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INTRODUCTION

Quantification of nuclear power plant safety risk 
requires a systematic and yet practical approach to 
identification of accident scenarios, assessment of their 
likelihood and consequences. Instrumental to this goal is 
risk-informed safety margin characterization (RISMC) 
framework, whose realization requires computationally 
robust and affordable methods for sufficiently accurate 
simulation of complex multi-dimensional physical 
phenomena, such as turbulent and multi-phase flow. The 
CFD-like codes with 3D simulation capability and full 
treatment of momentum transport terms (e.g., GOTHIC [1]) 
ensure computational efficiency using coarse mesh size and 
the sub-grid phenomena in the boundary layer that can be 
captured by adequate constitutive correlations (e.g., wall 
functions and turbulence models). However, the error 
sources and user effects on the selection of mesh size and 
models lead to unpredictable simulation error, while rich 
High-Fidelity (HF) data from experiments and numerical 
simulation using validated code or Direct Numerical 
Simulation (DNS) are not fully explored. It would be useful 
to have a “smart” data-driven multi-scale framework in 
which the low-resolution models can be “taught” to emulate 
high-resolution models.

The objective of this work is to develop and evaluate a 
physical-based data-driven mesh-model optimization 
approach (Optimized Mesh/Model Information System, 
OMIS) to estimate the simulation error and give advice on 
the optimized selection of coarse mesh size and models for 
Low-Fidelity (LF) simulation (e.g., System Thermal 
Hydraulic, CFD-like or CGCFD) to achieve accuracy 
comparable to that of HF models. This approach takes 
advantages of computational efficiency of coarse-mesh 
simulation and application of Machine Learning (ML) 
algorithms.

ERROR ANALYSIS OF COMPUTATIONAL CODE

Considering the drawbacks of Lumped-Parameter (LP) 
codes and CFD codes, some CFD-like codes, such as 
GOTHIC, have natural advantages: (1) Coarse mesh and 3D 
capability ensures computational efficiency and the 
sufficient local information that can be captured; (2) Sub-
grid phenomena in the boundary layer can be taken into 
consideration using adequate boundary-layer empirical 
correlations (i.e., wall functions). GOTHIC is selected as the 

computational code for the development of the OMIS 
approach because GOTHIC can be used in both STH (LP or 
1D model, no turbulence effects) and CFD-like (multi-
dimensional with full treatment of momentum transport 
terms and turbulence models) modes. 

There are two main error sources in STH or CFD-like 
codes. The first one is the model error due to physical 
simplification and mathematical approximation on these 
applied models. These types of codes use boundary-layer 
correlations for heat, mass and momentum exchanges 
between the fluid and the structures, rather than attempting 
to model the boundary layers specifically. [1] The key local 
phenomena in near-wall region are friction, turbulence and 
heat transfer. Respective correlations are applied where 
characteristic lengths (determined by mesh size) are 
introduced as one of the model parameters. The other one is 
the mesh error due to the information loss of conservation 
equations and source terms using time and space averaging 
approaches, which is also determined by mesh size. Other 
numerical errors due to iterative convergence, algorithm 
selection, coding error and finite arithmetic have less 
influence on the modeling and simulation compared to 
model error and mesh error.

Considering the tight connection with mesh size, model 
error and mesh error cannot be estimated separately. The 
finite mesh approach could fail in not capturing the 
expected local behaviors of the fluids, while fine mesh may 
introduce a violation of the Courant limit issue or an 
improper extending of boundary-layer empirical 
correlations. These factors make the selection of mesh size 
and model an important but tricky task in the modeling and 
simulation.

REVIEW OF APPLICATION OF MACHINE 
LEARNING TO THERMAL-HYDRAULIC 
SIMULATION

Despite decades of work, the difficulties in performing 
validation and verification of STH codes and dealing with 
the uncertainty/error sources still exist. The development of 
nuclear reactor thermal-hydraulics lags behind the 
improvements in knowledge and computer capability. In 
NURETH-15, Dinh [2] proposed perspectives on the nuclear 
reactor thermal-hydraulics, and envisioned that “in the 
future, the complex and varied issues of nuclear reactor 
thermal-hydraulic processes could be addressed effectively 
and efficiently by developing and implementing a data-
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driven framework for modeling and simulation that brings 
together and allows for all relevant data and knowledge to 
be utilized together to enable synergistically predictive tools 
and processes for nuclear thermal-hydraulics.” The concept
of a data-driven modeling and simulation framework 
enables the simulation code applying pattern recognition 
and statistical analysis to obtain closure information directly 
from the relevant database. For conditions where applicable 
data are absent, the information can be estimated and 
predicted based on the near-by conditions included in the 
database. At the core of this framework are methods and 
tools for Total Data-Model Integration (TDMI) that bring 
together data, models and simulations to effectively support 
decision-making.

There have already been several efforts to apply 
Machine Learning (ML) algorithms on fluid dynamics since 
the beginning of this century, which were mainly focused on 
the development of data-driven turbulence closures in order 
to deal with the issues from CFD model form uncertainty 
and lack of knowledge. Meanwhile, Hanna [3] investigated 
the feasibility of a Coarse Grid (CG) CFD approach using 
ML algorithms to produce a surrogate model that predicts 
the CG-CFD local errors to enable correction of the CG 
results. This work focused on the correction of 
discretization error considering the model errors that may be 
introduced in CG-CFD applications. All these data-driven 
approaches are not designed to predict the thermal-hydraulic 
simulation error using STH or CFD-like codes. Model error 
and numerical error are each analyzed individually with the 
other fixed, the logic of which is impractical to these codes 
where the model error and mesh error cannot estimated 
separately. Chang [4] introduced a classification of machine 
learning frameworks for thermal fluid simulation including 
five types. Current efforts mainly belong to Type I and II 
ML. Type II ML is focused on reducing the uncertainty 
from closure laws to conservation equations. The OMIS 
approach proposed in this paper can be considered as a kind 
of Type II.

ML algorithms are applied to realize the data-driven 
concept by using computational methods to "learn" 
information directly from data without assuming a 
predetermined equation as a model. These algorithms 
adaptively improve their performance as the number of 
samples available for learning increases. The goal is to find 
natural patterns in data that generate insight and help make 
better decisions and predictions. Feedforward Neural 
Networks (FNNs) work well for high dimensionality 
problems with large datasets while little knowledge about 
the underlying process or suitable physical features exist. A 
FNN is an information processing paradigm that is inspired 
by the way biological nervous systems, such as the brain, 
process information. The key element of this paradigm is 
the novel structure of the information processing system. It 
is composed of a large number of highly interconnected 
processing elements (neurons) working in unison to solve 
specific problems in parallel. As in nature, the connections 

between elements largely determine the network function. 
Typically, NNs are adjusted and trained so that a particular 
input leads to a specific target output. Currently, FNNs are 
identified as the efficient ML algorithm for OMIS approach. 

METHODOLOGY

The central idea of the OMIS approach is shown in Fig.
1. The simulation error (ε) for the physics of interest using 
these coarse-mesh STH or CFD-like codes integrates the 
model error (εmodel), mesh error (εmesh) and other numerical 
errors. Considering that the former two error sources have 
heavier weights, the ideal way is to find the relationship 
between ε and εmodel, εmesh. However, these two error sources 
cannot be quantified separately because of the tight 
connections with mesh size. The key to the OMIS approach 
is to develop a surrogate model to identify the relationship 
between and local Physical Features (PFs) which integrate 
the physical information, model information and effect of 
mesh size. Once the function ε=f(PFs) is developed, the 
simulation error for new condition with the specific mesh 
and model is supposed to be predictable. The mesh size and 
model with least simulation error are identified as the 
optimized mesh size and model for the specific physical 
system, which means that they are the “best” choice for the 
simulation for this condition.

Fig. 1. Central Idea of the OMIS Approach

Fig. 2. Structure of OMIS Model: Input and Output

The basic hypotheses for the OMIS methodology are: 
(1) The length scale of the physics of interest is large 
enough to be captured by coarse-mesh modeling. (2) The 



STH or CFD-like code is able to capture the basic physical 
behaviors of the system of interest (3) Model error and mesh 
error are the main error sources and must be quantified 
jointly (they cannot usefully be quantified separately). (4) 
HF data are qualified and sufficient for ML to learn from 
and find the intrinsic knowledge of the physics. (5) The 
simulation error can be represented as a function of key PFs 
that integrate the physical information of the physical 
system, model and the effect of mesh size.

The structure of the OMIS model is displayed in Fig. 2. 
The identification of PFs takes both of local physics and 
scalability into consideration, including mainly the gradients 
of local variables and local physical parameters that are able 
to represent the local physical behaviors or be applied in 
closure relationships for the boundary layer. The central-
difference formulas are applied to calculate the derivatives 
of variables. The gradients of local variables imply the local 
surrounding information that represents the local physical 
patterns, as displayed in Fig. 3. The local information 
obtained from the training dataset can be used to “teach” the 
prediction of new conditions but with similar local physical 
patterns. Another part of PFs is the local parameters that are 
able to represent the local physical behaviors. These 
parameters representing the local physical behaviors are also 
supposed to provide the scalability. A third part of PFs are 
the parameters that are used or involved in the local closure 
correlations for boundary layer simulation. These 
parameters contain much information of length scale, model 
parameter and local geometry.

Fig. 3. Arrangement of Nodes in 2D Problems

Fig. 4. Schematic of OMIS Approach: Training and Testing

The information flow of the OMIS approach is
described in Fig. 4. In training part, LF simulations with 
different discontinuous global features are performed and 
then compared with HF data. The local errors (εi) of 

variables between mapped HF data (VHF,i) and LF 
simulations (VLF,i) are calculated and collected to obtain the 
error training database. The PF values (PFi) of training part
are obtained using LF simulation results. The regression 
error function, defined as the OMIS model (ε=f(PFs)), is 
obtained based on the training database by applying ML 
algorithms. Then by inserting the new PF values (PFj) of 
testing part into the OMIS model, the respective errors (εj) 
can be predicted to modify the LF simulation results (VLF,j). 
Then the modified variable values (Vt,j)are compared with 
the ones from HF data (VHF,j). The predictive capability of 
local OMIS model is tested via validation metrics (Machine 
Learning Error, εML,j) to check whether the prediction 
satisfies the accuracy requirement. The determination of 
sufficient accuracy is based on simulation purpose and 
knowledge limit on true physics.

The uncertainty exists in the OMIS prediction on the 
simulation error no matter which ML algorithm is applied. 
The validation metric, Mean Squared Error (MSE) is 
identified and applied to evaluate the predictive capability 
for the error estimation of the applied ML algorithm. The 
uncertainty from the randomness of initial weights and 
biases in FNN is reduced by running FNN with fixed 
number of layers and neurons for many times and 
calculating the MSE of prediction mean. m is the running 
times and n is the number of data points.

(1)

RESULTS OF CASE STUDY

As shown in Fig. 5, an adiabatic turbulent mixing 
cavity with air injection on bottom of one side wall and a 
vent on the other side wall is used as the case study to 
illustrate the framework and evaluate the OMIS predictive 
capability on simulation error. 

Fig. 5. Adiabatic Turbulent Mixing in a Square Cavity

The injection Re number (Reinj) is calculated based on 
the inlet rate and the inlet diameter as characteristic length. 
Four cases are simulated with different injection flow rates 
with Reinj values as 8000, 10000, 12000, 14000. HF data 
and LF data were respectively obtained from the simulations 
of STAR CCM+ and GOTHIC. The potential local PFs 
selected for the case study include the 1-order and 2-order 



derivatives of velocities, modified local Re number 
containing the mesh information and the wall distance, and 
viscosity ratio of turbulent viscosity and air viscosity. The 
outputs are the velocity difference (u as vertical velocity and 
v as horizontal velocity) between HF data and LF data. 

Four tests are developed considering the interpolation 
and extrapolation of the different global parameters, as 
shown in Table 1T. FNN with 20 neurons is used as ML 
algorithm for data training. The simulation errors of velocity 
are predicted and added on the GOTHIC results. The 
modified velocity in each coarse-mesh cell is then compared 
with the averaged value mapped from HF data.

TABLE 1. Description of Tests

Test NO. Training Case Testing Case
1 Interpolation 

of Reinj

Reinj =8000, 1000, 
14000

Reinj =12000

2 Extrapolation 
of High Reinj

Reinj =8000, 1000, 
12000

Reinj =14000

3 Interpolation 
of Mesh

Mesh = 1/5, 1/10, 
1/20, 1/25, 1/30

Mesh = 1/15

4 Extrapolation 
of Fine Mesh

Mesh = 1/5, 1/10,  
1/15, 1/20, 1/25

Mesh = 1/30

Fig. 6. Shows the comparisons between original 
GOTHIC results and modified values by OMIS. The 
vertical axis is the HF data averaged velocity from STAR 
CCM+. The values of predicted u and v (Red circles) were 
quite close to the values from HF data with small values of 
MSE. Blue points are the comparison between LF results 
and HF data. OMIS approach represents good predictive 
capability and scalability on estimating the local simulation 
error within an acceptable uncertainty even for the 
extrapolation of global physics.

(a). u and v for test 1

(b). u and v for test 2

(c). u and v for test 3

(d). u and v for test 4

Fig. 6. Comparisons between Modified Values by OMIS 
(Red) and Original GOTHIC Results (Blue)
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