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Theory of Flexible Chain Pull

Scaling theory

Chain of tension blobs stretched,
unstretched.
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For a good solvent, neutral chain v = 3/5 and y = 2/3. log(Force)
For ideal chain, v=1/2and y = 1.

For ssDNA with N = 5000 and 100 mM NacCl,

Debye length = 1 nm « L=aN = neutral scaling at large lengths.

But have a distinct v > 3/5 at short length scales.

Electrostatic blob length is very short 2-3a.
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sSDNA system
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Logarithmic Scaling in Experimental Data

monovalent salt (20-2000mM) divalgnt salt (2:1) (O.2-§OmM)
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N - 5000 Figure 2. Force—extension behavior of d-ssDNA in 2:1 salt solutions of

(A) MgCl, and (B) CaCl,. For comparison, we plot gray curves in the
background that represent consensus behavior in NaCl at various
concentrations; the blue dash-dotted line is a WLC with persistence
length 0.62 nm.
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Scaling in Experiment

low f
«independent of valence, ion
oy = 0.62

high f
*logarithmic scaling
» depends on valence

L/L(f)
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MD Simulations

“All ion simulations”

* bead (spring) flexible polyelectrolyte
*F = bond + electrostatics + entropy
*a=6.4A=0.96c (ssDNA spacing)
*N =200

* monovalent, divalent salt

divalent systems are small (easy sims)

monovalent system are LARGE (expensive)

‘Ly=(N-1)a=192¢c
«/z=1.065 ¢ (Bjerrum length)

R end-to-end distance

- | . contour
S/ m length 20 mM monovalent
<>

f f=0.20¢/c
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Additional Systems

*b=0.96 ¢ bond length is fixed
charge spacing is varied

ea=mb

R end-to-end distance

b

f-Oogggetoco¢¢?

a

contour
length

Intrinsic stiffness:

add angle term to potential

Kk, 02
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Screened Coulomb Simulations

To do very low f and large N,
go to screened Coulomb potential

u(r)=q4,~

i

Only monomers present in system.
Monte Carlo simulations

N=200, 1000, 5000, 25000

at 200 mM

using pivot algorithm (very efficient)

Much much faster.
Good approximation at 200 mM.

Worsens as c, decreases.
Not even attempted for divalent.

200 mM monovalent

f=0.20¢/c
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Force-Extension Data (MD)
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Scaling of Simulation Data

same scaling procedure
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N=5000 200mM
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Logarithmic regime (monovalent)

semilog plot

Clearly have logarithmic L 2
regime at large f. 4 - o
MD, all ion simulations i ]
N=200 data 3 - o
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Structure

monovalent
M 50mM
A f=6.4¢/c
@ monomer
® counter-salt
counterion
f=128 ¢/c _
A et e - .. divalent
o ) 2mM
A
B L]
f=0.40 f=0.05
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S(k) & Chain Length Dependence

» Screen Coulomb Simulations
—true with explicit ions at smaller N

N =200, 1000, 5000, 25000

* S(k) same for k > 2n/R(N)

«two regimes

«f=0

Large f depends on high k regime and
does not depend on N.
Can do with all ion MD at N=200.

Low f regime requires large N.
MC simulations at 200 mM:
Debye length=1c

r.=9557c
r=10 catlog ke =-0.5

|
v v=0.59

-3

—2 -1 0
log ko
small f large f

tension screening
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log kS(k)

Structure Factor for N=5000 at 200 mM
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log S(k)

2.0

1.5

0.5

0.0

S(k) comparison for z=1and 2 atf=0

N=200 at 50 mM

S(k) ~ k'™

high k
z=1 v=0.77 (green)
L~ z=2 v=0.63 (black)

Structural difference leads to
different scaling in force-
extension.
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Pma(r) (e/0®)

Pms(r) (e/0°)
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Charge Density about Monomer

Why Divalent Different

log scaling z=1 z=2

z=1
100 mM

~
H_O
N
-
=~
-

10 100

Chain curls around
divalent counterions

esmaller v
*larger negative
trough

DIIIIIII

Ca

*larger change at
o max f
=0 f=f

max
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Bond-bond correlation function

Cp (]) = <bi * bi+j> ~ eXPLZJ
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bond-bond for z=1 & 2

bond-bond correlation different at small separations for 50 mM at
f=0

algebraic at small separations

slopes -0.41 and -0.80 for z=1 and 2, resp.
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Intrinsic Stiffness Removes Log Regime

« MC simulations varying stiffness at 200

mM
* k, =9,4,5,40p50

Marko-Siggia curves
.................. ka =10
k, =950

Wormlike chain model good fit at
k, =50 (k, =42 kgT)
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Varying Charge Separation
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Do you need charges to get logarithmic regime”?
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L./2

Internal Tension Model
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S, (pN)

3600

3200

2800

2400

sSDNA & ssRNA data
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Conclusions

« Can reproduce key aspects of experiments
— scaling due to added salt (monovalent, divalent)
— logarithmic regime
— Pincus regime
— reproduce experimental findings

« Structural insight to stretched, flexible polyelectrolyte
— force screening
— sequence: orient, unfold, unwrinkle
— logarithmic regime is due to unwrinkling
* pbond-bond power law
» does not require electrostatics

* Picture of flexible polyelectrolyte
— new mean-field like force-extension equation
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What's the Picture of Stetching Polyelectrolyte

Folds & Condensed Counterions

\ monovalent
g 50 mM
RN\4 f=0.05¢/o
—
3
\ 1) l
~ 8 folds
Large & Short length scales ks T/6™" S fapp S for

Folds ~ persistence length segments
net repulsive

Wrinkles:

short length scale structure

entropy & counterion-monomer wrapping

stretched at large f

the dominate source of the logarithmic scaling

power law bond-bond yield logarithmic scaling (Toan & Thirumalai)
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Structure Factor: force dependence
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Screened Coulomb Simulations

Most of monovalent data is in logarithmic
regime.

To do better at low f (and large N),

go to screened gaylomb potential

u(r)ZQinT /
ij

Only monomers present in system.
Much much faster.

Good approximation at 200 mM
Worsens as c, decreases.
Not even attempted for divalent.

200 mM monovalent
f=0.20¢/c
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log (Rz/LO)

log (Rz/LO)
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Structure Factor: scaling exponents
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Bond-bond correlation function
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Crossover regime

electrostatic blob size

£= 1,23(allg)?® = 1 7
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