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For a good solvent, neutral chain  = 3/5 and  = 2/3.

For ideal chain,  = 1/2 and  = 1.

For ssDNA with N = 5000 and 100 mM NaCl, 

Debye length = 1 nm ≪ L=aN ⇒ neutral scaling at large lengths.

But have a distinct  > 3/5 at short length scales.

Electrostatic blob length is very short 2-3a.

Theory of Flexible Chain Pull

R ~ N 

t ~ bgv

f ~ kT / t

R ~ t N / g

R ~ f   1/ 1

Scaling theory

tension blob size

extension under tension

Chain of tension blobs stretched,
while chain within tension blob is
unstretched.

end-to-end distance
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ssDNA system

McIntosh & Saleh, PRL 09, PRE 09, Macromol. 11

single stranded
no base-pairing ⇒
flexible, stong polyelectrolyte

a = 6.4 Å  spacing between 
charges
lB = 7.1 Å

electrostatic blob size 
ξ= l0

2/3(a/lB)2/3 ≅ 1 
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Logarithmic Scaling in Experimental Data

divalent salt (2:1) (0.2-50mM)

McIntosh & Saleh, PRL 09, PRE 09, Macromol. 11

N = 5000

monovalent salt (20-2000mM)
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Scaling in Experiment

z=1z=2

low f
• independent of valence, ion
•  ≅ 0.62

high f
• logarithmic scaling
• depends on valence

z=1
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MD Simulations

“All ion simulations”

• bead (spring) flexible polyelectrolyte

• F = bond + electrostatics + entropy

• a = 6.4 Å = 0.96 (ssDNA spacing)

• N = 200

• monovalent, divalent salt

divalent systems are small (easy sims)

monovalent system are LARGE (expensive)

• L0 = (N-1) a = 192 

• lB = 1.065  (Bjerrum length)

z

Rz

20 mM monovalent
f = 0.20 

a

L0

R

contour
length

end-to-end distance

f
f
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Additional Systems

• b = 0.96 bond length is fixed

• a = m b       charge spacing is varied

b

L0

R

contour
length

end-to-end distance

a

f
f

Intrinsic stiffness:
add angle term to potential
ka 


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Screened Coulomb Simulations

To do very low f and large N, 

go to screened Coulomb potential

Only monomers present in system.

Monte Carlo simulations

N=200, 1000, 5000, 25000 

at 200 mM

using pivot algorithm (very efficient)

Much much faster.

Good approximation at 200 mM.

Worsens as cs decreases.

Not even attempted for divalent.
200 mM monovalent
f = 0.20 

u r   qiq j

e
rij

rij
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Force-Extension Data (MD)

monovalent
20 mM
50 mM
100 mM
200 mM

divalent
0.2 mM
0.5 mM
1.0 mM
2.0 mM
10 mM
20 mM

• salt dependence
• valence

• high force overlap

• no bond stretch until
f = 12 (last pt.)
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Scaling of Simulation Data

monovalent
20 mM
50 mM
100 mM
200 mM

divalent
0.2 mM
0.5 mM
1.0 mM
2.0 mM
10 mM
20 mM

experimental data
solid points

same scaling procedure 
as experiments

fc,Lc ↔ f*,L* ↔ f,L
(notation varies)

_ _

Implies simple model
is sufficient.

electrostatics, entropy,
connectivity
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N=5000  200mM



Screened Coulomb
MC data

Independent of N

N
200     MD
1000
5000   Exp 
25000
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Logarithmic regime (monovalent)

Clearly have logarithmic 
regime at large f.

MD, all ion simulations
N=200 data

In fact, most f are in 
logarithmic.

semilog plot
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Structure

monovalent
50mM

divalent
2mM

f = 12.8 

monomer
counter-salt
counterion

f = 6.4 

f =  0.40 f = 0.05

f = 0.05f = 0.40
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S(k) & Chain Length Dependence

• Screen Coulomb Simulations

– true with explicit ions at smaller N

• N = 200, 1000, 5000, 25000

• S(k) same for k > 2/R(N)

• two regimes

• f=0

Large f depends on high k regime and

does not depend on N.

Can do with all ion MD at N=200.

Low f regime requires large N.

MC simulations at 200 mM:

= 0.59

= 0.77

tension screening

small f large f
Debye length = 1 
rc = 5.57 
r = 10 at log k = -0.5
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Structure Factor for N=5000 at 200 mM

Region

Rotational

Pincus

logarithmic

flB/kBT = 0.027 

flB/kBT = 0.27

= 0.60

= 0.77

at high f, 
affects large k 
structure
=0.773/5
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S(k) comparison for z=1 and 2 at f = 0

S(k) ~ k1/

high k
z=1  =0.77 (green)

z=2  =0.63 (black)

Structural difference leads to 
different scaling in force-
extension.

N=200 at 50 mM
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Why Divalent Different 

f=0

f=fmax

+ –
nn

bonded
pair

Chain curls around 
divalent counterions 
• smaller 
• larger negative 
trough

• larger change at 
max f

L
/L

(f
c
)

f/fc

log scaling z=1  z=2

f=0      f=fmax

Charge Density about Monomer
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Bond-bond correlation function

▲ N=200   at 200 mM (MD)
■ N=5000 (MC)

cb j   bi bi j ~ exp
j

Lp











power law
decay

This nonexponential decay has been
known since the 90s.

The force-extension data shows it has
important implications.

Toan & Thirumalai JCP 2012
cb(j) ~ (j/a)-⟹ R ~ ln(f)
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bond-bond for z=1 & 2

• bond-bond correlation different at small separations for 50 mM at 
f=0

• algebraic at small separations 

• slopes -0.41 and -0.80 for z=1 and 2, resp.

z=1

z=2

z=2

z=1
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Intrinsic Stiffness Removes Log Regime

• MC simulations varying stiffness at 200 
mM

• ka = 0, 1, 5, 10, 50

Marko-Siggia curves

ka = 10

ka = 50

Wormlike chain model good fit at
ka = 50  (ka = 42 kBT)
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Varying Charge Separation

a=b, 2b, 4b, 10b, 
∞

FJC

200 mM
N=5000
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Do you need charges to get logarithmic regime?

d=1.05 
0.6 
0.3 

b=0.96 

FJC

WLC

NEUTRAL
vary diameter
(excluded volume)
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Internal Tension Model

for the intermediate force regime

fel is related to electrostatic tension
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ssDNA & ssRNA data

fel is obtained by fitting data PNAS, 2017
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Conclusions

• Can reproduce key aspects of experiments
– scaling due to added salt (monovalent, divalent)

– logarithmic regime

– Pincus regime

– reproduce experimental findings

• Structural insight to stretched, flexible polyelectrolyte
– force screening

– sequence: orient, unfold, unwrinkle

– logarithmic regime is due to unwrinkling

 bond-bond power law

 does not require electrostatics

• Picture of flexible polyelectrolyte
– new mean-field like force-extension equation
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What’s the Picture of Stetching Polyelectrolyte

monovalent
50 mM
f = 0.05 

~ 8 folds

Folds & Condensed Counterions

Large & Short length scales
Folds ~ persistence length segments

net repulsive
Wrinkles: 

short length scale structure
entropy & counterion-monomer wrapping

stretched at large f
the dominate source of the logarithmic scaling
power law bond-bond yield logarithmic scaling (Toan & Thirumalai)
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Structure Factor: force dependence

Divalent
2 mM

0.94 0.70 0.59
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fc & Lc scaling: Divalent

fc ~ cs
0.66

Lc ~ cs
0.18
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Screened Coulomb Simulations

Most of monovalent data is in logarithmic 

regime.

To do better at low f (and large N), 

go to screened Coulomb potential

Only monomers present in system.

Much much faster.

Good approximation at 200 mM

Worsens as cs decreases.

Not even attempted for divalent.
200 mM monovalent
f = 0.20 

u r   qiq j

e
rij

rij
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Structure:Force:Extension

monovalent
20 mM
50 mM
100 mM
200 mM

divalent
0.2 mM
0.5 mM
1.0 mM
2.0 mM
10 mM
20 mM
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Structure Factor: scaling exponents

high k: 
h constant as f → 0
flB/kT >0 rises close to 1

low k:
l increases from low f
~identical for salt
= 1 at large f
h rises once  l ~ 0.90

dependence on force

f = 0

salt dependence 
 decreases with cs

valence dependence
 smaller for z = 2

monovalent
20 mM
50 mM
100 mM
200 mM

divalent
0.2 mM
0.5 mM
1.0 mM
2.0 mM
10 mM
20 mM
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Bond-bond correlation function

ln
[

(
)]

x
f

A

C

B

x

! 2

! 1

0

0 200 400

Nguyen and Shklovskii (2002)
N = 512 @ LD = 50 lB

Carrillo and Dobrynin (2011)
N = 300, f=1, K=0

Lp

▲ N=200 MD data
■ N=5000 MC data

cb j   bi bi j ~ exp
j

Lp











Not a WLC

power law
decay
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Crossover regime

electrostatic blob size 
ξ= l0

2/3(a/lB)2/3 ≅ 1 

g,q

q2


 kT

neutral   
charged


