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ABSTRACT

Verification, validation and uncertainty quantification (VVUQ) have become a
common practice in thermal-hydraulics analysis. In general, these activities deal
with propagations of uncertainties in computer code simulations, e.g., through
system analysis codes. However, most existing such activities in thermal-
hydraulics analysis have been primarily focused on input and model uncertainties,
while numerical errors were largely overlooked. Numerical errors can appear in
many different forms, e.g., round-off error, statistical sampling error, and
discretization error. In thermal-hydraulics analysis, especially two-phase flow
simulations commonly encountered in reactor safety analysis, the lack of
consideration of discretization error is mainly due to the difficulty in estimating
them. Accurate estimations of discretization error require continuous mesh
refinement and/or implementation of high-order numerical schemes in system
analysis code, both of which are difficult to achieve in existing codes. In this
work, we will build a computer code that incorporates both first-order and
second-order numerical methods to solve the two-phase flow problems. The first-
order method resembles the one used in many existing system analysis codes; and
the second-order method works as the reference to estimate numerical errors.
Numerical verification of spatial discretization schemes will be presented in the
form of mesh convergence study. It will also be demonstrated via case studies
that, in practical scenarios, discretization errors can be as large as, or even larger
than, model uncertainties.

1. INTRODUCTION

In recent years, verification, validation and uncertainty quantification (VVUQ) have become a
common practice in thermal-hydraulics analysis. In general, these activities deal with
propagations of uncertainties in computer code simulations, e.g., through system analysis codes.
However, most of such activities in thermal-hydraulics analysis have been primarily focused on
model uncertainties, while numerical uncertainties were largely overlooked. Numerical
uncertainties (or numerical errors) can appear in many different forms, e.g., round-off error,
statistical sampling error, and discretization error. As pointed out by Oberkampf and Roy [1],
discretization error is usually the largest, however the most difficult type of error to estimate
reliably.
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In thermal-hydraulics analysis, especially two-phase flow simulations commonly encountered in
reactor safety analysis, the lack of consideration of discretization error is mainly due to the
difficulty in estimating it. Accurate estimation of discretization error requires continuous mesh
refinement and/or implementation of high-order numerical schemes, both of which are
unfortunately very difficult to achieve in existing codes. It should be emphasized that mesh
refinement (or mesh sensitivity study) is a well-understood concept in the thermal-hydraulics
field (see, for example, the discussion in section 3.7.2 of [2]). However, it is not commonly
practiced for many reasons, e.g., lack of understanding of numerical error by code users,
consideration of computational cost, deteriorated numerical stability with refined meshes, etc.
Secondly, high-order (e.g., second-order) numerical schemes are simply unavailable in almost all
existing system analysis code. Implementation of high-order numerical schemes in these codes is
difficult, if not impossible, given the complexity of these codes.

On the other hand, some in the field tend to argue that numerical uncertainties (or discretization
error as we have emphasized) are not as important as the large uncertainties in two-phase flow
models, e.g., closure correlations. As a result, nodalization can be manipulated unintentionally,
or maybe intentionally, to match experimental data, which is referred to as ‘user effects’ or
‘compensating errors'’ [3] in thermal-hydraulics community. Such a practice is highly criticized
by Levy (page 147, [2]).

In this work, first we will build a computer code that incorporates both first-order and second-
order numerical method to solve the two-phase flow problems. The first-order method resembles
the one used in existing system analysis code (e.g. RELAPS); and the second-order method
works as the reference to estimate numerical errors. Next, numerical verification of spatial
discretization schemes will be presented in the form of mesh convergence study. Finally, it will
be demonstrated via case studies that, in practical scenarios, discretization errors can be as large
as, or even larger than, model uncertainties.

2. SOLVER FOR TWO-FLUID TWO-PHASE FLOW MODEL

In this section, a brief introduction will be given to the six-equation two-fluid two-phase flow
model. This model is widely used in existing system analysis codes, and thus provides a good
basis for numerical error and model uncertainty quantification.

2.1 Flow Model

The two-fluid two-phase flow model used in this paper is the same as used in the RELAP5-3D
code [4], which includes a set of mass, momentum, and energy equations for each phase, which
are summarized as,

' We treat nodalization as one kind of those parameters that can be ‘tuned’ that cause ‘compensating errors’ as discussed in reference [3].
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where, subscripts / and g denote the liquid phase and the gas phase, respectively; and subscript
‘int’ denotes interface. /'y is net vapor generation rate due to wall boiling/condensation (1), and
bulk evaporation/condensation (/). Fyay; and Fyuue are wall friction terms. O, and O, are
wall-to-liquid and wall-to-gas phase heat transfer terms, respectively. Oy and Q;, are the
interface-to-liquid and interface-to-gas phase heat transfer terms, respectively. h; and hy are
phasic enthalpy carried by wall vapour generation term. h; and hy are phasic enthalpy carried by
interfacial mass transfer term.

2.2 Closure Correlations

The equation system is augmented with closure models that predict local two-phase flow
regimes, wall heat transfer, wall boiling, interfacial heat/mass transfer, and interfacial
momentum exchange. In this paper, flow regime is considered for vertical flow under pre-CHF
(critical heat flux) conditions only, which include single-phase liquid, bubbly, slug, annular mist,
and mist flow regimes. Wall heat transfer is considered for single-phase flow and nucleate
boiling conditions. Wall friction is considered for both single-phase flow and two-phase flow
conditions. For two-phase wall friction, two-phase multiplier concept is used. Interfacial heat,
mass, and momentum exchanges are treated in all two-phase flow regimes mentioned above.
Most of the closure correlations are taken from the RELAP5-3D code [4]. Table 1 gives a brief
summary of closure correlations types and references.

Table 1 - Closure correlations implemented in this work

Closure correlation Model and references

Flow regime map RELAPS-3D [4]

Subcooled boiling Saha-Zuber; Lahey model [4]
Interfacial drag EPRI drift flux model [4, 5]
Interfacial heat transfer = RELAPS5-3D [4]

Wall friction Two-phase multiplier [4]

2.3 Numerical Methods

A computer code has been developed to incorporate both first-order and second-order numerical
schemes. First-order scheme is based on a first-order fully implicit Backward Euler (BDF1) time
integration scheme and a first-order upwind spatial discretization scheme with staggered grid.

3
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Such first-order numerical scheme resembles those used in many existing system analysis codes,
e.g., RELAPS [4]. Second-order scheme is based on the fully implicit BDF2 time integration
scheme and a second-order upwind scheme with staggered grid. The fundamental concept of the
second-order upwind scheme is similar to the first-order one, however higher spatial accuracy is
achieved via linear reconstruction of local variables. In a previous work, we have demonstrated
its second-order accuracy, but only with a simplified two-phase problem that has analytical
solution [6]. These methods have also been successfully applied to solve more complicated two-
phase flow problems [7]. To resolve the non-linearity of the two-phase flow equation system, a
Jacobian-free Newton-Krylov (JFNK) method is employed. For brevity, details of numerical
schemes and the implementation of JFNK method are omitted in this paper, both of which have
been thoroughly discussed in our previous papers [6, 7].

2.4  Mesh Convergence Study

Rigorous mesh convergence studies are very rare for most existing system analysis codes. The
reasons are complicated, for example, deteriorated numerical stability, discontinuities in closure
correlations, concerns about the validity of closure correlations as meshes are continuously
refined, etc. On the contrary, superior numerical stability has been observed for the computer
code developed and used in this paper. The reason for such stable behaviour is not fully
understood, we attribute it to the fully implicit method that fully resolves the non-linearity of the
equation system.

Table 2 - Test conditions of the FRIGG 413-125 test

Parameter Value
Channel type Rod bundle
Channel length 4.365 m
Pressure 7.0 MPa
Inlet subcooling 153K
Inlet mass flux 950 kg/m*-s
Wall heat flux 664 kW/m’
Outlet void fraction ~0.75

In this paper, mesh convergence study is performed on a realistic two-phase flow problem,
namely the FRIGG 413-125 test [8]. The test loop consisted of 36 rods with 4.365 m uniformly
heated length and 13.8 mm outer diameter. An additional unheated rod with 20 mm outer
diameter was present in the center of the rod bundle. All rods were housed in a cylinder shroud,
with 159.5 mm inner diameter. Table 2 lists the test conditions for this test.

For mesh convergence study, ideally, analytical solution or manufactured solution should be
used as the reference solution. However, analytical solutions rarely exist for realistic two-phase
flow problems, and we have to rely on numerical results using very fine meshes and high-order
numerical schemes. In this case, numerical results using 640 finite volume cells with second-
order accuracy are used as the reference solution. Figure 1 shows results for mesh convergence
of void fraction using the L-1 error norm. Number of finite volume cells is continuously refined
by a factor of 2 from 5 to 320. It is noted that the L-1 error norm of void fraction has important
physical meaning, it is an error estimation of total driving force in two-phase natural circulation
loop. We see in Figure 1 that we obtain expected order of accuracy, i.e. 1.02 for the first-order

4



ANS Best Estimate Plus Uncertainty International Conference (BEPU 2018) BEPU2018-196
Real Collegio, Lucca, Italy, May 13-19, 2018

scheme and 1.89 for the second-order scheme. Moreover, the second-order method results in
orders of magnitude lower error compared to its first-order counterpart. For a practical mesh size,
e.g. 40 cells, the numerical error of the second-order scheme is ~100 times less than that of the
first-order scheme. The practical impact of numerical errors is demonstrated in Figure 2, which
shows numerical results from both spatial schemes with different mesh sizes. As shown in Figure
2, almost all numerical results that use the second-order spatial scheme nicely collapse on a
single line. On the contrary, numerical results that use the first-order spatial scheme scatter
significantly. For the case with 5 finite volume cells, numerical uncertainty due to discretization
error can be as large as 0.2 in void fraction prediction. Comparison between these two figures
clearly demonstrates the advantage of using second-order schemes in system analysis codes, e.g.,
nodalization (user) effect is greatly reduced.
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Figure 1 - Mesh convergence study for FRIGG 413-125 test.
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Figure 2 - Numerical results on void fraction using second-order (left) and first-order (right)
spatial schemes.
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3. DISCRETIZATION ERROR VS MODEL UNCERTAINTY

Figure 3 shows schematic of model uncertainty quantification and discretization error
quantification. In Figure 3, MEc and MEF represent the model uncertainty in code prediction
with a coarse mesh (C) and a fine mesh (F); MER represents the real uncertainty; BEc and BEg
represent the bias in code prediction with a coarse mesh and a fine mesh; DE represents the
discretization error of code prediction with a coarse mesh. Ideally, the BEr error should be
minimized in a simulation; however, nodalization can be tuned, sometimes unintentionally,
sometimes intentionally, to minimize the BEc error in thermal-hydraulics solution. Ideally, the
MEF should be studied to quantify the model uncertainty; however, it is MEc that is most
commonly studied in thermal-hydraulics community. Our main concern is the reliability of the
model uncertainty (MEc), which is obtained with a coarse mesh (and a low-order solver). Note
that the measurement data to quantify MER is usually not available. In this work, we will focus
on quantifying the model uncertainty (with coarse and fine mesh) and the discretization error.

Code: coarse mesh Real Code: fine mesh

DE: discretization error
ME: model uncertainty
BE: code bias

BE ! BEp

Figure 3 - Schematic of discretization error and model uncertainty

Bartolomei [9] subcooled flow boiling test case is used to quantify the discretization error and
model uncertainty in the void fraction. Conditions of the Bartolomei subcooled flow boiling test
are summarized in Table 3. Discretization error and model uncertainty in void fraction will be
quantified at three positions, i.e. P1 (1.0 m), P2 (1.2 m), and P3 (1.4 m).

Table 3 - Test conditions of the Bartolomei test

Parameter Value
Channel type Round tube
Channel length 1.5m
Pressure 6.84 MPa
Inlet subcooling 91.55K
Inlet mass flux 961 kg/m*-s
Wall heat flux 1.13 MW/m’
Outlet void fraction ~0.6

3.1 Parameters of Interest

The uncertainty in the void fraction prediction comes from many sources, e.g. uncertainty in the
closure correlations and uncertainty in the boundary conditions. In this paper, we treat the
uncertainties due to the boundary conditions and closure correlations similarly. And, for the

6
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purposes of this paper we call them the model uncertainty. The model uncertainty due to the
boundary conditions is studied by applying the coefficients w to the boundary conditions, i.e.

Poutlet < (‘)Popoutlet
Massinlet < wmassMaSSinlet

Qwall < waqwall (7)
Tl,inlet < Tl,inlet + le

The model uncertainty due to the closure correlations is studied by applying the coefficients @ to
the closure correlations, i.e.

Fint < wFiFint

Fyaui < wr,, Fwau,

Fwall,g < wangall,g (8)
Hy < wy, Hy
Hiy < a)Hl.ng-g

For the selected Bartolomei case, where the inlet subcooling is high, the subcooled boiling model
has large impact on the predicted void fraction. Thus, another coefficient, wy_, is used to modify
the subcooled boiling model, i.e.

StC,,

her = hygqe — ———, for Pe < 70000
thTStcr (9)
Nu G,
hey = hysqe ————,for Pe = 70000
her Uer

For most of the parameters of interest, the uncertainty information (or more importantly the
probability distribution) is unavailable. The common practice is to use an ad-hoc distribution that
is based on expert judgements. Another promising method is the so-called inverse uncertainty
quantification method [[12], 13], which quantifies the physical model uncertainty based on
experiment data and code prediction. Either way, we need to specify the distribution of
parameters o prior to the model uncertainty quantification. Based on experimental data in [[10]],
a +25% error bar was given to the fitted correlation, which is used as the bound for the
distribution in simulations to estimate its impact on numerical results. In this work, the
probability distribution for the parameters @ are listed in Table 4. The standard deviation for the
boundary condition parameters is taken from [[11]]. The standard deviation for the closure
correlations parameters is set at 0.1, which is an ad-hoc choice. This choice ensure that most
samples are within 25% of the nominal value. For the selected test case, where the inlet
subcooling is high, Saha-Zuber correlation [[10]], which determines the conditions necessary for
net void to exist, has been found to have a large impact on void fraction prediction. Two
additional justifications for this ad-hoc normal distribution are: 1) in this work, we are mainly
interested in the effect of the discretization error on the model uncertainty, not the model
uncertainty itself; 2) the behaviour of the output (i.e. void fraction) is approximately a linear
function (see Figure 4) of the input coefficients w, which means the shape (e.g. normal, log-
normal, etc.) of the distribution is less important. Figure 4 also shows that the void fraction is not
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sensitive to the wall-to-gas friction and interface-to-gas heat transfer coefficient, thus, we will
not consider these two coefficients in the following discussion.

Table 4 - Probability distribution of boundary condition and closure correlation parameters

Parameter Parameter name PDF Mean Stand. Dev.
Wp, Outlet pressure Normal 1.0 1%
Wmass Inlet mass flux Normal 1.0 1%
Wq,, Wall heat flux Normal 1.0 1.5%
Wr, Inlet water temperature Normal 0.0 1.0K
Whp,., Critical enthalpy (Saha-Zuber model) Normal 1.0 10%
WF; Interfacial friction Normal 1.0 10%
WF,,; Wall-to-liquid friction Normal 1.0 10%
WF,4 Wall-to-gas friction Normal 1.0 10%
WHh;, Interface-to-liquid heat transfer coefficient Normal 1.0 10%
Wh;, Interface-to-gas heat transfer coefficient Normal 1.0 10%

o Bartolomei: sensitivities at P1 036 Bartolomei: sensitivities at P2 053 Bartolomei: sensitivities at P3

- h -— b
018 o I 0.360 e F, 0532 \
s F, s F, ~
> — 0531 h
b F, 03551 E, . \\
- I — 1, 0530 o S N
B—N
5035 s R
- - N

So1s H, S350} \ oo H, 5 )
A - £ —~— e g y ——_,
3 — S g . . I £os2 ) ~ -
Hll e ——f—0 3 H ey H / =
Zoaspo— B Zoaas e R N —— 2 T .. e
2 S - N — S ) o - >
\\ P \\ - 0528, o F -
014 N 0340 . s =
. . 0527
\ N I
013 Ry 0335 hay osz6l — H,
Su e / m

012 o 05

Figure 4 - Behaviour of void fraction for different closure correlation parameters at 3 different
positions. Results are obtained with the second-order scheme and 80 cells

3.2 Quantification of Discretization Error and Model Uncertainty

Given the probability distribution of the physical models (or closure correlations), the model
uncertainty could be obtained by performing an uncertainty quantification analysis; the
discretization error could be obtained by a mesh convergence study. A series of simulations are
performed to quantify the discretization error and model uncertainty. The discretization error is
quantified by simulating the selected Bartolomei problem with 20, 40, and 80 uniform cells using
both the first-order and the second-order solver. The results obtained with 80 cells second-order
solver are used as the base (reference solution) to quantify the discretization error. For each mesh
size, 800 samples of each boundary condition and physical model parameter are produced
according to the distribution given in Table 4. Then, the uncertainty in void fraction is quantified
as the standard derivation of the generated void fraction samples.
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Figure 5, Figure 6, and Figure 7 shows the discretization error and model uncertainty in the void
fraction prediction. Unlike Figure 6 and Figure 7 that show the model uncertainty for a single
effect, Figure 5 shows the model uncertainty that account for all source of uncertainties, i.e. the
boundary conditions and the closure correlations. Table 5, Table 6, and Table 7 lists
quantitatively the discretization error and model uncertainty at three positions. In Figure 5 and
Figure 6, the 36 (or 99.7% confidence level) error bar and the mean value is plotted for two
extreme cases, i.e. coarse mesh with first-order solver and fine mesh with second-order solver.
From Figure 5 and Figure 6, we see that the discretization error is comparable (even larger) to
the model uncertainties. For some closure correlations (e.g. interfacial friction, wall friction, and
interfacial heat transfer coefficient), the discretization error is much larger than the model
uncertainty. Note that the model uncertainty due to the wall friction and interfacial heat transfer
coefficient is omitted here as they are very similar to the model uncertainty due to the interfacial
friction. As an example, Figure 7 (and part of Figure 5) show selected distributions of the void
fraction due to 4 parameters at three positions. We see that as the mesh is refined, the distribution
of the void fraction prediction converges to the reference obtained with a fine mesh with second-
order solver. In addition, we see that the discretization has an effect on the distribution of the
void fraction, meaning that the model uncertainty might not be reliable when using a coarse
mesh with a low-order solver.

4. CONCLUSION

In this paper, rigorous numerical and model uncertainty analyses were performed with a new
computer code that solves two-fluid two-phase flow problems using both first-order and second-
order numerical schemes. Rigorous numerical verification was performed by mesh convergence
study of a FRIGG experiment test case, where expected order of accuracy was achieved for both
schemes. Based on the successful implementation of the second-order scheme, a reliable
estimation of the discretization error was performed. The Bartolomei subcooled flow boiling test
was used to quantify the discretization error and the model uncertainty (including the uncertainty
in boundary conditions and closure correlations) through an uncertainty quantification analysis.
An sensitivity analysis was at first performed with respect to the boundary conditions and closure
correlations. It was found that the behaviour of the output (i.e. void fraction) is approximately a
linear function of the interested parameters (e.g. boundary conditions), which means the shape
(e.g. normal, log-normal, etc.) of the distribution is less important. It was also found that the void
fraction is not sensitive to the wall-to-gas friction and interface-to-gas heat transfer coefficient.
Then the discretization error and model uncertainty was quantified using the Bartolome test. It
was found that the discretization error is comparable (even larger) to the model uncertainties. For
some closure correlations (e.g. interfacial friction, wall friction, and interfacial heat transfer
coefficient), the discretization error is much larger than the model uncertainty. These findings
clearly demonstrate the advantages of using high-order numerical schemes in system analysis
codes.
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Figure 5 - Discretization error and model uncertainty (total effect) in void fraction
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Figure 6 - Discretization error and model uncertainty in void fraction. The error bar represents
99.7% confidence level. Upper row (left: outlet pressure; middle: inlet mass flux; right: wall heat
flux). Lower row (left: inlet water temperature; middle: Saha-Zuber model; right: interfacial
friction).
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Table 5 - Discretization error vs model uncertainty in void fraction at 3 positions I: total effect

P1

P2

P3

Mean

DE

ME

Mean

DE

ME

Mean

DE

ME

Total effect

1st, 20
1st, 40
1st, 80
2nd, 20
2nd, 40
2nd, 80

0.2054
0.1779
0.1655
0.1544
0.1539
0.1545

5.09E-02
2.34E-02
1.10E-02
1.44E-04
6.59E-04

2.47E-02
2.41E-02
2.40E-02
2.29E-02
2.23E-02
2.51E-02

0.3970
0.3717
0.3586
0.3456
0.3447
0.3467

5.03E-02
2.50E-02
1.18E-02
1.10E-03
2.05E-03

2.55E-02
2.70E-02
2.70E-02
2.65E-02
2.70E-02
2.95E-02

0.5560
0.5419
0.5348
0.5313
0.5267
0.5290

2.69E-02
1.29E-02
5.74E-03
2.27E-03
2.35E-03

1.95E-02
2.08E-02
2.06E-02
2.06E-02
2.11E-02
2.29E-02

Table 6 - Discretization error vs model uncertainty in void fraction at 3 positions II: closure
correlations

P1

P2

P3

Mean

DE

ME

Mean

DE

ME

Mean

DE

ME

Saha-Zuber

1st, 20
1st, 40
1st, 80
2nd, 20
2nd, 40
2nd, 80

0.2051
0.1794
0.1657
0.1556
0.1542
0.1530

5.21E-02
2.64E-02
1.27E-02
2.57E-03
1.13E-03

1.16E-02
1.23E-02
1.30E-02
1.39E-02
1.33E-02
1.40E-02

0.3982
0.3743
0.3608
0.3469
0.3468
0.3465

5.17E-02
2.79E-02
1.43E-02
3.64E-04
2.68E-04

4.81E-03
5.40E-03
5.97E-03
6.82E-03
6.53E-03
6.80E-03

0.5574
0.5443
0.5371
0.5322
0.5289
0.5296

2.78E-02
1.47E-02
7.56E-03
2.69E-03
6.55E-04

7.72E-04
9.20E-04
1.05E-03
1.16E-03
1.18E-03
1.13E-03

Interfacial friction

1st, 20
1st, 40

1st, 80
2nd, 20
2nd, 40
2nd, 80

0.2060
0.1791
0.1657
0.1545
0.1532
0.1529

5.31E-02
2.62E-02
1.28E-02
1.57E-03
2.56E-04

1.20E-03
1.17E-03
9.40E-04
7.57E-04
9.85E-04
9.21E-04

0.3986
0.3741
0.3607
0.3461
0.3461
0.3464

5.22E-02
2.77E-02
1.43E-02
2.67E-04
2.32E-04

1.61E-03
1.62E-03
1.56E-03
1.56E-03
1.59E-03
1.67E-03

0.5575
0.5442
0.5370
0.5319
0.5286
0.5294

2.81E-02
1.47E-02
7.60E-03
2.48E-03
8.13E-04

1.31E-03
1.39E-03
1.41E-03
1.57E-03
1.48E-03
1.51E-03

Wall-to-liquid friction

1st, 20
1st, 40
1st, 80
2nd, 20
2nd, 40
2nd, 80

0.2059
0.1792
0.1657
0.1545
0.1532
0.1529

5.30E-02
2.63E-02
1.28E-02
1.63E-03
3.31E-04

2.30E-04
2.00E-04
1.66E-04
1.37E-04
1.54E-04
1.47E-04

0.3985
0.3742
0.3607
0.3463
0.3463
0.3464

5.20E-02
2.78E-02
1.43E-02
9.99E-05
9.91E-05

4.23E-04
3.83E-04
3.71E-04
3.47E-04
3.41E-04
3.58E-04

0.5574
0.5443
0.5371
0.5322
0.5288
0.5295

2.79E-02
1.48E-02
7.60E-03
2.67E-03
6.76E-04

4.75E-04
4.67E-04
4.79E-04
5.00E-04
4.62E-04
4.67E-04

Interface-to-liquid heat transfer coeffi

cient

1st, 20
1st, 40
1st, 80
2nd, 20
2nd, 40
2nd, 80

0.2057
0.1793
0.1657
0.1546
0.1533
0.1529

5.28E-02
2.64E-02
1.28E-02
1.73E-03
3.99E-04

1.85E-03
1.44E-03
1.45E-03
1.42E-03
1.20E-03
1.35E-03

0.3984
0.3742
0.3607
0.3464
0.3464
0.3464

5.20E-02
2.78E-02
1.43E-02
3.06E-05
5.67E-05

1.31E-03
1.28E-03
1.35E-03
1.34E-03
1.30E-03
1.38E-03

0.5574
0.5443
0.5371
0.5322
0.5288
0.5295

2.79E-02
1.48E-02
7.57E-03
2.64E-03
7.06E-04

4.33E-04
4.44E-04
4.76E-04
4.43E-04
4.56E-04
4.56E-04
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Table 7 - Discretization error vs input uncertainty in void fraction at 3 positions III: boundary

conditions
P1 P2 P3
Mean DE ME Mean DE ME Mean DE ME
Outlet pressure

1st, 20 | 0.2051 5.23E-02 8.74E-03 | 0.3973 5.12E-02 9.78E-03 | 0.5565 2.73E-02 7.27E-03
1st, 40 | 0.1792 2.65E-02 7.86E-03 | 0.3743 2.82E-02 9.90E-03 | 0.5443 1.50E-02 7.64E-03
1st, 80 | 0.1656 1.28E-02 7.70E-03 | 0.3604 1.43E-02 1.04E-02 | 0.5367 7.49E-03 8.15E-03
2nd, 20 | 0.1552 2.37E-03 8.04E-03 | 0.3470 8.67E-04 1.07E-02 | 0.5326 3.35E-03 8.73E-03
2nd, 40 | 0.1536 7.82E-04 7.31E-03 | 0.3467 6.05E-04 1.05E-02 | 0.5291 7.12E-05 8.41E-03
2nd, 80 | 0.1528 7.73E-03 | 0.3461 1.10E-02 | 0.5292 8.73E-03
Inlet mass flux
1st, 20 | 0.2049 5.21E-02 1.07E-02 | 0.3970 5.10E-02 1.19E-02 | 0.5563 2.71E-02 9.04E-03
1st, 40 | 0.1793 2.65E-02 9.73E-03 | 0.3743 2.82E-02 1.21E-02 | 0.5442 1.51E-02 9.43E-03
1st, 80 | 0.1656 1.28E-02 9.60E-03 | 0.3603 1.43E-02 1.27E-02 | 0.5367 7.50E-03 1.01E-02
2nd, 20 | 0.1553 2.46E-03 9.87E-03 | 0.3470 9.76E-04 1.31E-02 | 0.5326 3.43E-03 1.07E-02

2nd, 40 | 0.1537 8.41E-04 9.13E-03 | 0.3468 6.95E-04 1.28E-02 | 0.5292 2.18E-05 1.03E-02
2nd, 80 | 0.1528 9.56E-03 | 0.3461 1.34E-02 | 0.5292 1.06E-02
Wall heat flux
Ist,20 | 0.2084 5.46E-02 1.66E-02 | 0.4006 5.34E-02 1.84E-02 | 0.5588 2.90E-02 1.41E-02
Ist, 40 | 0.1790 2.51E-02 1.49E-02 | 0.3737 2.65E-02 1.87E-02 | 0.5436 1.38E-02 1.47E-02
Ist, 80 | 0.1664 1.26E-02 1.49E-02 | 0.3611 1.40E-02 1.96E-02 | 0.5372 7.33E-03 1.54E-02
2nd, 20 | 0.1538 7.24E-06 1.48E-02 | 0.3449 2.20E-03 2.02E-02 | 0.5308 9.31E-04 1.65E-02
2nd, 40 | 0.1528 9.81E-04 1.41E-02 | 0.3453 1.81E-03 1.97E-02 | 0.5279 1.93E-03 1.59E-02
2nd, 80 | 0.1538 1.47E-02 | 0.3471 2.07E-02 | 0.5299 1.66E-02
Inlet water temperature
Ist, 20 | 0.2050 5.24E-02 8.86E-03 | 0.3974 5.15E-02 9.08E-03 | 0.5566 2.76E-02 6.02E-03
Ist, 40 | 0.1780 2.54E-02 7.79E-03 | 0.3728 2.69E-02 8.98E-03 | 0.5432 1.41E-02 6.25E-03
Ist, 80 | 0.1659 1.33E-02 8.09E-03 | 0.3608 1.49E-02 9.91E-03 | 0.5370 7.96E-03 7.02E-03
2nd, 20 | 0.1551 2.55E-03 8.19E-03 | 0.3468 9.87E-04 9.98E-03 | 0.5324 3.35E-03 7.29E-03
2nd, 40 | 0.1533 6.91E-04 7.48E-03 | 0.3462 4.06E-04 9.83E-03 | 0.5288 2.93E-04 7.16E-03
2nd, 80 | 0.1526 7.73E-03 | 0.3458 1.01E-02 | 0.5291 7.26E-03
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