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1 Improved State Preparation for Simulating Quantum Field The-
ories on Quantum Computers

In quantum algorithms discovered so far for simulating scattering processes in quantum field theo-
ries, state preparation is the slowest step. We have developed a new algorithm for preparing particle
states to use in simulation of Fermionic Quantum Field Theory (QFT) on a quantum computer,
which is based on the matrix product state ansatz. We applied this to the massive Gross-Neveu
model in one spatial dimension to illustrate the algorithm, but we believe the same algorithm with
slight modifications can be used to simulate any one-dimensional massive Fermionic QFT. In the
case where the number of particle species is one, our algorithm can prepare particle states using
O(ε−3.23) gates, which is much faster than previous known results, namely O(ε−8). Furthermore,
unlike previous methods which were based on adiabatic state preparation, the method given here
should be able to simulate quantum phases unconnected to the free theory.

Our algorithm simulates scattering of fermionic particles in the Gross-Neveu quantum field
theory with a mass term. The mass term ensures that the theory is gapped, i.e. that there is a
nonzero energy difference between the ground state and first excited state in the infinite volume
limit. This allows us to construct the vacuum (ground state) efficiently by classically computing a
Matrix Product State (MPS) description of the vacuum state and then compiling that description
directly into a quantum circuit for preparing that state. We then use Rabi oscillations to efficiently
excite single-particle wavepackets. This completes the state preparation phase of the simulation,
after which the scattering of the particles off each other can be simulated using high order Suzuki-
Trotter formulae exactly as in [1] or using newer results for lattice hamiltonian simulation as in [2].
Relative to previous state of the art [1] our new state preparation method has better asymptotic
complexity in the limit of high precision and is able to simulate the symmetry-broken phase of the
Gross-Neveu model, which was inaccessible to prior state preparation methods, which simulated
an adiabatic process starting from the free theory.

We have published this work in Physical Review A [3].
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2 Applying Tensor Networks to High Energy Physics

In the proposal for this grant, one of the ideas was to adapt tensor networks, which had been a
successful variational ansatz for quantum systems with finite-dimensional Hilbert spaces, to apply
to quantum systems with continuous degrees of freedom, such as Bosonic lattice quantum field
theories. Over the course of this project we discovered that, in our formulation, the constraints on
the tensors which would be needed to ensure that the network represents a valid quantum state
were highly nontrivial and interesting. Eventually, it became clear that with a sufficiently complete
understanding of the constraints we could abandon the tensor network ansatz entirely and obtain
lower bounds on the vacuum energy of the quantum field theories, in contrast to conventional
variational methods, which yield upper bounds.

To understand this idea, it is helpful to consider the harmonic oscillator as a simple example.
The Hamiltonian is given by H = ap2 + bx2 where x and p are the canonically conjugate position
and momentum operators, and a, b are arbitrary real positive coefficients. One can formulate the
problem of finding the ground energy 〈H〉 as an optimization problem expressed in terms of the
expectation values of x2 and p2. Namely, one wishes to minimize 〈H〉 = a〈p2〉 + b〈x2〉 subject to
the constraint that the quantities 〈p2〉 and 〈x2〉 are achievable as expectation values of a physially
allowed quantum state. One well known constraint imposed by this condition is Heisenberg’s
uncertainty principle, which in natural units is 〈x2〉〈p2〉 ≥ 1

4 . One finds that minimizing 〈H〉 =
a〈p2〉+b〈x2〉 subject to Heisenberg’s uncertainty principle yields the exact value of the ground state
energy of the Harmonic oscillator.

For more general Hamiltonians, such as anharmonic oscillators (or lattices of coupled anhar-
monic oscillators arising from discretizatino of the φ4 quantum field theory), this procedure will
always yield a lower bound on the ground energy, because there is an infinite tower of constraints
on the expectation values of monomials constructed from canonically conjugate observables. In a
practical computer calculation one will only incorporate a finite subset of these constraints. For
the harmonic oscillator it turns out that this neglection of higher order constraints causes no error,
but in general neglecting constraints in a minimization problem will yield an underestimate of the
value of the minimum. Our approach is to incorporate higher order constraints until we converge
to a tight estimate of the ground energy. A procedure for generating the complete tower of higher
order constraints has been derived by the quantum optics community [4]. In the end, the resulting
optimization problem ends up as a semidefinite program, which can, at least in principle, be solved
by polynomial time classical algorithms. In practice, there can be many subtleties in obtaining
good convergence. Consequently, the application of this method to concrete physical problems is
work in progress. However, the effort that we have invested over the course of this grant has not
gone to waste. Rather, the technical knowledge that we obtained in this area helped to inform a
project that we are now pursuing in a DOE-funded Quantum Algorithms Team project entitled
QOALAS (Quantum Optimization And Learning And Simulation).

3 Simulating Relativistic Wave Equations on Quantum Comput-
ers

We developed a quantum algorithm for simulating wave equations, subject to nontrivial boundary
conditions. In particular, the algorithm can simulate the scattering of a wavepacket off of scat-
terers of arbitrary shape, with either Dirichlet or Neumann boundary conditions. We considered
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specifically the application of this algorithm to relativistic wave equations such as Maxwell’s equa-
tions and the Klein-Gordon equation. The output of the simulation is in the form of a quantum
state proportional to the solution to the wave equation. By measuring this state one obtains a
sample from a distribution proportional to the square of the amplitude, which in this case can be
interpreted as the intensity of the wave.

Compared to classical algorithms, our method uses a number of qubits that scales only logarith-
mically with the number of lattice sites, whereas classical methods require a number of bits scaling
linearly with the number of lattice sites. Additionally, for simulating the wave equation in a region
of diameter ` in D-dimensions, discretized onto a lattice of spacing a, our quantum algorithm has
a state-preparation step with time complexity Õ(D2`/a) and a Hamiltonian simulation step with
time complexity Õ(TD2/a), where T is the evolution time for the wave equation. In contrast, all
classical algorithms, whether based on finite difference methods or finite element methods, must
have time complexity scaling at least linearly with the number of lattice sites, i.e. as Ω((`/a)D).
Relative to prior quantum algorithms [5, 6], we achieve quadratically better scaling with lattice
spacing.

The improved scaling of our algorithm relies on higher order approximations of the Laplacian
operator and their factorizations using hypergraph incidence matrices. We describe how to find
their operators and their hypergraph incidence matrices, and we provide numerical values for up
to fifth order. These higher order Laplacians also allow us to improve how errors scale with respect
to lattice spacing at the cost of simulating more complex (less sparse) Hamiltonians. In particular,
a s sparse Hamiltonian used to simulate the wave equation in D dimensions produces error on the
order of (`/a)2(s/D)−2, so `/a scales as εD/2(s−D). Expressing the time complexity of our algorithm
in terms of ε and s, we find that the state preparation has time complexity Õ(sD2εD/2(s−D)) and
the Hamiltonian simulation has time complexity Õ(sTD2εD/2(s−D)).

We have posted a preprint of our results to arXiv.org [7] and have submitted our paper for
consideration at Physical Review A.
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