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ABSTRACT 

Verification, validation and uncertainty quantification (VVUQ) have become a 
common practice in thermal-hydraulics analysis. In general, these activities deal 
with propagations of uncertainties in computer code simulations, e.g., through 
system analysis codes. However, most existing such activities in thermal-
hydraulics analysis have been primarily focused on input and model uncertainties, 
while numerical errors were largely overlooked. Numerical errors can appear in 
many different forms, e.g., round-off error, statistical sampling error, and 
discretization error. In thermal-hydraulics analysis, especially two-phase flow 
simulations commonly encountered in reactor safety analysis, the lack of 
consideration of discretization error is mainly due to the difficulty in estimating 
them. Accurate estimations of discretization error require continuous mesh 
refinement and/or implementation of high-order numerical schemes in system 
analysis code, both of which are difficult to achieve in existing codes. In this 
work, we will build a computer code that incorporates both first-order and 
second-order numerical methods to solve the two-phase flow problems. The first-
order method resembles the one used in many existing system analysis codes; and 
the second-order method works as the reference to estimate numerical errors. 
Numerical verification of spatial discretization schemes will be presented in the 
form of mesh convergence study. It will also be demonstrated via case studies 
that, in practical scenarios, discretization errors can be as large as, or even larger 
than, model uncertainties. 

1. INTRODUCTION 
In recent years, verification, validation and uncertainty quantification (VVUQ) have become a 
common practice in thermal-hydraulics analysis. In general, these activities deal with 
propagations of uncertainties in computer code simulations, e.g., through system analysis codes. 
However, most of such activities in thermal-hydraulics analysis have been primarily focused on 
model uncertainties, while numerical uncertainties were largely overlooked. Numerical 
uncertainties (or numerical errors) can appear in many different forms, e.g., round-off error, 
statistical sampling error, and discretization error. As pointed out by Oberkampf and Roy [1], 
discretization error is usually the largest, however the most difficult type of error to estimate 
reliably. 
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In thermal-hydraulics analysis, especially two-phase flow simulations commonly encountered in 
reactor safety analysis, the lack of consideration of discretization error is mainly due to the 
difficulty in estimating it. Accurate estimation of discretization error requires continuous mesh 
refinement and/or implementation of high-order numerical schemes, both of which are 
unfortunately very difficult to achieve in existing codes. It should be emphasized that mesh 
refinement (or mesh sensitivity study) is a well-understood concept in the thermal-hydraulics 
field (see, for example, the discussion in section 3.7.2 of [2]). However, it is not commonly 
practiced for many reasons, e.g., lack of understanding of numerical error by code users, 
consideration of computational cost, deteriorated numerical stability with refined meshes, etc. 
Secondly, high-order (e.g., second-order) numerical schemes are simply unavailable in almost all 
existing system analysis code. Implementation of high-order numerical schemes in these codes is 
difficult, if not impossible, given the complexity of these codes.  

 
On the other hand, some in the field tend to argue that numerical uncertainties (or discretization 
error as we have emphasized) are not as important as the large uncertainties in two-phase flow 
models, e.g., closure correlations. As a result, nodalization can be manipulated unintentionally, 
or maybe intentionally, to match experimental data, which is referred to as ‘user effects’ or 
‘compensating errors1’ [3] in thermal-hydraulics community. Such a practice is highly criticized 
by Levy (page 147, [2]). 
 

In this work, first we will build a computer code that incorporates both first-order and second-
order numerical method to solve the two-phase flow problems. The first-order method resembles 
the one used in existing system analysis code (e.g. RELAP5); and the second-order method 
works as the reference to estimate numerical errors. Next, numerical verification of spatial 
discretization schemes will be presented in the form of mesh convergence study. Finally, it will 
be demonstrated via case studies that, in practical scenarios, discretization errors can be as large 
as, or even larger than, model uncertainties.  

2. SOLVER FOR TWO-FLUID TWO-PHASE FLOW MODEL 
In this section, a brief introduction will be given to the six-equation two-fluid two-phase flow 
model. This model is widely used in existing system analysis codes, and thus provides a good 
basis for numerical error and model uncertainty quantification. 

2.1 Flow Model 
The two-fluid two-phase flow model used in this paper is the same as used in the RELAP5-3D 
code [4], which includes a set of mass, momentum, and energy equations for each phase, which 
are summarized as, 
 

                                                
1 We treat nodalization as one kind of those parameters that can be ‘tuned’ that cause ‘compensating errors’ as discussed in reference [3]. 
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where, subscripts l and g denote the liquid phase and the gas phase, respectively; and subscript 
‘int’ denotes interface. Γg is net vapor generation rate due to wall boiling/condensation (Γw), and 
bulk evaporation/condensation (Γig). Fwall,l and Fwall,g are wall friction terms. Qwl and Qwg are 
wall-to-liquid and wall-to-gas phase heat transfer terms, respectively. Qil and Qig are the 
interface-to-liquid and interface-to-gas phase heat transfer terms, respectively. ℎ#> and ℎ,>  are 
phasic enthalpy carried by wall vapour generation term. ℎ#∗ and ℎ,∗  are phasic enthalpy carried by 
interfacial mass transfer term.  

2.2 Closure Correlations 
The equation system is augmented with closure models that predict local two-phase flow 
regimes, wall heat transfer, wall boiling, interfacial heat/mass transfer, and interfacial 
momentum exchange. In this paper, flow regime is considered for vertical flow under pre-CHF 
(critical heat flux) conditions only, which include single-phase liquid, bubbly, slug, annular mist, 
and mist flow regimes. Wall heat transfer is considered for single-phase flow and nucleate 
boiling conditions. Wall friction is considered for both single-phase flow and two-phase flow 
conditions. For two-phase wall friction, two-phase multiplier concept is used. Interfacial heat, 
mass, and momentum exchanges are treated in all two-phase flow regimes mentioned above. 
Most of the closure correlations are taken from the RELAP5-3D code [4]. Table 1 gives a brief 
summary of closure correlations types and references. 

Table 1 - Closure correlations implemented in this work 
Closure correlation Model and references 
Flow regime map RELAP5-3D [4] 
Subcooled boiling Saha-Zuber; Lahey model [4] 
Interfacial drag EPRI drift flux model [4, 5] 
Interfacial heat transfer RELAP5-3D [4] 
Wall friction Two-phase multiplier [4] 

 

2.3 Numerical Methods 
A computer code has been developed to incorporate both first-order and second-order numerical 
schemes. First-order scheme is based on a first-order fully implicit Backward Euler (BDF1) time 
integration scheme and a first-order upwind spatial discretization scheme with staggered grid. 
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Such first-order numerical scheme resembles those used in many existing system analysis codes, 
e.g., RELAP5 [4]. Second-order scheme is based on the fully implicit BDF2 time integration 
scheme and a second-order upwind scheme with staggered grid. The fundamental concept of the 
second-order upwind scheme is similar to the first-order one, however higher spatial accuracy is 
achieved via linear reconstruction of local variables. In a previous work, we have demonstrated 
its second-order accuracy, but only with a simplified two-phase problem that has analytical 
solution [6]. These methods have also been successfully applied to solve more complicated two-
phase flow problems [7]. To resolve the non-linearity of the two-phase flow equation system, a 
Jacobian-free Newton-Krylov (JFNK) method is employed. For brevity, details of numerical 
schemes and the implementation of JFNK method are omitted in this paper, both of which have 
been thoroughly discussed in our previous papers [6, 7]. 

2.4 Mesh Convergence Study 
Rigorous mesh convergence studies are very rare for most existing system analysis codes. The 
reasons are complicated, for example, deteriorated numerical stability, discontinuities in closure 
correlations, concerns about the validity of closure correlations as meshes are continuously 
refined, etc. On the contrary, superior numerical stability has been observed for the computer 
code developed and used in this paper. The reason for such stable behaviour is not fully 
understood, we attribute it to the fully implicit method that fully resolves the non-linearity of the 
equation system. 

Table 2 - Test conditions of the FRIGG 413-125 test 
Parameter Value 
Channel type Rod bundle 
Channel length 4.365 m 
Pressure 7.0 MPa 
Inlet subcooling 15.3 K 
Inlet mass flux 950 kg/m2-s 
Wall heat flux 664 kW/m2 
Outlet void fraction ~0.75 

 
In this paper, mesh convergence study is performed on a realistic two-phase flow problem, 
namely the FRIGG 413-125 test [8]. The test loop consisted of 36 rods with 4.365 m uniformly 
heated length and 13.8 mm outer diameter. An additional unheated rod with 20 mm outer 
diameter was present in the center of the rod bundle. All rods were housed in a cylinder shroud, 
with 159.5 mm inner diameter. Table 2 lists the test conditions for this test. 
 

For mesh convergence study, ideally, analytical solution or manufactured solution should be 
used as the reference solution. However, analytical solutions rarely exist for realistic two-phase 
flow problems, and we have to rely on numerical results using very fine meshes and high-order 
numerical schemes. In this case, numerical results using 640 finite volume cells with second-
order accuracy are used as the reference solution. Figure 1 shows results for mesh convergence 
of void fraction using the L-1 error norm. Number of finite volume cells is continuously refined 
by a factor of 2 from 5 to 320. It is noted that the L-1 error norm of void fraction has important 
physical meaning, it is an error estimation of total driving force in two-phase natural circulation 
loop. We see in Figure 1 that we obtain expected order of accuracy, i.e. 1.02 for the first-order 
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scheme and 1.89 for the second-order scheme. Moreover, the second-order method results in 
orders of magnitude lower error compared to its first-order counterpart. For a practical mesh size, 
e.g. 40 cells, the numerical error of the second-order scheme is ~100 times less than that of the 
first-order scheme. The practical impact of numerical errors is demonstrated in Figure 2, which 
shows numerical results from both spatial schemes with different mesh sizes. As shown in Figure 
2, almost all numerical results that use the second-order spatial scheme nicely collapse on a 
single line. On the contrary, numerical results that use the first-order spatial scheme scatter 
significantly. For the case with 5 finite volume cells, numerical uncertainty due to discretization 
error can be as large as 0.2 in void fraction prediction. Comparison between these two figures 
clearly demonstrates the advantage of using second-order schemes in system analysis codes, e.g., 
nodalization (user) effect is greatly reduced. 

 
Figure 1 - Mesh convergence study for FRIGG 413-125 test. 

 

 
Figure 2 - Numerical results on void fraction using second-order (left) and first-order (right) 

spatial schemes. 
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3. DISCRETIZATION ERROR VS MODEL UNCERTAINTY 
Figure 3 shows schematic of model uncertainty quantification and discretization error 
quantification. In Figure 3, MEC and MEF represent the model uncertainty in code prediction 
with a coarse mesh (C) and a fine mesh (F); MER represents the real uncertainty; BEC and BEF 
represent the bias in code prediction with a coarse mesh and a fine mesh; DE represents the 
discretization error of code prediction with a coarse mesh. Ideally, the BEF error should be 
minimized in a simulation; however, nodalization can be tuned, sometimes unintentionally, 
sometimes intentionally, to minimize the BEC error in thermal-hydraulics solution. Ideally, the 
MEF should be studied to quantify the model uncertainty; however, it is MEC that is most 
commonly studied in thermal-hydraulics community. Our main concern is the reliability of the 
model uncertainty (MEC), which is obtained with a coarse mesh (and a low-order solver). Note 
that the measurement data to quantify MER is usually not available. In this work, we will focus 
on quantifying the model uncertainty (with coarse and fine mesh) and the discretization error. 

 
Figure 3 - Schematic of discretization error and model uncertainty 

 
Bartolomei [9] subcooled flow boiling test case is used to quantify the discretization error and 
model uncertainty in the void fraction. Conditions of the Bartolomei subcooled flow boiling test 
are summarized in Table 3. Discretization error and model uncertainty in void fraction will be 
quantified at three positions, i.e. P1 (1.0 m), P2 (1.2 m), and P3 (1.4 m). 

Table 3 - Test conditions of the Bartolomei test 
Parameter Value 
Channel type Round tube 
Channel length 1.5 m 
Pressure 6.84 MPa 
Inlet subcooling 91.55 K 
Inlet mass flux 961 kg/m2-s 
Wall heat flux 1.13 MW/m2 
Outlet void fraction ~0.6 

3.1 Parameters of Interest 
The uncertainty in the void fraction prediction comes from many sources, e.g. uncertainty in the 
closure correlations and uncertainty in the boundary conditions. In this paper, we treat the 
uncertainties due to the boundary conditions and closure correlations similarly. And, for the 
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purposes of this paper we call them the model uncertainty. The model uncertainty due to the 
boundary conditions is studied by applying the coefficients w to the boundary conditions, i.e. 

/?@5#A5 ← CDE/?@5#A5 
Mass34#A5 ← CI7JJMass34#A5 

K67## ← CLMK67## 
N#,34#A5 ← N#,34#A5 + COP 

 

(7) 

The model uncertainty due to the closure correlations is studied by applying the coefficients w to 
the closure correlations, i.e. 

2345 ← CQR2345 
267##,# ← CQMP267##,# 
267##,, ← CQMS267##,, 

T3# ← CURPT3# 
T3, ← CURST3, 

 

(8) 

For the selected Bartolomei case, where the inlet subcooling is high, the subcooled boiling model 
has large impact on the predicted void fraction. Thus, another coefficient, CVWX, is used to modify 
the subcooled boiling model, i.e. 

ℎYZ = ℎ#,J75 −
St	^_#
CVWXStYZ

, for		Pe < 70000 

ℎYZ = ℎ#,J75 −
Nu	^_#
CVWXNuYZ

, for		Pe ≥ 70000 
(9) 

 
For most of the parameters of interest, the uncertainty information (or more importantly the 
probability distribution) is unavailable. The common practice is to use an ad-hoc distribution that 
is based on expert judgements. Another promising method is the so-called inverse uncertainty 
quantification method [[12], 13], which quantifies the physical model uncertainty based on 
experiment data and code prediction. Either way, we need to specify the distribution of 
parameters w prior to the model uncertainty quantification. Based on experimental data in [[10]], 
a ±25% error bar was given to the fitted correlation, which is used as the bound for the 
distribution in simulations to estimate its impact on numerical results. In this work, the 
probability distribution for the parameters w are listed in Table 4. The standard deviation for the 
boundary condition parameters is taken from [[11]]. The standard deviation for the closure 
correlations parameters is set at 0.1, which is an ad-hoc choice. This choice ensure that most 
samples are within 25% of the nominal value. For the selected test case, where the inlet 
subcooling is high, Saha-Zuber correlation [[10]], which determines the conditions necessary for 
net void to exist, has been found to have a large impact on void fraction prediction. Two 
additional justifications for this ad-hoc normal distribution are: 1) in this work, we are mainly 
interested in the effect of the discretization error on the model uncertainty, not the model 
uncertainty itself; 2) the behaviour of the output (i.e. void fraction) is approximately a linear 
function (see Figure 4) of the input coefficients w, which means the shape (e.g. normal, log-
normal, etc.) of the distribution is less important. Figure 4 also shows that the void fraction is not 
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sensitive to the wall-to-gas friction and interface-to-gas heat transfer coefficient, thus, we will 
not consider these two coefficients in the following discussion.  
 

Table 4 - Probability distribution of boundary condition and closure correlation parameters 

Parameter Parameter name PDF Mean Stand. Dev. 
CDE Outlet pressure Normal 1.0 1% 
CI7JJ Inlet mass flux Normal 1.0 1% 
CLM Wall heat flux Normal 1.0 1.5% 
COP Inlet water temperature Normal 0.0 1.0 K 
CVWX Critical enthalpy (Saha-Zuber model) Normal 1.0 10% 
CQR Interfacial friction Normal 1.0 10% 
CQMP Wall-to-liquid friction Normal 1.0 10% 
CQMS Wall-to-gas friction Normal 1.0 10% 
CURP Interface-to-liquid heat transfer coefficient Normal 1.0 10% 
CURS Interface-to-gas heat transfer coefficient Normal 1.0 10% 

 

 
Figure 4 - Behaviour of void fraction for different closure correlation parameters at 3 different 

positions. Results are obtained with the second-order scheme and 80 cells 
 

3.2 Quantification of Discretization Error and Model Uncertainty 
Given the probability distribution of the physical models (or closure correlations), the model 
uncertainty could be obtained by performing an uncertainty quantification analysis; the 
discretization error could be obtained by a mesh convergence study. A series of simulations are 
performed to quantify the discretization error and model uncertainty. The discretization error is 
quantified by simulating the selected Bartolomei problem with 20, 40, and 80 uniform cells using 
both the first-order and the second-order solver. The results obtained with 80 cells second-order 
solver are used as the base (reference solution) to quantify the discretization error. For each mesh 
size, 800 samples of each boundary condition and physical model parameter are produced 
according to the distribution given in Table 4. Then, the uncertainty in void fraction is quantified 
as the standard derivation of the generated void fraction samples.  
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Figure 5, Figure 6, and Figure 7 shows the discretization error and model uncertainty in the void 
fraction prediction. Unlike Figure 6 and Figure 7 that show the model uncertainty for a single 
effect, Figure 5 shows the model uncertainty that account for all source of uncertainties, i.e. the 
boundary conditions and the closure correlations. Table 5, Table 6, and Table 7 lists 
quantitatively the discretization error and model uncertainty at three positions. In Figure 5 and 
Figure 6, the 3σ (or 99.7% confidence level) error bar and the mean value is plotted for two 
extreme cases, i.e. coarse mesh with first-order solver and fine mesh with second-order solver. 
From Figure 5 and Figure 6, we see that the discretization error is comparable (even larger) to 
the model uncertainties. For some closure correlations (e.g. interfacial friction, wall friction, and 
interfacial heat transfer coefficient), the discretization error is much larger than the model 
uncertainty. Note that the model uncertainty due to the wall friction and interfacial heat transfer 
coefficient is omitted here as they are very similar to the model uncertainty due to the interfacial 
friction. As an example, Figure 7 (and part of Figure 5) show selected distributions of the void 
fraction due to 4 parameters at three positions. We see that as the mesh is refined, the distribution 
of the void fraction prediction converges to the reference obtained with a fine mesh with second-
order solver. In addition, we see that the discretization has an effect on the distribution of the 
void fraction, meaning that the model uncertainty might not be reliable when using a coarse 
mesh with a low-order solver. 

4. CONCLUSION 
In this paper, rigorous numerical and model uncertainty analyses were performed with a new 
computer code that solves two-fluid two-phase flow problems using both first-order and second-
order numerical schemes. Rigorous numerical verification was performed by mesh convergence 
study of a FRIGG experiment test case, where expected order of accuracy was achieved for both 
schemes. Based on the successful implementation of the second-order scheme, a reliable 
estimation of the discretization error was performed. The Bartolomei subcooled flow boiling test 
was used to quantify the discretization error and the model uncertainty (including the uncertainty 
in boundary conditions and closure correlations) through an uncertainty quantification analysis. 
An sensitivity analysis was at first performed with respect to the boundary conditions and closure 
correlations. It was found that the behaviour of the output (i.e. void fraction) is approximately a 
linear function of the interested parameters (e.g. boundary conditions), which means the shape 
(e.g. normal, log-normal, etc.) of the distribution is less important. It was also found that the void 
fraction is not sensitive to the wall-to-gas friction and interface-to-gas heat transfer coefficient. 
Then the discretization error and model uncertainty was quantified using the Bartolome test. It 
was found that the discretization error is comparable (even larger) to the model uncertainties. For 
some closure correlations (e.g. interfacial friction, wall friction, and interfacial heat transfer 
coefficient), the discretization error is much larger than the model uncertainty. These findings 
clearly demonstrate the advantages of using high-order numerical schemes in system analysis 
codes. 
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Figure 5 - Discretization error and model uncertainty (total effect) in void fraction 

 
Figure 6 - Discretization error and model uncertainty in void fraction. The error bar represents 

99.7% confidence level. Upper row (left: outlet pressure; middle: inlet mass flux; right: wall heat 
flux). Lower row (left: inlet water temperature; middle: Saha-Zuber model; right: interfacial 

friction). 
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Figure 7 - Discretization error and model uncertainty in void fraction at three positions (left: P1; 
middle: P2; right: P3). First row: outlet pressure; second row: inlet mass flux; third row: Saha-

Zuber model; fourth row: interfacial friction 
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Table 5 - Discretization error vs model uncertainty in void fraction at 3 positions I: total effect 

 
P1 P2 P3 

 
Mean DE ME Mean DE ME Mean DE ME 

 
Total effect 

1st, 20 0.2054 5.09E-02 2.47E-02 0.3970 5.03E-02 2.55E-02 0.5560 2.69E-02 1.95E-02 
1st, 40 0.1779 2.34E-02 2.41E-02 0.3717 2.50E-02 2.70E-02 0.5419 1.29E-02 2.08E-02 
1st, 80 0.1655 1.10E-02 2.40E-02 0.3586 1.18E-02 2.70E-02 0.5348 5.74E-03 2.06E-02 
2nd, 20 0.1544 1.44E-04 2.29E-02 0.3456 1.10E-03 2.65E-02 0.5313 2.27E-03 2.06E-02 
2nd, 40 0.1539 6.59E-04 2.23E-02 0.3447 2.05E-03 2.70E-02 0.5267 2.35E-03 2.11E-02 
2nd, 80 0.1545 

 
2.51E-02 0.3467 

 
2.95E-02 0.5290 

 
2.29E-02 

 
Table 6 - Discretization error vs model uncertainty in void fraction at 3 positions II: closure 

correlations 

 
P1 P2 P3 

 
Mean DE ME Mean DE ME Mean DE ME 

 
Saha-Zuber 

1st, 20 0.2051 5.21E-02 1.16E-02 0.3982 5.17E-02 4.81E-03 0.5574 2.78E-02 7.72E-04 
1st, 40 0.1794 2.64E-02 1.23E-02 0.3743 2.79E-02 5.40E-03 0.5443 1.47E-02 9.20E-04 
1st, 80 0.1657 1.27E-02 1.30E-02 0.3608 1.43E-02 5.97E-03 0.5371 7.56E-03 1.05E-03 
2nd, 20 0.1556 2.57E-03 1.39E-02 0.3469 3.64E-04 6.82E-03 0.5322 2.69E-03 1.16E-03 
2nd, 40 0.1542 1.13E-03 1.33E-02 0.3468 2.68E-04 6.53E-03 0.5289 6.55E-04 1.18E-03 
2nd, 80 0.1530 

 
1.40E-02 0.3465 

 
6.80E-03 0.5296 

 
1.13E-03 

 
Interfacial friction 

1st, 20 0.2060 5.31E-02 1.20E-03 0.3986 5.22E-02 1.61E-03 0.5575 2.81E-02 1.31E-03 
1st, 40 0.1791 2.62E-02 1.17E-03 0.3741 2.77E-02 1.62E-03 0.5442 1.47E-02 1.39E-03 
1st, 80 0.1657 1.28E-02 9.40E-04 0.3607 1.43E-02 1.56E-03 0.5370 7.60E-03 1.41E-03 
2nd, 20 0.1545 1.57E-03 7.57E-04 0.3461 2.67E-04 1.56E-03 0.5319 2.48E-03 1.57E-03 
2nd, 40 0.1532 2.56E-04 9.85E-04 0.3461 2.32E-04 1.59E-03 0.5286 8.13E-04 1.48E-03 
2nd, 80 0.1529 

 
9.21E-04 0.3464 

 
1.67E-03 0.5294 

 
1.51E-03 

 
Wall-to-liquid friction 

1st, 20 0.2059 5.30E-02 2.30E-04 0.3985 5.20E-02 4.23E-04 0.5574 2.79E-02 4.75E-04 
1st, 40 0.1792 2.63E-02 2.00E-04 0.3742 2.78E-02 3.83E-04 0.5443 1.48E-02 4.67E-04 
1st, 80 0.1657 1.28E-02 1.66E-04 0.3607 1.43E-02 3.71E-04 0.5371 7.60E-03 4.79E-04 
2nd, 20 0.1545 1.63E-03 1.37E-04 0.3463 9.99E-05 3.47E-04 0.5322 2.67E-03 5.00E-04 
2nd, 40 0.1532 3.31E-04 1.54E-04 0.3463 9.91E-05 3.41E-04 0.5288 6.76E-04 4.62E-04 
2nd, 80 0.1529 

 
1.47E-04 0.3464 

 
3.58E-04 0.5295 

 
4.67E-04 

 
Interface-to-liquid heat transfer coefficient 

1st, 20 0.2057 5.28E-02 1.85E-03 0.3984 5.20E-02 1.31E-03 0.5574 2.79E-02 4.33E-04 
1st, 40 0.1793 2.64E-02 1.44E-03 0.3742 2.78E-02 1.28E-03 0.5443 1.48E-02 4.44E-04 
1st, 80 0.1657 1.28E-02 1.45E-03 0.3607 1.43E-02 1.35E-03 0.5371 7.57E-03 4.76E-04 
2nd, 20 0.1546 1.73E-03 1.42E-03 0.3464 3.06E-05 1.34E-03 0.5322 2.64E-03 4.43E-04 
2nd, 40 0.1533 3.99E-04 1.20E-03 0.3464 5.67E-05 1.30E-03 0.5288 7.06E-04 4.56E-04 
2nd, 80 0.1529 

 
1.35E-03 0.3464 

 
1.38E-03 0.5295 

 
4.56E-04 
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Table 7 - Discretization error vs input uncertainty in void fraction at 3 positions III: boundary 
conditions 

 
P1 P2 P3 

 
Mean DE ME Mean DE ME Mean DE ME 

 
Outlet pressure 

1st, 20 0.2051 5.23E-02 8.74E-03 0.3973 5.12E-02 9.78E-03 0.5565 2.73E-02 7.27E-03 
1st, 40 0.1792 2.65E-02 7.86E-03 0.3743 2.82E-02 9.90E-03 0.5443 1.50E-02 7.64E-03 
1st, 80 0.1656 1.28E-02 7.70E-03 0.3604 1.43E-02 1.04E-02 0.5367 7.49E-03 8.15E-03 
2nd, 20 0.1552 2.37E-03 8.04E-03 0.3470 8.67E-04 1.07E-02 0.5326 3.35E-03 8.73E-03 
2nd, 40 0.1536 7.82E-04 7.31E-03 0.3467 6.05E-04 1.05E-02 0.5291 7.12E-05 8.41E-03 
2nd, 80 0.1528 

 
7.73E-03 0.3461 

 
1.10E-02 0.5292 

 
8.73E-03 

 
Inlet mass flux 

1st, 20 0.2049 5.21E-02 1.07E-02 0.3970 5.10E-02 1.19E-02 0.5563 2.71E-02 9.04E-03 
1st, 40 0.1793 2.65E-02 9.73E-03 0.3743 2.82E-02 1.21E-02 0.5442 1.51E-02 9.43E-03 
1st, 80 0.1656 1.28E-02 9.60E-03 0.3603 1.43E-02 1.27E-02 0.5367 7.50E-03 1.01E-02 
2nd, 20 0.1553 2.46E-03 9.87E-03 0.3470 9.76E-04 1.31E-02 0.5326 3.43E-03 1.07E-02 

2nd, 40 0.1537 8.41E-04 9.13E-03 0.3468 6.95E-04 1.28E-02 0.5292 2.18E-05 1.03E-02 
2nd, 80 0.1528 

 
9.56E-03 0.3461 

 
1.34E-02 0.5292 

 
1.06E-02 

 
Wall heat flux 

1st, 20 0.2084 5.46E-02 1.66E-02 0.4006 5.34E-02 1.84E-02 0.5588 2.90E-02 1.41E-02 
1st, 40 0.1790 2.51E-02 1.49E-02 0.3737 2.65E-02 1.87E-02 0.5436 1.38E-02 1.47E-02 
1st, 80 0.1664 1.26E-02 1.49E-02 0.3611 1.40E-02 1.96E-02 0.5372 7.33E-03 1.54E-02 
2nd, 20 0.1538 7.24E-06 1.48E-02 0.3449 2.20E-03 2.02E-02 0.5308 9.31E-04 1.65E-02 
2nd, 40 0.1528 9.81E-04 1.41E-02 0.3453 1.81E-03 1.97E-02 0.5279 1.93E-03 1.59E-02 
2nd, 80 0.1538 

 
1.47E-02 0.3471 

 
2.07E-02 0.5299 

 
1.66E-02 

 
Inlet water temperature 

1st, 20 0.2050 5.24E-02 8.86E-03 0.3974 5.15E-02 9.08E-03 0.5566 2.76E-02 6.02E-03 
1st, 40 0.1780 2.54E-02 7.79E-03 0.3728 2.69E-02 8.98E-03 0.5432 1.41E-02 6.25E-03 
1st, 80 0.1659 1.33E-02 8.09E-03 0.3608 1.49E-02 9.91E-03 0.5370 7.96E-03 7.02E-03 
2nd, 20 0.1551 2.55E-03 8.19E-03 0.3468 9.87E-04 9.98E-03 0.5324 3.35E-03 7.29E-03 
2nd, 40 0.1533 6.91E-04 7.48E-03 0.3462 4.06E-04 9.83E-03 0.5288 2.93E-04 7.16E-03 
2nd, 80 0.1526 

 
7.73E-03 0.3458 

 
1.01E-02 0.5291 

 
7.26E-03 
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