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ABSTRACT 

The green routing strategy instructing a vehicle to select a fuel-efficient route benefits the current 
transportation system with fuel-saving opportunities. This paper introduces a navigation 
application programming interface (API) route fuel-saving evaluation framework for estimating 
fuel advantages of alternative API routes based on large-scale, real-world travel data for 
conventional vehicles (CVs) and hybrid electric vehicles (HEVs). Navigation APIs, such as 
Google Directions API, integrate traffic conditions and provide feasible alternative routes for 
origin–destination pairs. This paper develops two link-based fuel-consumption models stratified 
by link-level speed, road grade, and functional class (local/non-local), one for CVs and the other 
for HEVs. The link-based fuel-consumption models are built by assigning travel from many 
global positioning system driving traces to the links in TomTom MultiNet and road grade data 
from the U.S. Geological Survey elevation data set. Fuel consumption on a link is computed by 
the proposed model. This paper envisions two kinds of applications: 1) identifying alternate 
routes that save fuel, and 2) quantifying the potential fuel savings for large amounts of travel. An 
experiment based on a large-scale California Household Travel Survey global positioning system 
trajectory data set is conducted. The fuel consumption and savings of CVs and HEVs are 
investigated. At the same time, the trade-off between fuel saving and travel time due to choosing 
different routes is also examined for both powertrains.  
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INTRODUCTION 

Emerging intelligent transportation system technologies, such as connected and automated 
vehicles, can be implemented and provide positive effects on mobility, fuel consumption, and 
greenhouse gas emissions (1, 2) in the near future. One particular interest in connected and 
automated vehicle technology is to provide vehicles with guidance to achieve better fuel 
efficiency during driving, which includes two types of tactics. One type is called “eco-driving,” 
offering operational feedback to drivers, such as maintaining a steady speed and smoothing 
acceleration (3). The second type is guiding drivers to choose more fuel-efficient routes, referred 
to as “green routing.” The selected ideal route considers road features and the traffic conditions, 
which are dominant factors in driving behavior (4) and fuel efficiency. A study by Nie and Li 
revealed that when the route is chosen, the operational tactics seem to have relatively small 
impacts on operating speed and fuel efficiency (5). Therefore, if the estimated fuel consumption 
of each alternative route is known before departure, the driver will potentially save fuel and 
reduce greenhouse gas emissions for that trip by choosing the most fuel-efficient route. 

The green routing algorithms find the most fuel-efficient route for an origin and 
destination (OD) pair (6, 7). The fuel-saving opportunities of green routing strategies have been 
extensively studied recently. A comprehensive performance study of current eco-routing 
methods showed that an average saving of 12.5% could be achieved under ideal assumptions (8). 
A study in Lund, Sweden, on potential reduction of fuel consumption and carbon dioxide 
emissions through an eco-routing navigation system (9) was applied to 109 trips. The results 
indicated an average 8.2% fuel saving by choosing the greenest route. A navigation service 
“GreenGPS” uses participatory sensing data that allow the driver to find the most fuel-efficient 
route (6), which can save about 10% of fuel. A similar tool, Eco-Routing Navigation System 
developed by researchers at the University of California at Riverside (10), requires an extensive 
traffic database and accurate model inputs. A green-routing environmental benefit evaluation 
study in the greater Buffalo–Niagara, New York (11), proposed a “green-user equilibrium” 
concept. The TRansportation ANalysis SIMulation System (TRANSIMS)–Motor Vehicle 
Emission Simulator (MOVES) framework carries out the potential environmental benefit 
analysis. These studies are applied either on a small travel data set (e.g., a small number of trips 
or mileages) or on simulation data to prove the concept. They are restricted by quality traffic and 
network data requirements and the accurate pre-trip fuel consumption estimation model 
applicable to large-scale real-world travel data.  

Therefore, assessing the route choice fuel-saving potential for a large-scale, real-world 
travel data set is not easy. First, hosting and maintaining a routing server for route choice is 
costly and requires detailed and quality traffic and network (12-14) and other data, such as GPS 
trajectories (10, 13). Second, a pre-trip fuel consumption estimation model that accurately 
predicts fuel consumption of a route before it is taken for different vehicle powertrains is desired. 

To overcome the rigorous traffic and network data requirements, studies utilize the 
outputs of traffic simulation tools such as TRANSIMS (11) or Dynamic Urban Systems in 
Transportation (DynusT) (15). However, establishing a traffic simulation application is 
challenging due to the efforts of model calibration and the lack of computational resources. Also, 
their link cost attributes can be relatively simplistic in the area of energy estimation. Moreover, 
the simulation and traffic assignment results, either user equilibrium or system optimal, do not 
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reflect traffic in the real world. Hence, the fuel-saving analysis based on simulation solutions 
may not be accurate and persuasive. In that case, an efficient and effective way of applying real-
world travel data to find the possible green route options is needed. 

 Routing application programming interfaces (APIs), such as Google Maps Directions 
API (16), provide feasible route solutions for any OD pair by considering typical traffic 
conditions. The API offers quality routes conveniently because of the industry-level high-quality 
network and real-time traffic data. Although the API routes may not be exhaustive in presenting 
all possible routes for an OD pair, it is reasonable that the API routes are logical alternatives 
when considering both ease of following the routes and travel time. They may offer a fuel-saving 
opportunity for an actual route by comparing its estimated fuel consumption to alternative API 
routes. 

 With actual routes and API alternative routes, pre-trip fuel consumption estimation 
methods evaluate actual and API routes’ fuel consumption based on the correlation of fuel 
consumption and influencing factors about trips, vehicles, and drivers. Macroscopic models 
assume experimentally fixed fuel consumption rate values for particular powertrain models. 
Microscopic-level vehicle models, such as the Future Automotive Systems Technology 
Simulator (FASTSim) (17) and Autonomie (18), consider vehicle driving and road details to 
provide a fuel-consumption estimation. The mesoscopic-level model is a compromise between 
macroscopic and microscopic models. Mesoscopic-level models do not need complete driving 
cycles and consider various fuel economy impact factors, such as traffic conditions, trip road 
features, offering acceptable estimation results. The present mesoscopic-level studies (19-21) 
mainly rely on the average speed of a trip to estimate the trip fuel consumption rate. Except for 
aggregated traffic conditions, the mesoscopic fuel consumption estimation models also need a 
vehicle’s powertrain information. A hybrid electric vehicle (HEV) is a type of vehicle that 
“combines a conventional internal combustion engine system with an electric propulsion system” 
(22). The partially electric powertrain can achieve better fuel economy than a conventional 
vehicle (CV). 

 This study applies the enhanced pre-trip fuel consumption estimation models for CVs and 
HEVs. The model was trained and developed using millions of driving cycle global positioning 
system (GPS) trajectory point data and considering the route traffic conditions, functional class, 
and road grade factors. The advantages of the models are that they do not need complete trip 
drive cycles and can provide accurate fuel consumption rate estimations for both powertrains for 
a route that has not yet been driven. 

 In that case, a fuel-saving opportunity assessment framework using a routing API and the 
pre-trip fuel consumption rate estimation models for large-scale, real-world travel data is 
proposed. The framework has the capability to quantify fuel-saving opportunities for a large-
scale, real-world travel data set by comparing the API routes to the actual routes for all OD pairs, 
which is enabled by the automated similarity comparison between the actual route GPS 
trajectories and the alternative API routes. Meanwhile, the trade-off between fuel saving and 
travel time saving is also investigated. The contributions of the proposed route choice fuel-saving 
assessment method include but are not limited to: 

• Quantifying and analyzing potential fuel consumption and savings in a large-scale, real-
world travel data set for both CVs and HEVs for the first time. 
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• The API (Google Directions) method provides alternative route options and is easy to 
implement and compatible with any cities that have travel data. 

• The enhanced pre-trip fuel consumption rate estimation models for CVs and HEVs 
evaluate the route fuel use and enable pre-trip green route selection. 

METHODOLOGY 

The proposed framework consists of several modules:  

1) Initialization 
2) API query 
3) Map matching  
4) Route fuel consumption estimation 
5) Route similarity assessment 
6) Fuel saving analysis. 

Initialization 

An initialization procedure deals with the raw GPS trajectories and abstracts the real driving 
routes from a large-scale, real-world travel data set (23, 24) generated by GPS-instrumented 
vehicles within a region. A pre-processing procedure is used to cleanse raw GPS data (25) to 
remove the stationary points and outliers. The actual routes are segregated from the raw GPS 
trajectories by the time and distance gaps in the GPS data. Meanwhile, the actual route OD 
locations are extracted from the first and last GPS point coordinates of the route. The trip 
departure time is directly read from the timestamp of the origin GPS point. The actual route 
point-based speed sequence (speed profile) is used as a proxy to indicate the route’s traffic 
condition (26). The actual route length is computed by summing the coordinate distances among 
all consecutive GPS point pairs. 

API Query 

The navigation API (e.g., Google Directions API) provides routes for a specific OD pair and 
departure time. Google Directions API responds with the route topology, length, and duration in 
traffic. The traffic model of Google Directions API is obtained by providing an additional input 
parameter, “departure_time,” in the API request URL. Then, the API returns the “duration in 
traffic” feature in the response. The “duration in traffic” feature is the route travel time under 
traffic conditions at a typical future time with the same time-of-day and day-of-week information 
as the actual route. Although the typical future time is not the historical time when the actual 
route occurred, the typical traffic conditions at the time with the similar temporal feature (e.g., 
time of day, day of week) as the actual route time is still meaningful in general cases (except for 
accidents or unexpected events). The API route is composed of a sequence of shape nodes with 
coordinates. 

However, the API cannot offer the route speed profile, which reflects detailed driving 
operation and traffic conditions. Nevertheless, the segmented traffic data are considered as a 
surrogate for the speed profile. First, the API query obtains multiple consecutive route segments 
(legs). Then, the second-level API query is conducted to fetch the polyline (i.e., shape node 
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sequence), duration in traffic, and distance features for each route segment. The average speed of 
the segment is calculated by the distance over the duration on the segment, and then the speed is 
assigned to each shape node on the segment. After that, the combination of the ordered shape 
nodes of all segments form the route topology; the point-based speed sequences of all segments 
compose the route speed profile. 

Map Matching 

The map-matching procedure (25, 27, 28) matches all routes onto a common road network (13, 
21) to procure the additional road attributes for the routes according to route location. After map 
matching, each GPS point in the actual routes or each shape node in the API routes is associated 
with a link identification, which can be used to retrieve link functional class and elevation 
(grade). The link functional class and road grade are used for estimating route-based fuel 
consumption, which will be explained in the fuel estimation model. 

Route Fuel Consumption Estimation 

With detailed road link information, the enhanced fuel consumption rate estimation model 
estimates the route fuel usage for CVs and HEVs. The model uses link-level average speed, road 
grade, and a local and non-local road classifier based on functional road class, rather than 
detailed second-by-second speed profiles, as input to provide accurate energy estimates for one 
route. The FASTSim model (17) is used in conjunction with real-world driving data, made 
available by the Transportation Secure Data Center at the National Renewable Energy 
Laboratory (23), to obtain FASTSim-estimated fuel economy data as the ground truth for nearly 
1 million miles of driving in the United States. The driving data are used as the feedstock for 
developing a trip-level fuel estimation model, which does not require second-by-second drive 
cycles. The raw GPS points may cause drive-cycle profiles to be noisy, so the drive cycles are 
cleansed and filtered via the National Renewable Energy Laboratory’s standard processing (25) 
to make them more suitable for the powertrain simulation model. As a part of the processing, the 
U.S. Geological Survey Digital Elevation Model is used to append road grade to the drive-cycle 
data, and the GPS points are matched to a road network with the map-matching procedure. 

 FASTSim is run for all cleansed drive cycles to determine the second-by-second fuel 
consumption for the drive cycle. The FASTSim fuel consumption results for the HEV and CV 
powertrain models are taken to be the ground truth for the model development. Since FASTSim 
returns fuel consumption estimations for each point in the drive cycle provided as an input, the 
resulting resolution is too fine for the link-based energy estimation model. Therefore, the point-
based FASTSim results are aggregated to the link level as the total fuel consumption on the link, 
defined as the sum of all point-based FASTSim fuel consumption estimations on the link. 
Therefore, the link level results include total fuel consumption, functional class (local (such as 
urban major/minor arterials, local streets, etc.) or non-local (such as freeways)), road grade, and 
average speed of travel. The functional class attribute is directly obtained from the road network 
attributes. The road grade is computed as a ratio of "rise" to "run," in which run is the horizontal 
distance and rise is the vertical distance—the result is taken as a percentage. The average speed 
of the link is calculated by averaging all speed points on the link. 

 The link-based result data are grouped into “bins” by average link speed, functional class, 
and road grade. Average fuel consumption rate for each bin is calculated from the link-level 
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FASTSim results, and this generates the estimation model. The model is a three-dimensional 
lookup table. FIGURE 1(a) shows fuel consumption rate (gallons per 100 miles) for each speed 
and functional class bin in the model. FIGURE 1(b) has fuel consumption rates as a function of 
road grade and functional class. Each figure shows the results for the HEV and CV powertrains 
on local and non-local road links. Overall, the accuracy of the model is computed from the 
modeled to the ground-truth error in estimated fuel consumption (gallons) for a trip. The 
normalized averaged absolute error for all trips used to generate this model is approximately 
5.7%. The fuel economy of HEVs outperforms that of CVs in all situations. In particular, 
FIGURE 1(a) indicates that the HEV has more fuel use benefits on low-speed ranges, partially 
due to the HEV’s fuel-efficient performance on urban streets. For example, when cruising at low 
speed or stopping at a traffic signal, an HEV is likely under full electric power and thus has a 
better fuel economy. 

The fuel consumption rate of a route comprised of links can be estimated by looking at 
the model tables through the link average speed, functional class, and road grade attributes. Link 
fuel consumption in gallons is computed by the link length (in miles) multiplied by the fuel 
consumption rate. The fuel consumption for the entire route is the sum of all links’ fuel 
consumption quantities on the route. 

Route Similarity Assessment 

Given the routes’ estimated fuel consumption, if a route matches one of the API routes, the fuel 
consumptions of the matched API route and the actual route are assumed to be the same. Before 
studying the fuel-saving opportunity, the similarity relationship of the actual routes, the API 
routes, and the green route have to be examined. The route similarity is described by a longest 
common sub-sequence (LCS)-based similarity score (ranging between 0 and 1) (25, 29, 30). The 
LCS similarity score usually represents the overlapping level of two trajectories. The LCS model 
can match two sequences by allowing them to stretch without changing the order of elements in 
the sequences but allowing some parts to be unmatched (29). In that case, an API route matched 
to the actual route can be found when the API route similarity score is the maximum one among 
all alternative API routes and is greater than a predefined similarity threshold (for example, 
maximum score > threshold of 0.7). 

 The predefined similarity score threshold affects the performance of route matching. For 
a large threshold, such as 1, the tightest constraint makes it very hard to find matching cases. A 
small threshold, such as 0.1, implies that almost all actual routes can find a matched API route. 
Both cases are not favorable for the fuel-saving study in different route similarity situations. The 
similarity score threshold of 0.7 used in this study is an empirically derived value, obtained from 
a route-matching study in the literature (25) to define a reasonable route-matching case. 

Fuel Saving Analysis 

In the fuel-saving analysis module, the actual routes are first separated as “follow API” and 
“non-follow API,” according to whether a route matches one of the API routes. For the “follow 
API” group, the estimated fuel consumption of the actual route is replaced by the fuel 
consumption estimation of the matched API route. The reason for doing that is that the two 
matched routes are not fully identical due to the similarity threshold setting. A small discrepancy 
between two matched routes (the actual route and its corresponding API route, as “a matched 
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route pair”) leads to a fuel consumption difference by using a common fuel estimation model. 
Therefore, it is better to choose a comparable route from the matched route pair to compare with 
other API routes. Since all API routes share the same Google routing engine, the matched API 
route is more comparable to other API routes in light of path choice logic. Using the matched 
API route instead of the actual route to estimate fuel saving, the adverse impact of the fuel 
consumption difference between the actual route and the matched API route might be diminished 
in the fuel comparison procedure. 

 If the fuel consumption of the matched API route is higher than any other API route, the 
route is not the green one. Thus there is fuel-saving potential, and the actual route is categorized 
as having an “API saving route.” Otherwise, it is denoted as “API greenest route.” 

 For the “non-follow API” group, the estimated fuel consumption of the actual route and 
the API routes are directly compared. If the fuel consumption of the actual route is less than or 
equal to (outperforms) that of all API routes, the actual route is called “Actual outperform route.” 
Otherwise, the actual route has fuel-saving potential, and the actual route is defined as “Actual 
saving route.” Ultimately, the actual routes are divided into four groups: 1) API greenest route, 
2) API saving route, 3) Actual saving route, and 4) Actual outperform route. 

 To understand the total fuel saving, the cumulative fuel consumption of those four groups 
are calculated. According to the definitions, the fuel-saving amount is derived from the fuel 
consumption differences of the actual routes and their green API routes for the potential fuel 
saving groups, including 2) API saving route, and 3) Actual saving route. 

The fuel consumption and saving patterns of the two powertrain models—CV and 
HEV—are investigated respectively. In addition to the quantitative study of fuel savings, the 
fuel-saving and travel time relationship study reveals the changes of fuel saving and travel time 
for specific potential fuel-saving routes. 

EXPERIMENT AND RESULTS DISCUSSION 

The California travel data set in the Transportation Secure Data Center is used in the experiment. 
The data set has 44,805 OD pairs containing 4,265,064 GPS points, which are extracted from 
111,096 miles of driving by Californian travelers from 2010–2012. There are 100,031 API routes 
procured by the Google Directions API queries. Using TomTom MultiNet as the underlying road 
network layer and U.S. Geological Survey elevation data for all routes in the map-matching 
procedure, the additional link attributes are appended to the routes. 

 The framework processing efficiency was assessed. The computational time for 
processing one OD pair is impacted by many factors, such as route length and internet speed. 
The API query takes on average about 1 second for an OD pair. The map-matching module takes 
about 8 seconds for an average length trip. One OD pair may have two to three API routes and 
one actual route. So, the map-matching may take about 28 seconds. And, considering the time 
costs of other modules, the overall computational time for computing a green route and 
comparing its fuel consumption will take about 30 seconds. 
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Fuel Saving Quantitative Analysis 

Overall Actual Route Ratio Distribution 
The ratio distribution of the four actual route groups for CVs and HEVs are illustrated in 
FIGURE 2. From the figure, similar distribution patterns for CVs and HEVs are observed. In 
FIGURE 2(a), for CVs, 31% of actual routes have fuel-saving potential (all blue slices) while 
69% of actual routes (all green slices) do not. In FIGURE 2(b), for HEVs, 39% of actual routes 
have fuel-saving potential while 61% of actual routes do not. In that case, HEVs have a larger 
number of potential fuel saving routes (39%) than CVs have (31%). 

For the subset of cases that follow API routes (dark blue and dark green slices, 78% of all 
actual routes), most of them (58% for CVs and 55% for HEVs) followed the greenest API route 
so do not have fuel saving potential. 

Cumulative Fuel Consumption and Saving 
The cumulative fuel consumption of potential fuel-saving routes and no fuel-saving routes for 
CVs and HEVs are demonstrated in FIGURE 2 (c) and (d). The columns marked as “actual” and 
“green” denote the actual routes and their corresponding green routes (either actual route itself or 
its greener API route). The red bars in the “actual” column represent the cumulative estimated 
fuel consumption of potential fuel-saving actual routes. The red bars in the “green” column 
illustrate the cumulative fuel consumption of the green routes corresponding to the potential fuel-
saving actual routes. The blue bars in the “actual” columns indicate the cumulative fuel usage of 
no-fuel-saving actual routes, which is identical to that of the corresponding green routes, marked 
with the blue bars in the “green” columns. 

 The cumulative fuel consumption difference between CVs and HEVs is significant, and 
HEVs always outperform CVs. For the actual routes’ fuel consumption perspective, HEV 
cumulative fuel consumption is roughly half of that for CVs. Thus, considerable fuel-saving 
potential exists for HEVs compared to CVs, though this requires vehicle switching which is 
more costly and complicated than route switching. 

For the CV case, the total potential fuel saving derived from the fuel use difference 
between actual routes and their green routes is 476 gallons (3,896 – 3,420 gallons), which is 
12.2% of the cumulative fuel consumption of the actual routes with potential fuel-saving. For the 
HEV case, the total fuel saving amount is 472 gallons, which accounts for 17.8% of the potential 
fuel saving actual routes’ cumulative fuel consumption. Although the absolute fuel saving 
amounts of CVs and HEVs are very close, the fuel-saving ratio of the HEVs is higher in this 
analysis. 

 The percentages of the local and non-local roads (functional class attribute) on an actual 
route may impact the estimated fuel consumption and fuel saving. For CVs, 84% of actual routes 
with fuel-saving potential are on local roads, and 16% of actual routes with fuel-saving potential 
are on non-local roads (i.e., freeway). For HEVs, 78% of the potential fuel-saving routes are on 
local roads, and 22% of the potential fuel-saving routes are on non-local roads. Considering the 
comparable ratios of potential fuel saving actual routes for two powertrains (HEV–39% vs. CV–
31%), the non-local routes are more likely to have fuel-saving potential for HEVs compared to 
that for CVs. 
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Trade-Off between Fuel Saving and Travel Time 

For the actual routes with fuel-saving potential, the time penalties or savings of green alternative 
routes are uncertain. Scatter diagrams in FIGURE 3 illustrate fuel-saving and travel time 
differences of potential fuel-saving actual routes for CVs (a), and HEVs (b). Each actual route is 
represented as a colored dot, and the color of the dot describes the actual route duration in 
seconds, which ranges from 15 to 10,800 seconds (3 hours). The actual route duration minus the 
green route duration yields the travel time difference. 

 The actual routes are separated into two classes according to time savings and penalties. 
The actual routes with both time and fuel savings are the more desirable routes, which are 
located above the zero time difference line (dashed line). The colored dots located below the zero 
time difference line with fuel saving and without travel time saving represent less desirable 
routes. The statistics of more desirable and less desirable routes for CVs and HEVs are 
illustrated in TABLE 1. The fuel saving is described by the fuel saving amount in gallons and as 
a percentage, calculated by the fuel-saving amount of the category over the total fuel saving 
amount. From the table, HEVs have fewer more desirable routes (as compared to CVs) that save 
both fuel and travel time. For the less desirable routes category, it follows that the HEV case has 
more actual routes than the CV case with time penalties (negative time savings) that accompany 
the fuel savings. These differences are also visible from the point scattering trend of FIGURE 3 
(a) and (b). For the CV case, more dots are located above the zero-time difference line, while for 
the HEV case more dots are below the zero line. 

 TABLE 2 summarizes statistics of actual route attributes for both the CV and HEV, 
including route duration (seconds), length (miles), and road classification (local/non-local), 
broken out between the more desirable and less desirable route designations. For the CV cases, 
the mean values of length and duration for the more desirable route group are statistically higher 
than those of the less desirable route group. On the other hand, the splits between local and non-
local road classes are very similar between the more and less desirable route options for the 
CV—in both cases, the number of local routes is significantly larger than the number of non-
local routes.  

 For the HEVs, the duration attribute has a similar pattern to the CV case, while the 
pattern for length flips (the mean length value of the most desirable route group is smaller than 
that of the less desirable route group). This implies that green routes that save both fuel and 
travel time for an HEV are more likely to be found for shorter routes with relatively longer travel 
time. The road classification attribute again shows more green routing opportunities overall for 
local roads than non-local roads, though the percentage skews higher toward non-local roads for 
the less desirable HEV green route options. 

CONCLUSIONS 

The proposed navigation API route fuel-saving opportunity assessment framework provides a 
feasible way to assess the potential fuel saving for a large-scale, real-world travel data set for 
CVs and HEVs. The API methods do not need rigorous network and traffic data to provide the 
possible green routes for OD pairs in the target research area. The framework using large-scale, 
real-world travel data rather than simulation-based or small-scale travel data can better reflect the 
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traffic patterns, and the estimated aggregate fuel saving results of route choice are more reliable 
and convincing. 

 In the experimental data set of 44,805 OD pairs, 31% of actual routes for CVs and 39% 
of actual routes for HEVs show opportunities for fuel savings by choosing a different route. Of 
those actual routes, the total estimated fuel saving is 476 gallons for the CV case, which is 12.2% 
of potential fuel-saving actual routes fuel consumption. For the HEV case, the overall fuel saving 
estimation is very similar (472 gallons), and accounts for 17.8%. 

 Due to the overall better fuel efficiency performance of HEVs, if HEVs drive all the 
routes, the total fuel consumption could be cut in half relative to the CV cases, although this 
would require full vehicle replacement rather than simply alternative route selection. From the 
perspective of fuel vs. travel time trade-offs, the analysis indicates that a given green route 
alternative for a CV is more likely to save time as well as fuel, whereas a given HEV green route 
is more likely to trade off an increase in travel time against the decrease in fuel consumption.  

 The proposed framework is transferable and can be applied to any city with real-world 
travel data and road networks. The findings are promising and convincing, thanks to the use of 
the large-scale, real-world GPS trajectory data. 
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TABLE 1  Statistical Summary of Most Desirable and Less Desirable Routes 
 

Most desirable routes  Less desirable routes 
# of actual 
routes 

Fuel saving 
(gal. / %) 

Time-saving 
(hours) 

# of actual 
routes 

Fuel saving 
(gal. / %) 

Time-saving 
(hours) 

CV 6,831 315 / 66.2% 438 7,059 161 / 33.8% -263 
HEV 6,005 170 / 36.0% 347 11,397 302 / 64.0% -712 
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TABLE 2  Statistical Summary of Route Attributes for CVs and HEVs 

CV 

Length 

 Mean Std. p-value t-value 
Most desirable 8.32 14.23 0.01a 2.62 
Less desirable 7.64 16.10 – – 

Duration 

 Mean Std. p-value t-value 
Most desirable 1,079.14 1,202.44 0.0 a 16.80 
Less desirable 763.10 1,005.16 – – 

Functional Class 

 # of Local # of Non-Local Local% Non-Local% 
Most desirable 5,833 1,018 85% 15% 
Less desirable 5,873 1,206 83% 17% 

 

HEV 

Length 

 Mean Std. p-value t-value 
Most desirable 7.97 13.78 0.00 a -4.47 
Less desirable 8.97 14.41 – – 

Duration 

 Mean Std. p-value t-value 
Most desirable 1,074.55 1,171.95 0.00a 9.74 
Less desirable 903.10 962.36 – - 

Functional Class 

 # of Local # of Non-Local Local% Non-Local% 
Most desirable 5,173 832 86% 14% 
Less desirable 8,470 2,927 74% 26% 

          a significance level of 0.05 
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(a) 

 
(b) 

FIGURE 1  Fuel consumption estimation model: (a) fuel consumption rate as a function of 
link average speed and functional class; (b) fuel consumption rate as a function of road 
grade and functional class.  
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(a) (b) 

  
(c) (d) 

FIGURE 2  Ratio distribution of actual routes for CVs (a) and HEVs (b) and cumulative 
fuel consumption for actual routes for CVs (c) and HEVs (d).  
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(a) 

 
(b) 

FIGURE 3  Fuel saving vs. time difference for potential fuel-saving actual routes for CVs (a) 
and HEVs (b). 
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