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INTRODUCTION

Quantification of nuclear power plant safety risk
requires a systematic and yet practical approach to
identification of accident scenarios, assessment of their
likelihood and consequences. Instrumental to this goal is
risk-informed safety margin characterization (RISMC)
framework, whose realization requires computationally
robust and affordable methods for sufficiently accurate
simulation of complex multi-dimensional physical
phenomena, such as turbulent and multi-phase flow. The
CFD-like codes with 3D simulation capability and full
treatment of momentum transport terms (e.g., GOTHIC ')
ensure computational efficiency using coarse mesh size and
the sub-grid phenomena in the boundary layer that can be
captured by adequate constitutive correlations (e.g., wall
functions and turbulence models). However, the error
sources and user effects on the selection of mesh size and
models lead to unpredictable simulation error, while rich
High-Fidelity (HF) data from experiments and numerical
simulation using validated code or Direct Numerical
Simulation (DNS) are not fully explored. It would be useful
to have a “smart” data-driven multi-scale framework in
which the low-resolution models can be “taught” to emulate
high-resolution models.

The objective of this work is to develop and evaluate a
physical-based data-driven mesh-model optimization
approach (Optimized Mesh/Model Information System,
OMIS) to estimate the simulation error and give advice on
the optimized selection of coarse mesh size and models for
Low-Fidelity (LF) simulation (e.g., System Thermal
Hydraulic, CFD-like or CGCFD) to achieve accuracy
comparable to that of HF models. This approach takes
advantages of computational efficiency of coarse-mesh
simulation and application of Machine Learning (ML)
algorithms.

ERROR ANALYSIS OF COMPUTATIONAL CODE

Considering the drawbacks of Lumped-Parameter (LP)
codes and CFD codes, some CFD-like codes, such as
GOTHIC, have natural advantages: (1) Coarse mesh and 3D
capability ensures computational efficiency and the
sufficient local information that can be captured; (2) Sub-
grid phenomena in the boundary layer can be taken into
consideration using adequate boundary-layer empirical
correlations (i.e., wall functions). GOTHIC is selected as the

computational code for the development of the OMIS
approach because GOTHIC can be used in both STH (LP or
ID model, no turbulence effects) and CFD-like (multi-
dimensional with full treatment of momentum transport
terms and turbulence models) modes.

There are two main error sources in STH or CFD-like
codes. The first one is the model error due to physical
simplification and mathematical approximation on these
applied models. These types of codes use boundary-layer
correlations for heat, mass and momentum exchanges
between the fluid and the structures, rather than attempting
to model the boundary layers specifically. ''! The key local
phenomena in near-wall region are friction, turbulence and
heat transfer. Respective correlations are applied where
characteristic lengths (determined by mesh size) are
introduced as one of the model parameters. The other one is
the mesh error due to the information loss of conservation
equations and source terms using time and space averaging
approaches, which is also determined by mesh size. Other
numerical errors due to iterative convergence, algorithm
selection, coding error and finite arithmetic have less
influence on the modeling and simulation compared to
model error and mesh error.

Considering the tight connection with mesh size, model
error and mesh error cannot be estimated separately. The
finite mesh approach could fail in not capturing the
expected local behaviors of the fluids, while fine mesh may
introduce a violation of the Courant limit issue or an
improper  extending of boundary-layer  empirical
correlations. These factors make the selection of mesh size
and model an important but tricky task in the modeling and
simulation.

REVIEW OF APPLICATION OF MACHINE
LEARNING TO THERMAL-HYDRAULIC
SIMULATION

Despite decades of work, the difficulties in performing
validation and verification of STH codes and dealing with
the uncertainty/error sources still exist. The development of
nuclear reactor thermal-hydraulics lags behind the
improvements in knowledge and computer capability. In
NURETH-15, Dinh ! proposed perspectives on the nuclear
reactor thermal-hydraulics, and envisioned that “in the
future, the complex and varied issues of nuclear reactor
thermal-hydraulic processes could be addressed effectively
and efficiently by developing and implementing a data-
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driven framework for modeling and simulation that brings
together and allows for all relevant data and knowledge to
be utilized together to enable synergistically predictive tools
and processes for nuclear thermal-hydraulics.” The concept
of a data-driven modeling and simulation framework
enables the simulation code applying pattern recognition
and statistical analysis to obtain closure information directly
from the relevant database. For conditions where applicable
data are absent, the information can be estimated and
predicted based on the near-by conditions included in the
database. At the core of this framework are methods and
tools for Total Data-Model Integration (TDMI) that bring
together data, models and simulations to effectively support
decision-making.

There have already been several efforts to apply
Machine Learning (ML) algorithms on fluid dynamics since
the beginning of this century, which were mainly focused on
the development of data-driven turbulence closures in order
to deal with the issues from CFD model form uncertainty
and lack of knowledge. Meanwhile, Hanna ™! investigated
the feasibility of a Coarse Grid (CG) CFD approach using
ML algorithms to produce a surrogate model that predicts
the CG-CFD local errors to enable correction of the CG
results. This work focused on the correction of
discretization error considering the model errors that may be
introduced in CG-CFD applications. All these data-driven
approaches are not designed to predict the thermal-hydraulic
simulation error using STH or CFD-like codes. Model error
and numerical error are each analyzed individually with the
other fixed, the logic of which is impractical to these codes
where the model error and mesh error cannot estimated
separately. Chang ' introduced a classification of machine
learning frameworks for thermal fluid simulation including
five types. Current efforts mainly belong to Type I and II
ML. Type II ML is focused on reducing the uncertainty
from closure laws to conservation equations. The OMIS
approach proposed in this paper can be considered as a kind
of Type II.

ML algorithms are applied to realize the data-driven
concept by wusing computational methods to '"learn"
information directly from data without assuming a
predetermined equation as a model. These algorithms
adaptively improve their performance as the number of
samples available for learning increases. The goal is to find
natural patterns in data that generate insight and help make
better decisions and predictions. Feedforward Neural
Networks (FNNs) work well for high dimensionality
problems with large datasets while little knowledge about
the underlying process or suitable physical features exist. A
FNN is an information processing paradigm that is inspired
by the way biological nervous systems, such as the brain,
process information. The key element of this paradigm is
the novel structure of the information processing system. It
is composed of a large number of highly interconnected
processing elements (neurons) working in unison to solve
specific problems in parallel. As in nature, the connections

between elements largely determine the network function.
Typically, NNs are adjusted and trained so that a particular
input leads to a specific target output. Currently, FNNs are
identified as the efficient ML algorithm for OMIS approach.

METHODOLOGY

The central idea of the OMIS approach is shown in Fig.
1. The simulation error (g) for the physics of interest using
these coarse-mesh STH or CFD-like codes integrates the
model error (&moge1), mesh error (€yesn) and other numerical
errors. Considering that the former two error sources have
heavier weights, the ideal way is to find the relationship
between € and €04e1, Emesh. HOWever, these two error sources
cannot be quantified separately because of the tight
connections with mesh size. The key to the OMIS approach
is to develop a surrogate model to identify the relationship
between & and local Physical Features (PFs) which integrate
the physical information, model information and effect of
mesh size. Once the function e=f(PFs) is developed, the
simulation error for new condition with the specific mesh
and model is supposed to be predictable. The mesh size and
model with least simulation error are identified as the
optimized mesh size and model for the specific physical
system, which means that they are the “best” choice for the
simulation for this condition.

Physical j«---- -
Parameter | e

Local Physical Model
Features (PFs) Information |~ 4

i 3
Mesh Size (. ____,! Mesh Error
| | (Information Loss in Averaging)

Physics of Interest

Total Simulation Error

+

| Model (Correlation) Error

Fig. 1. Central Idea of the OMIS Approach
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Fig. 2. Structure of OMIS Model: Input and Output

The basic hypotheses for the OMIS methodology are:
(1) The length scale of the physics of interest is large
enough to be captured by coarse-mesh modeling. (2) The




STH or CFD-like code is able to capture the basic physical
behaviors of the system of interest (3) Model error and mesh
error are the main error sources and must be quantified
jointly (they cannot usefully be quantified separately). (4)
HF data are qualified and sufficient for ML to learn from
and find the intrinsic knowledge of the physics. (5) The
simulation error can be represented as a function of key PFs
that integrate the physical information of the physical
system, model and the effect of mesh size.

The structure of the OMIS model is displayed in Fig. 2.
The identification of PFs takes both of local physics and
scalability into consideration, including mainly the gradients
of local variables and local physical parameters that are able
to represent the local physical behaviors or be applied in
closure relationships for the boundary layer. The central-
difference formulas are applied to calculate the derivatives
of variables. The gradients of local variables imply the local
surrounding information that represents the local physical
patterns, as displayed in Fig. 3. The local information
obtained from the training dataset can be used to “teach” the
prediction of new conditions but with similar local physical
patterns. Another part of PFs is the local parameters that are
able to represent the local physical behaviors. These
parameters representing the local physical behaviors are also
supposed to provide the scalability. A third part of PFs are
the parameters that are used or involved in the local closure
correlations for boundary layer simulation. These
parameters contain much information of length scale, model
parameter and local geometry.
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Fig. 4. Schematic of OMIS Approach: Training and Testing

The information flow of the OMIS approach is
described in Fig. 4. In training part, LF simulations with
different discontinuous global features are performed and
then compared with HF data. The local errors (g;) of

variables between mapped HF data (Vgr,;) and LF
simulations (Vg,;) are calculated and collected to obtain the
error training database. The PF values (PF;) of training part
are obtained using LF simulation results. The regression
error function, defined as the OMIS model (e=f(PFs)), is
obtained based on the training database by applying ML
algorithms. Then by inserting the new PF values (PF;) of
testing part into the OMIS model, the respective errors (&)
can be predicted to modify the LF simulation results (Vg,j).
Then the modified variable values (Vy;)are compared with
the ones from HF data (Vug,j). The predictive capability of
local OMIS model is tested via validation metrics (Machine
Learning Error, &y j) to check whether the prediction
satisfies the accuracy requirement. The determination of
sufficient accuracy is based on simulation purpose and
knowledge limit on true physics.

The uncertainty exists in the OMIS prediction on the
simulation error no matter which ML algorithm is applied.
The wvalidation metric, Mean Squared Error (MSE) is
identified and applied to evaluate the predictive capability
for the error estimation of the applied ML algorithm. The
uncertainty from the randomness of initial weights and
biases in FNN is reduced by running FNN with fixed
number of layers and neurons for many times and
calculating the MSE of prediction mean. m is the running
times and n is the number of data points.

1 1 m 2
MSE 1 oan of prediction = ;Z (unr - ;Zt upredicred,i) (1)

RESULTS OF CASE STUDY

As shown in Fig. 5, an adiabatic turbulent mixing
cavity with air injection on bottom of one side wall and a
vent on the other side wall is used as the case study to
illustrate the framework and evaluate the OMIS predictive
capability on simulation error.

Geometry:
*+  Size: lm*lm
Height of Inlet and vent: 0.2m
+ Location of inlet: Om
+ Location of vent: 0.8m

Fig. 5. Adiabatic Turbulent Mixing in a Square Cavity

The injection Re number (Re;y) is calculated based on
the inlet rate and the inlet diameter as characteristic length.
Four cases are simulated with different injection flow rates
with Re;, values as 8000, 10000, 12000, 14000. HF data
and LF data were respectively obtained from the simulations
of STAR CCM+ and GOTHIC. The potential local PFs
selected for the case study include the 1-order and 2-order



derivatives of velocities, modified local Re number
containing the mesh information and the wall distance, and
viscosity ratio of turbulent viscosity and air viscosity. The
outputs are the velocity difference (u as vertical velocity and
v as horizontal velocity) between HF data and LF data.

Four tests are developed considering the interpolation
and extrapolation of the different global parameters, as
shown in Table 1T. FNN with 20 neurons is used as ML
algorithm for data training. The simulation errors of velocity
are predicted and added on the GOTHIC results. The
modified velocity in each coarse-mesh cell is then compared
with the averaged value mapped from HF data.

TABLE 1. Description of Tests

u from HF Simulation

005}

v from HF Simulation

o
21 005 [ 005 01 015 02 02

u from ML Prediction (Red) and u from LF Simulation (Blue)

(c). uand v for test 3

02

u from HF Simulation

01
01 005 0 005 01 015 02 025 03 03
v from ML Prediction (Red) and v from LF Simulation (Blue)

o1 o o os o1 om0z
u from ML Prediction (Red) and u from LF Simulation (Blue)

(d). u and v for test 4

05 01 015 02 025 03 035
v from ML Prediction (Red) and v from LF Simulation (Blue)

Test NO. Training Case Testing Case

1 | Interpolation | Rei,; =8000, 1000, Rej, =12000
of Reiy 14000

2 | Extrapolation | Re;y,j=8000, 1000, Rej,; =14000
of High Rej,; | 12000

3 | Interpolation | Mesh = 1/5, 1/10, Mesh = 1/15
of Mesh 1/20, 1/25, 1/30

4 | Extrapolation | Mesh = 1/5, 1/10, Mesh = 1/30
of Fine Mesh | 1/15, 1/20, 1/25

Fig. 6. Shows the comparisons between original
GOTHIC results and modified values by OMIS. The
vertical axis is the HF data averaged velocity from STAR
CCM-+. The values of predicted u and v (Red circles) were
quite close to the values from HF data with small values of
MSE. Blue points are the comparison between LF results
and HF data. OMIS approach represents good predictive
capability and scalability on estimating the local simulation
error within an acceptable uncertainty even for the
extrapolation of global physics.
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u from ML Prediction (Red) and u from LF Simulation (Blue) Vv from ML Prediction (Red) and v from LF Simulation (Blue)

(a). uand v for test 1

u from HF Simulation
v from HF Simulation

0% 0 005 01 01 02 0% 01 965 0 005 01 015 02 0z 03 03
u from ML Prediction (Red) and u from LF Simulation (Blue) v from ML Prediction (Red) and v from LF Simulation (Blue)

(b). u and v for test 2

Fig. 6. Comparisons between Modified Values by OMIS
(Red) and Original GOTHIC Results (Blue)
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