a base 10 system
) « Ignore carry and program the crossbar in parallel.
Tﬁi_‘_’“‘ "“ » Periodically (once every few hundred cycles) read
DM ™ the ReRAM and perform the carry
LR IS I
Wl W ] —
JE — Extra levels 10 levels
QGED store the } represent the
| carry weight
conductance




Periodic Carry Compensates for Write Najie,
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Read and reset every 100 pulses Weight

Do 300,000 small (0.02% of weight range) updates
« net of 1500 positive training pulses

~ ey ”

Noise Sigma = 1.4% for single device Learn from a 0.5% Signal

* (from O-noise/Grange = O°1\/AG/Grange )
« Write noise applied during updates and carries




Periodic Carry Mitigates Write Nonlinedfiis,

Write Nonlinearity
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TaO, Results

1 1/4 TaO,—File Types
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«  When resetting weight, need to adjust pulse size based on current state to compensate for nonlinearity
« When reading a single weight, need to adjust readout range to be smaller (change capacitor on the integrator)




Li-lon Synaptic Transistor for Analog e
Computation (LISTA)

] current-collector
500 nm anode/gate
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E. J. Fuller, et al, "Li-lon Synaptic Transistor for Low Power Analog Computing," Advanced

Materials, vol. 29, no. 4, p. 1604310, 2017.
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Summary

Sandia
() e,
Energy Latency Area
430 — 6,900X over SRAM 35 — 800X over SRAM 11 — 20X over SRAM
1@5§ T T T 5 ‘ E 1@6 y
10"F ]
= 5 - ] ~
S10°k 4 £
> - - 5‘1«305
2 - : @
$10°} 1 =
i ’ <
1@1 E|
Analog Digital SRAM Analog Digital SRAM Analog Digital SRAM
ReRAM ReRAM ReRAM ReRAM ReRAM ReRAM
8 bit in/out 4 bit in/out 2 bit in/out
B g it weights B g pit weights B g pit weights

= Fundamental O(N) energy scaling advantage
= Use CrossSim to co-design materials to algorithms

= Use periodic carry to overcome noise devices

= Need high resistance 10-100 MQ Devices
= Need low write nonlinearities

ZROSS SIMVI https://cross-sim.sandia.gov
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Overcoming the Power Limit )
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Richard Goering, “Three Die Stack -- A Big Step “Up” for 3D-ICs with TSVs” Cadence blog

Integrate Processing and Memory




The Noise Limited Energy to Read a Crossbar
Column is Independent of Crossbar Size

I, =GV

_/\/\/\/i

[ =GV
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Thermal Noise = <AI 2>
= Nx(4k,Tx G, x Af)

SNR? = (

i=4kaxSNR2x .
Af V:G,xN

=

Measure N resistors and determine the total output
current with some signal to noise ratio (SNR)”

What is the minimum energy?

Energy = V G, ><N><L
J

Af —

Determined by
noise and SNR

Power in each resistor x
number of resistors

If we double the number of resistors, we can double
the speed to get the same energy and SNR.

This is because the noise scales as sgrt(N) while the
signal scales as N

Energy = 4k, T x SNR’

we are assuming we need some fixed precision on the output, and don’t need full floating point accuracy




Experimental Device Non-idealities @i

Device: Write Variability, Write Nonlinearity, Asymmetry, Read Noise

Circuit: A/D, D/A noise, parasitics

Variability and Nonlinearity
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Full System Simulation A/D & D/A Have
Minimal Impact
positive IE/ﬁI D/
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Ideal Numeric Periodic Carry
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Update Count (x10,000)

A/D and D/A is modeled, serial operations modeled

 When resetting weight, need to adjust pulse size based on current state to
compensate for nonlinearity

« When reading a single weight, need to adjust readout range to be smaller (change

~anacitAar An thea intanratar)



LISTA Results () &=,

Weight
Configuration LISITA -I MNIIST
49(base77) 5 Ideal Periodic
686 % 98 H 14 > |Numeric Carry
o 98r
343 49 7 \ k .
0 0 0 Carry 5 97r 4/ Single  Ideal 1
343 £ 49 7 / < 96 Device w/ A/DA
-686 -98 -14 95 I I I ]

O 10 20 30 40
Training Epoch

« Carry once every 1000 updates
» Use a single device per weight and
subtract a reference current



Neural Core Latency Analysis =

Analog ReRAM
8 bit in/out 4 bit in/out 2 bit in/out

VMM Temporal Driver
VMM ADC
MVM Temporal Driver
MVM ADC
OPU Temporal Driver
OPU = Outer Product Update

- x0.06 |
1.28 s 0.08 us

0.054 us Min write time of 8 ns vs
1 ns incremental write
Digital ReRAM SRAM
All bit precisions All bit precisions

SRAM transpose
read expensive

B VMM Read
B MVM Read
B OPU Write
—1 OPU Read

x1040 4335 us




Neural Core Area Analysis

8 bits In/out

4 bits In/out

2 bits In/out

8 bit weights 8 bit weights 8 bit weights (EEE Timed Driver
Analog ReRAM =3 Row Cache & Control
y I \oltage Driver
x1 B Col Cache & Control
75k pm? B Integrator
1 Comparator
B Routing
ReRAM Array Array [ ReRAM Array
Digital ReRAM  onlogic “ Drivers _
' ! / = Array Drivers
I Multiply & Add
x1.8 I [nput Buffers
137k um? 1 ReRAM Array
MAC
SRAM
1 SRAM Array
x11.1 | | BN Multiply & Add
836k pm?2 SRAM Array I |nput Buffers

For the ReRAM, high voltage transistors require 8X area, improving this could give ~2X area savings
I ——————




