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Application: Additive Manufacturing “{.A

« Additive manufacturing (AM) is a 3-D
printing process which has great potential
to save fime and money

* The “process-properties-performance’” for
AM needs to be well established for high
quality parts

« Sandia helped develop two additive
manufacturing tfechniques in the 1990s

o Robocasting (a ceramic slurry is forced
through a pressurized needle to create @
part that is then hardened in a furnace)

o Laser Engineered Net Shaping (LENS), in
which complex metal parts are printed from
powders




« Computational modeling for
Sandia’'s Laser Engineered Net
Shaping™ (LENS®) technique

« Complicated physics to simulate
include:

o Melting/solidification of metal (i.e.
phase transitions)

o moving interfaces

1
<
<<

\.‘ 2 W
Sandia’s Optomec LENS machine

A new LENS machine was installed
at Sandia/California’s open campus

- 80 additive manufacturing (AM)-
related research projects at Sandiq,
much interdisciplinary work

(LENS®) technique



Functionality required to solve the melt problem (.i!

1. Solving systems of equations in the solid, liquid and air regions with
moving boundaries

2. Solving the phase transition problem

3. Tracking the liquid/air interface
Laser heat source

Air
3. Interfacial
dynamics

IqUId 2. Phase
tfransition

1. Interior solution -
Solid



Mesh-based versus Mesh-free (.!‘

e Mesh-based

o Advantages

- Can design mesh to minimize discretization
errors

- Clear theories regarding mesh convergence
and numerical errors

o Challenges

- Difficult to account for large topological
changes

- Retaining high-quality elements as mesh
deforms

CDFEM of Laser Weld, D. Noble

bt MeSh_free 2003

o Advantages

- Capable of tracking large deformations

- Straightforward to model free-surface effects
o Challenges

- Limited error analysis

- Difficulty maintaining high-order quadrature
through flow

SPH of melting ice, Iwasaki et al., 2010
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Reproducing Kernel Partficle Method (RKPM) (.!I
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Reproducing Kernel Partficle Method (RKPM) (.!I

Ni(x,y) = C(X — X1,y — yr)wa(x — x5, ¥y — y1)AV]

« The nodal volume is a parameter than can be
determined by a voronoi tesselation

- Creating a voronoi diagram from a set of points can be
an expensive computation (especially if it needs to be
re-computed as the nodes move in time)

« RKPM choices

- point collocation (requires higher order shape functions
and voronoi tesselation)

- Gaussian quadrature (lower order shape functions,
background mesh)

. S’rr_es? points between nodes can be used as quadrature
points




Derivative Free RKPM (.!i

- Differential Reproducing Kernel (DRK) interpolation-based
collocation method avoids taking derivatives of the shape function

explicitly

« Construct a set of differential reproducing conditions fo defermine
the shape functions of derivatives of the DRK interpolation function,
without directly differentiating the DRK interpolation function

NP 9 NP
u(x) = Z(Pi (x)i;. AND ua;x) = ;qﬁ,(x)(x)ftl
d1(x) = wa(x — x;) PT (x —x;) b(x)

b(x) = A‘l(x) P(0) Ax) = ?Zl Px —x)wq(x — xl)PT (x —x;).

Yung-Ming Wang, Syuan-Mu Chen, and Chih-Ping Wu, “A meshless collocation method based on the
differential reproducing kernel interpolation,” Comput Mech (2010) 45:585-606.




Particle Arangement is a Significant Error Source @)

Fully Random Fully Ordered
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Parficle Arrangement is Improved Through I.‘
MD—Inseired Minimization ‘“

Particle disorganization is a primary source of error in particle
methods

We move (interior) particles in order to minimize this error
Lennard-Jones potential is used for the error surrogate (repulsive
short range/attractive long range)
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Parficle Arrangement is Improved Through I.‘
MD—Inseired Minimization ‘“
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Solution Improves with More Ordered
Parficle Arangement

B

50 Iterations: Error = 0.104

Initial Configuration: Error = 0.317
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Minimized Particle Configuration Varies ch."
Different Surrogates ‘“

Leonard-Jones Centro-symmeiry
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Particle configuration can be updated based '.u
on moving interface ‘,a
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« A molecular dynamics-inspired error minimization
technique is used here to adjust the interior particles

(0's) based on the interfacial particles (x’s)



Functionality required to solve the melt problem (.!I

1. Solving systems of equations in the solid, liquid and air regions with
moving boundaries

2. Solving the phase transition problem

3. Tracking the liquid/air interface
Laser heat source

Air
3. Interfacial
dynamics

IqUId 2. Phase
fransition

1. Interior solution -
Solid

15
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Solving melting/solidification problems “;;_'.A

« One could solve the heat equation Cold
for a solidifying liquid and melting
solid as one confinuous domain with
variable coefficients

 The interface can be defined

implicitly at the melt temperature Hot

Hot

e Alternatively, one can define the
interface explicitly and solve for the
interfacial velocity using the Stefan

condition: Hot
1, =c,1,, 0X 8T OT
I —a,T. | |Plar = ey leotia ~ Figy iguia




Solving melting/solidification problems (

Particle interface Group change from
tracking state liquid to solid

Hot ’ Melting
liquid oid @O @@

In|t|al Temperature 8X 6T (9T —
5004

" psL—— = ks |sotid — k15— ltiquia |

480 | | ] at (9:13 3:(3
460 | ] - @ ® 6 6 ¢ o o o oo
0 od ©o o 0o 0o 0 0 0 oo
420 + . =
400 | | - @ O 6 6 ¢ o o o o0
=05 0.2 0.4 0.6 0.8 1




Analytic Solution for Stefan Problem and '."

convergence study A\
X
erf ( > t)
o
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for the interfacial velocity

« Convergentin time (15" order
BE) and space (2" order) for
the heat equation solution
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Functionality required to solve the melt problem (.!I

1. Solving systems of equations in the solid, liquid and air regions with
moving boundaries

2. Solving the phase transition problem

3. Tracking the liquid/air interface
Laser heat source

Air
3. Interfacial
dynamics

IqUId 2. Phase
transition

1. Interior solution -
Solid
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Interface Method Options (.!I

* Inferface capturing (Eulerian, e.q. level set methods)
v Natural merging and pinch-off
v Normal vector and curvature calculations
X Mass conservation problems
x Limited by grid size

* Interface tracking (Lagrangian particle methods)
v Conservative by design
v Excellent at resolving fine scale dynamics
x No connectivity/difficult to define normal vector/curvature
x Needs reseeding under distorted velocity conditions

12
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vel set (signed distance

)

method

x,t) >0 for xe€q
x,t) <0 for x¢&

« 5thorder HJ-WENO

scheme for the
gradient operator
2nd order TVD RK for
the time derivative

N

Re-initialization equation
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Hybrid particle-level set method ( !I

» Particles are placed near the intferface and inifialized with a
sign and distance from the interface

« This information is used to update the level set field

¢

X
Pp(X) = sp(1p £ [Xx — %))
¢+ (X) — MaXpcp+ (¢p7 ¢) ®
¢_ (X) — mianE_ (¢p7 ¢)
_Jot(x) it ot (x)] < o7 (%)
Px) = { 5(x) it |6t > |6~ ()

D. Enright, R. Fedkiw, J. Ferziger, I. Mitchell, A hybrid particle level set method for \

improved interface capturing, Journal of Computational Physics 183 (1) (2002) 83-116.
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Interpolative Particle Level Set Method (.!‘

« Particles are placed near the interface and intialized with a signed distance
from the interface (equivalent to the level set value)

» Particles are used as a form of Lagrangian refinement around the interface

« We use (bi/tri) linear interpolation to
update the ‘coarse’ level set field on the
grid using the 'fine’ level set field at 4 4

particle locations o
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Erickson, Morris, Poliakoff, Templeton, “An interpolative particle level set method,” in preparation.




Particle Level Set Method! versus Interpolative PLS2 43¢ 74

Original Method Interpolation Method
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1 Enright, Fedkiw, Ferziger, Mitchell, “A hybrid particle level set method for improved intertace capturing,” J. Comp. Phys. (2002).
2 Erickson, Morris, Poliakoff, Templeton, “An interpolative particle level set method,” in preparation. »



Slotted disk test tor numerical diffusion (rigid '.u
body rotation) ‘,a
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Test for the method's -
ability to resolve sharp |
corners. (80 x 80 grid)

Interpolative PLS
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Slotted disk grid refinement study results (.i!

Grid size 40x40 80x80 160x160
Initial LS Volume | 0.0623 0.0630 0.0632
Level Set Method | 0.000  0.0451 0.0482
Particle Level Set | 0.0680 0.0638 0.0509

Corrected PLS | 0. : 40
Interpolative PLS 0.0625 0.0633 0.0631
—~——_ — (a) Level set method (b) PLS

Time step | 0.01 _ 0.005 00025 0.00125
LS | 00270 00346 00415 0.0451
PLS | 00337 0.0482 0.0753 0.0638
CPLS | 0.0684 0.066+—0-0651 00645
IPLS 0.0634 0.0633 0.0633 0.0633>

—

(c) Corrected PLS (d) IPLS

Initial volume versus volume after a full rotation for three different levels of grid
refinement. For both particle methods we use 5000 particles. The initial volumes
are listed in this table, since this is a function of spatial discretization. The
analytic volume of the slofted disk i
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Circle in a vortex flow fest for resolving thin 'u

flaments (shearing)
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Level set method cle level set method
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Test for the method's
ability to resolve thin &
filaments. (80 x 80 grid) -
Interpolative PLS is :
better able to capture :
the interface below the - Interpolative PLS
grid resolution :
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3D Slotted disk: Level set versus IPLS (.!I

Level set method _ Interpolative PLS

Test for the method's ability to limit the effects of numerical diffusion
(100 x 100 x 100 grid)

28



3D vortex flow: Level set versus IPLS (.‘!

Level set method Interpolative PLS

Test for the method's ability to resolve thin filaments(100 x 100 x 100
grid)
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Our mesh-free software package: Moab ( !I

* Neighbor search and volume calculations: voronoi tesselation
sofftware (Voro++)
o C++ software library for cell-based calculations
o solve for cell volumes and stress point locations
o hearest neighbor lists
o has been successfully employed on very large particle systems

* Uses Trilinos (open source libraries developed at Sandia) packages for
linear solvers and domain decomposition for parallel computations
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