INL/CON-17-40867-Revision-2

A fully coupled two-level
Schwarz preconditioner
based on smoothed
aggregation for the
transient multigroup
neutron diffusion
equations

Fande Kong, Yaqgi Wang, Cody J
Permann, Sebastian Schunert, John W
Peterson, David Andrs, Richard C

Martineau

. May 2018
The INL is a U.S. Department of Energy National Laboratory
operated by Battelle Energy Alliance

ldaho National
Laboratory

INL/CON-17-40867-Revision-2

A fully coupled two-level Schwarz preconditioner
based on smoothed aggregation for the transient
multigroup neutron diffusion equations

Fande Kong, Yaqi Wang, Cody J Permann, Sebastian Schunert, John W
Peterson, David Andrs, Richard C Martineau

May 2018

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

Article Type

A fully coupled two-level Schwarz preconditioner based on
smoothed aggregation for the transient multigroup neutron

diffusion equations

Fande Kong*,! Yaqi Wang,? Sebastian Schunert,? John W. Peterson,! Cody
J. Permann,! David Andrs,! and Richard C. Martineau!

I Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840, USA
? Nuclear Engineering Methods Development, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA

Correspondence: *Fande Kong, Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho
Falls, ID 83415, USA. Email: fande.kong@inl.gov; fdkong.jd@gmail.com

Received 26 April 2016; Revised 6 June 2016; Accepted 6 June 2016

Summary

The multigroup neutron diffusion equations (an approximation of the neutron transport equation) are widely used
for studying the motion of neutrons and their interactions with stationary background materials. Solving the
multigroup neutron diffusion equations is challenging because the unknowns are tightly coupled through scattering
and fission events, and solutions with high spatial resolution of full reactor cores in multiphysics environments are
frequently required. In this paper, we focus on the development of a scalable, parallel preconditioner for solving the
system of equations arising from the finite element discretization of the multigroup neutron diffusion equations in
space and an implicit finite difference scheme in time. The parallel preconditioner (here referred to as the “fully
coupled Schwarz preconditioner”) is constructed by monolithically applying the overlapping domain decomposition
method together with a smoothed aggregation-based coarse space to the coupled system. Our approach is different
from the traditional block Gauss-Seidel sweep method that applies the preconditioner from the fast group to the

thermal group sequentially, and we demonstrate that it provides significant improvements in terms of both the

number of iterations required and the total compute time for a system of equations with millions of unknowns on a
large supercomputer.

Keywords: parallel processing, two-level Schwarz preconditioner, multigroup neutron diffusion equations, Newton-Krylov-

Schwarz, smoothed aggregation, coarse space, finite element method

1 Introduction

The accurate prediction of the (angular or scalar) neutron flux is essential to the design of nuclear reactors and for
their safe and economic operation® 19, The angular neutron flux is a quantity corresponding to the product of the
neutron speed and the neutron density, and is defined in a seven-dimensional phase space (3D space, 1D time, 2D
direction of motion, and 1D energy). The linear Boltzmann equation or the radiation transport equation is used to
describe the angular neutron flux distribution. Because the neutron energy spans ten orders of magnitude ranging from
0.001 eV to 20 MeV in a typical nuclear reactor, the computing resources required for performing multi-dimensional
transport calculations with continuous or point-wise energy resolution is prohibitive for any real application®.

Instead, the multigroup approximation is typically applied, where continuous-energy cross sections, used to char-
acterize the probability per unit path length for a nuclear reaction to occur, are collapsed for a selected set of energy
ranges (also referred to as energy groups). The multigroup cross sections are produced by integrating the energy
dependent cross sections and the neutron energy spectrum over the extent of an energy group. The spectra are
typically obtained from a separate lattice calculation.

In the present work, the multigroup cross sections are taken to be given parameters. The multigroup approximation
to the transport equation (referred to as “multigroup neutron transport equations”) is still prohibitively expensive for
a full-core nuclear reactor simulation, and is further simplified to the multigroup diffusion equations by introducing
a scalar flux variable, which is defined as the integral of the angular neutron fluxes over all the directions of motion.
The multigroup neutron diffusion equations are well suited to modeling nuclear reactor cores with significant spatial
homogenization, and are much less expensive to solve than the neutron transport equation® 19 However, as we
stated earlier, it is still challenging to solve the multigroup neutron diffusion equations in certain applications.

Fast, computationally efficient solvers of the multigroup neutron diffusion equations require scalable, parallel
algorithms which take advantage of the capabilities of modern supercomputers. In this paper, we propose a solver
consisting of an inexact Jacobian-free Newton method“4 for the system of nonlinear equations, and a Krylov subspace
method?? for the solution of the Jacobian system, using a Schwarz preconditioner to improve convergence.

Over the past few decades, there have been many research articles on the various computational approaches to

27,132

numerical simulation of the neutron diffusion equations. Both finite elemen . and finite difference® methods

have been used successfully for the spatial discretization, typically in conjunction with the power iteration for com-
puting the eigenvalue. A comparison between high order finite element methods and the finite difference method is
described in2. Parallel algorithms based on the preconditioned BiCGStab solver were developed in”® for the transient
multigroup neutron diffusion equations based on a finite volume discretization in space, and a combined Crank-
Nicholson/BDF2 discretization in time, and the resulting algorithm was shown to scale to 12 processors. Regardless
of the discretization method, the most computationally expensive part of the simulation is solving large, often ill-
conditioned, linear systems repeatedly. We propose a fully coupled overlapping domain decomposition method for
the large linear system in this paper.

Domain decomposition methods have been receiving increased attention in the nuclear engineering community
due to their ability to solve large systems of equations in parallel. In® a non-overlapping domain decomposition
method based on Lagrange multipliers is applied to the simplified transport equations. In™ a non-overlapping
Schwarz method is studied for the one-speed neutron diffusion equation, and the Robin interface condition is used
to exchange data across subdomains. A hierarchical domain decomposition together with the boundary element

2l 3l 5 Schwarz and substructuring

method is employed for the neutron diffusion equations on the multiregions in
based Schur complement method is studied for the neutron diffusion equations, and the domain decomposition based
preconditioners are shown to work better than those based on an incomplete LU factorization.

Most published works apply the domain decomposition method to the single-group diffusion equation obtained by

9 Bl an inverse power iteration is employed to solve

decoupling the multigroup diffusion equations. For example, in’
the k-eigenvalue problems, and during each power iteration, a Gauss-Seidel iteration is used to sweep through groups
from the fast group to the thermal group. In this case, the domain decomposition based preconditioner is applied
to each group separately. This decoupled application of the preconditioner can degrade the overall efficiency of the
algorithm in certain applications.

In this paper, we propose a fully coupled Schwarz preconditioner for the multigroup neutron diffusion equations.
To further improve the parallel performance for large-scale problems, a coarse space based on smoothed aggregation
is introduced to construct a two-level method. Compared with the one-level method, the two-level version performs
better in terms of the compute time and the number of linear iterations required. Note that the eigenvalue and
the transient problems are solved using the same algorithm framework, namely, Newton-Krylov-Schwarz. The fully
coupled Schwarz serves as the preconditioner of the linear solvers for both the eigenvalue and the transient problems.
We also note that the fully coupled Schwarz preconditioner has been successfully applied to elasticityt® and fluid-

17, [18

structure interaction problems. Here, we extend and adapt the algorithm to the transient multigroup neutron

diffusion equations.

The remainder of this paper is organized as follows. In Section [2] we present the multigroup neutron diffusion
equations and their spatial and temporal discretizations. In Section [3] we discuss a parallel algorithm for solving the
discretized nonlinear equations (and associated nonlinear eigenvalue system), and the corresponding preconditioned
Krylov subspace method. We report on the parallel performance of the proposed algorithm in Section [d] and finally

conclusions are drawn in Section [l

2 Multigroup neutron diffusion equations

As mentioned previously, the multigroup neutron diffusion equations are used to study the motion of particles and

their interactions with stationary background materials® 12, Denoting the scalar neutron flux of energy group g by

®, [em~2s7], the multigroup neutron diffusion equations are

9 <(I’g> VDV, + 5, b, =

Ot \ vy
G G I
Qg0 + Z Esg—9Pg + (1= B)xp,g Z RN P ZXd,i,g)‘iCi

g'=1 g'=1 i=1
9'#9
G

oC;

ot = 61 Z Z/Zf,g/‘l)gl -)\16'Z

g'=1

D, =0) att=0

G 0
B Vg Y

C Y

att =20

CI)g = (I)g,d in Fd

—D,®,-n=J,, inl,=00\Ty,

where, unless otherwise noted, the equations apply on the entire spatial domain €2, I is the number of delayed neutron
precursor groups (6 in this paper), G is the number of energy groups (11 in this paper), vy [cm s~!] is the group
averaged neutron speed (that is, the neutron speed averaged for all neutrons over the group g, indicating how fast
on average the neutrons of the gth group move), D, [cm)] is the diffusion coefficient, ¥, , [em™!] is the macroscopic
removal cross section, Q4,0 [cm™3s7!] is the external source, ¥, o/, [cm™!| denotes the macroscopic scattering cross
section from group ¢’ to group g, 3; is the delayed neutron fraction, 8 = Zle 0; is the total delayed neutron fraction,
Xp,g is the prompt fission spectrum, v is the average number of neutrons emitted per fission, Xy, [em~1] is the
macroscopic fission cross section, \; [s7!] is the decay constant, Xd,i,g is the delayed fission spectrum, and C; [em ™3]
is the concentration of delayed neutron precursors. ®, 4 [cm~2?s7!] is the given scalar flux on Dirichlet boundary ',

and J, , [em~2s7!] is the net current on Neumann boundary T',,.

The set of equations represents the neutron balance for all energy groups. In the first equation of , the first
term on the left hand side represents the rate of change of neutron population in the group g, the second term is the
leakage rate due to diffusion (referred to as the “diffusion term") and the third is the neutron removal by collision
(“removal term”). The second term on the right hand side represents the neutrons transferred via scattering into
group g from other groups (“scattering term”); this term couples the fluxes of all groups together. The third term of
the right hand side is the fission neutron production rate, and the fourth term represents the number of the neutrons
from the delayed neutron precursors (DNP). Most neutrons born from fission reactions appear instantaneously, but a
fraction appear delayed as the decay products of fission product nuclides, and are referred to as neutron precursors.

To simulate the transient behavior of nuclear reactors, it is essential to track neutron precursor concentrations.
Neutron precursors are separated into groups by their decay constants, and these constants govern their dynamic
behavior. The fission, scattering, and removal cross sections and the diffusion coeflicient D, depend, in a complicated
way, on the temperature within a multiphysics environment. For real applications, the explicit form of this dependence
is not, available, and we resort to interpolating the cross section values using pre-generated tabulated data.

More precisely, in this work, a few pairs (Z.(.]:),T(j)) are provided during multigroup cross section generations,

and for a given temperature T', the cross sections are calculated using a linear interpolation with @) and £UY if

TU) < T < TU+D | The temperature T is obtained by solving the following differential equation:

G

or

Per o = Z KEfg Py, (2)
g/

where ¢, [J g 'K~1] is the heat capacity, which, for the nuclear fuel, depends on the temperature according to

cp = —5.8219 x 107197 — 4.3694 x 10~ "T?

+2.8369 x 10737 — 1.009 x 1072, (3)

The material density is p [gem™3], and & [J] is the energy released per fission. The right hand side of is also
referred to as the “power density”, ppower [Wem™3|. In Equation , we assume that the transient is so fast (on the

order of a few seconds) that the heat generated from fission does not have time to diffuse away.

In Equation , <I>2 is the initial condition that is obtained by solving the generalized eigenvalue problem:

1
—V - DgVO) 4+ 5,09 = > " %, g, @) + X > vs§ e, (4)
9'#g g’

Figure 1: Computational domain for the eigenvalue problem and the transient problem. Left: computational domain
for the generalized eigenvalue problem, right: computational domain for the transient problem. The red cube is the
nuclear fuel; the gray part is graphite.

where xg = (1 — B)xp,g + Zle BiXd,i,g is the average spectrum. Here k is typically used to adjust the fission cross
sections, ¥f 4 =1/ kZO, g» for the transient Equation so that the loss and production of neutrons in the system is
balanced.

We call the maximum k& (corresponding to the smallest eigenvalue of) and its corresponding eigenvector the
“fundamental mode” of the generalized eigenvalue problem. k is also referred to as the system’s multiplication factor.
Equation @) is defined on the same computational domain as Equation , and we ignore the temperature dependence
by assuming the power is low. The transient is initiated by substituting a block of graphite with fuel as indicated in
Fig. [[] This is used to mimic the generation of a transient by pulling out a control-rod in the nuclear reactor.

To discretize and @ in space, a hexahedral mesh 2, is generated for the computational domain €2, and the
standard Galerkin finite element method is employed. The corresponding semi-discrete systems of equations for (1)

are written as

WO Ny w(0) + Nyelelt) + F)
9 Ny e + Neclet) ©)

where y(t) = {y1,92, ...,y } is a vector of nodal values of {®q, ®o, ..., P} at time ¢, and N, (y(t)) corresponds to
all the terms of the first equation of except the time derivative, the DNP terms and the external source term. F'
is the external source term, and Ny.(c(t)) is the DNP term coupling the variables ¢(t) and y(t). c(t) = {c1,c2, ..., 1}

is the discrete version of {Cy,Cs,..,Cr} that is a function of the scalar fluxes, y(t), satisfying the second equation

of . N., couples y(t) and c(t), and corresponds to the first term on the right hand side of the second equation

of (I, while Nec(c(t)) corresponds to the second term on the right hand side.

The Crank-Nicolson method is used to discretize in time, resulting in

ot

ot
Myn-H - E(Nyy(yn+1) + Nyc(cn-H) + Fn-‘rl) = Myn + E(Nyy(yn) =+ NyC(cn) + Fn)a (7)

where y,,41 is the solution at time step n+ 1, and ¢ is the time step size. F, 41 is the external source at the (n+ 1)st
step and M is the mass matrix. In order to compute ¢, 1, the second equation of is dicretized by backward

Euler in time,

Cnt1 = 5t(Ncy(yn+1) + Ncc(cn-‘rl)) + Cp, (8)

where ¢,,41 is the solution at the (n + 1)st time step. With a given initial concentration as in , Cp41 is computed

using for a given y,,,; by inverting the diagonal matrix N... To save memory while solving the coupled system

defined by and , the variable ¢,,41 is eliminated from by rewriting as
Cnit = (I = 8tNe) (5t Ny (g 1) + ca). (9)

Since (I — 0tN,.) is a diagonal matrix, the computation of the inverse matrix is straightforward and inexpensive.
Therefore, we substitute @D into @, and the resulting system is a nonlinear system of equations with scalar fluxes,
Yn11, as its independent variables.

We also do a similar elimination for the temperature equation. The temperature equation is different from the
delayed neutron precursor equation in two respects. First, Equation is a nonlinear differential equation because
both ¢, (heat capacity) and the fission cross sections ¥, depend on the temperature T'. Second, the updated tem-

perature will be used to evaluate the cross sections, thereby making the system nonlinear. Using the Trapezoidal

rule, equation is discretized as:
n+1 n+1 n at
pep(T"T)(IT = T") = 5 Nry(Yn i1 + Yn) (10)

where Nt corresponds to the right hand side of . The system of nonlinear equations is solved by a local
Newton iteration at each quadrature point. No communication is involved in this local Newton solve because only

local data is required, and since there is only one unknown per Newton solve, no linear solver is required. We refer

- thermal cut-off

w4

down-scattering up-scatterin

Figure 2: Pattern of neutron scattering matrix.

to this Newton iteration as “local” to distinguish it from the global Newton iteration (to be introduced in the next

section) that is used for solving the nonlinear equation .

For simplicity, we rewrite as

F(y) =0, (11)

ignoring the n+ 1 subscript. Equation is solved by a Jacobian-free Newton method as inl?. We note that is
nonlinear because of the temperature feedback . If we do not consider the temperature feedback, Equation (|11))
is linear. The parallel algorithm we develop here is general enough to be applicable for both nonlinear and linear
problems.

The corresponding Jacobian system for the nonlinear system is difficult to compute because

1. The group variables are coupled through scattering, as shown in Fig. 2] and fission events. The fission cross
sections in the nuclear fuel are non-zero for all energy groups and therefore couple together all the group

variables (although fission neutrons are mainly present in the fast energy groups).

2. The material coefficients (including the cross sections and the diffusion coefficients) in Equation , shown in

Tables 8] in the Appendix, are discontinuous across the graphite/nuclear fuel interface.
3. If temperature feedback is considered, then the fluxes depend on the temperature and vice-versa.

To solve the nonlinear system ([11), an accurate representation of the Jacobian matrix is required to compute the
Newton descent direction, otherwise the solver will require a suboptimal number of Newton iterations, or possibly
diverge. To overcome this difficulty, we employ the Jacobian-free version of Newton’s method that approximates the

action of the Jacobian using finite differences. The method is described in detail in the next section.

3 Scalable parallel algorithm framework

There are two systems of equations to be solved: the generalized eigenvalue problem and the system of nonlinear
equations . We first present a parallel eigenvalue solver for computing the fundamental mode. The eigenvalue
solver is further accelerated by converting the eigenvalue system to a system of nonlinear equations. Finally, we

describe a fully coupled nonlinear solver together with a parallel preconditioner.

3.1 Eigenvalue solver

The generalized eigenvalue problem takes the following form after spatial discretization:

1
Ay, = EBym (12)

where B corresponds to the fission in , and A represents the other terms. We remark that is a linear eigenvalue
problem in the present work, but it is a system of nonlinear equations if we insert k = || By,|| into , and therefore
our solver is designed with both scenarios in mind.

The simplest algorithm for computing the smallest eigenvalue is the inverse power iteration®. The inverse power
iteration works well for problems in which the ratio between the smallest and second smallest eigenvalues is much

smaller than 1, otherwise it may converge very slowly. An improved algorithm based on Newton’s method is used in

such a case®. More precisely, the eigenvalue problem is reformulated as a nonlinear problem

1
Ayy = ——By,. (13)
T
where k = ||By,||. An inexact Newton method (to be described in next section) is employed to solve Equation (13)).

Newton’s method converges quadratically if the initial guess is sufficiently close to the solution. An effective way to

compute an initial guess for is to apply a few inverse power iterations.

3.2 Newton-Krylov-Schwarz

We next describe a parallel algorithm framework for solving and , followed by a coarse space to improve
convergence and scalability. A Jacobian-free Newton method? is used for solving the nonlinear system and .
During each Newton iteration, the Jacobian system is computed using a Krylov subspace method?3, e.g. GMRES22,
together with a Schwarz preconditioner to be described shortly. More precisely, the solution at the current Newton

step, y*t1) is updated by adding a Newton descent direction dy*) to the previous Newton step solution y*), that

10

is,

YD =) | o R 5y (). (14)

where a®) is a linesearch step size calculated using a backtracking method, and dy*) is obtained by approximately

solving the Jacobian system,

Ty oy = — F(y®), (15)

where F(y*)) is the nonlinear function residual evaluated at y*), and 7 (y™*)) is the Jacobian matrix evaluated at

y®) | although it is not explicitly formed. The action of J(y*)) on a vector = is computed via finite differences as

(®) _ F(y®
Ty®)yr ~ LW +v:) Fy®) (16)

where + is a small parameter. To speed up the convergence of the Krylov subspace method used in solving , we
construct a Schwarz preconditioner based on the matrix By, ~ J(y®)). We neglect the derivatives of the material
coeflicients with respect to the fluxes when computing Bj,, because their analytical forms are not available. As stated
earlier, the material coefficients depend on the temperature through interpolation of the tabulated data, and the
temperature is a nonlinear function of the fluxes. Neglecting the derivatives greatly simplifies the computation of By,

while still retaining the operator’s effectiveness as a preconditioner.

The right-preconditioned Jacobian system is defined as

JB; 'Bpoy = —F (17)

where we ignore the superscript & and arguments for 7, dy and F to simplify the notation. The preconditioning
procedure is accomplished via two substeps. First, J B;lr = — F is solved for r using GMRES together with one
preconditioner application per GMRES iteration, and then Bpdy = = is solved for dy via one application of the
preconditioner. We will next discuss the construction of the preconditioner.

We consider two approaches to constructing the preconditioner for the multigroup neutron diffusion equations.
The first approach, the block Gauss-Seidel algorithm, involves solving Equation in a group-by-group manner.

Let us consider one application of the preconditioner for the equation Bpdy = 7. In group-by-group notation, this

11

equation is given by:

Bpi1 Bui2 Bras ... Bhaic 7 1
B o1 Bhoe Bhros ... Bhac 0y 9
B 31 Bns2 Brss ... Bhsc oys | = |73 | (18)
Bh,g1 Bu,g2 Bras - Bhea | | dya e

where By, g4 represents a submatrix of By, coupling groups g and ¢’, 0y, is a subvector of dy for the group g, and r,
is a subvector of r corresponding to the group g. The block Gauss-Seidel algorithm is carried out with dy = 0, and
solve the first group equation for dy;, then substitute it into the right hand side of the second group equation, solve
for dys, etc. for the remaining groups.

The block Gauss-Seidel algorithm was traditionally preferred because the individual subproblems are small and
can be solved on limited memory computers. In contrast, on large supercomputers, in our numerical results it
appears better to solve for all of the group fluxes simultaneously by employing a scalable, parallel preconditioner.
The preconditioner must be designed in such a way that the computational load remains well-balanced and the cost
and amount of inter-processor communication is minimized.

In the present work, we construct the preconditioner B, ! based on a fully coupled overlapping domain decom-
position method. The basic idea of the overlapping domain decomposition method® 2228 29 is to partition the
computational domain (mesh) €, into n, subdomains €}, ;, and then each subdomain is extended to overlap with
its neighbors by a number of layers we denote by . This extension is accomplished without using information from
the mesh. Instead, a graph derived from the sparsity pattern of the preconditioning matrix B}, is employed.

We now briefly describe the fully coupled DDM. We define the block index set S, = {S},S2,S3, coy Spmede}
corresponding to the global degree of freedom indices, where the S}; represent sets of variable indices associated with
mesh node 4, and npede is the number of total mesh nodes. Sy, is distributed across n,, processors by dividing it into
subsets S;,i = 1,2,...,n, such that S, = U2, S,;, S;NS; =) when i # j.

The block structure of S, is taken into account when S}, is distributed so that each block S} is owned by a single
processor. It is advantageous to preserve the tightly coupled block structure during partitioning since the physics are
naturally coupled together in the same manner. S; is extended to overlap with its neighbors by § layers, where each
block is treated as a single unknown, and the corresponding overlapping subset is denoted as Sf . The same idea is
applied to the construction of the subdomain vector rfm and the restriction operator Rfm. Here, the operator wa-

is used to extract the corresponding components for riﬂv from a global vector r,. The submatrix B;sw is extracted

12

from its global counterpart using Rz’i as well, that is,

B =R),Br(R))", i=12,..mn,.

Based on these components, a fully coupled restricted additive Schwarz (RAS) preconditioner is given by

np

Bo_nle = Z(R?L,i)T(Bg,i)_lRi,iﬂ (19)
i=1

where R%d returns the subvectors defined on the non-overlapping subdomains, and (B;Smi)~! represents a subdomain
solver, which is an incomplete LU (ILU) factorization in this work. The ILU factorization can employ a specific
submatrix reordering scheme (e.g. nested dissection (ND), one-way dissection (1WD), quotient minimum degree
(QMD), and reverse Cuthill-McKee (RCM)23). Sometimes the reordering schemes improve the performance of the
algorithm. (Rg,i)T discards the overlapping part of the solution to reduce communication and improve the convergence

of the algorithm.
The performance of the one-level method can be further improved by introducing a coarse space to construct a
two-level method. Let us denote the coarse space as Sy, and a prolongation operator from the coarse space to the

fine space as PI’L}. The transpose of the prolongation operator, (PI’_})T, is used as the restriction operator from the fine

—1
two?

space to the coarse space. By represents a matrix defined on the coarse space Sg. We denote the two-level Schwarz

preconditioner as B and its action on a vector is implemented via Algorithm |1} that is,

5yy, = Bl rh. (20)

two

At line 4 of Algorithm B;,l represents a coarse solver that is another restricted Schwarz with ILU as the subdomain

L for the two-level method.

solver in this work. B,:l is B;,L when using the one-level method, and it is By,

one

-1

Algorithm 1 Two-level Schwarz preconditioner Bi,.

Input a residual from the outer solver rj
Solve 5y§11/3) = B, Lry,

Compute rg = (P)T (r), — Bhéyg/B))
Solve 5y512/3) = 5y§ll/3) + P}LIBI?TH
Compute 7, = r; — Bhéyf/g)
Solve 6y, = 6y** + By L7,
Return dy,

13

We mention that a parallel RAS with ILU as the subdomain solver is chosen as the block solver of the block
Gauss-Seidel method. In Guass-Seidel, the parallel RAS is applied group-by-group, and it is different from its fully

coupled version where all the group fluxes are computed simultaneously.

3.3 Smoothed aggregation based Schwarz coarse space

The coarse space Sy plays a critical role, and the algorithm performs poorly if a bad coarse space is used. We use
the smoothed aggregation (SA) method, as discussed in®BY to construct the coarse operator By for Algorithm
The basic idea of SA is to decompose the entire graph into a number of disjoint aggregates, where each aggregate

corresponds to an unknown on the coarse space. The coarse operator By is computed using the Galerkin method,

By = (PI)T By, Pp.

More precisely, a graph, denoted as G = {v;, e;;}, is constructed based on the numerical values of By, such that an
edge e;; between the unknowns v; and v; is formed if |(Bp)i;| > w+/|(Bn)iil|(Br)j;|- Here w € [0,1) is a parameter
which controls which values are dropped; smaller values of w correspond to more connections being kept. We apply a
maximum independent set (MIS) algorithm to partition G into a number of aggregates, {V;}, such that V; N'V; = 0,
1 # j, and UV; = M, where M is the set of all nodes in G. The aggregate, V;, collapses to form a coarse space node
i. The dimension of {V;} might not be small enough after applying MIS, so a post-processing procedure, as suggested
in' may be carried out. This procedure tries to merge small aggregates together if they are strongly connected, in

order to reduce the dimension of the coarse space. An initial prolongation operator]5}} is formed using the aggregates

as follows
N 1 ifieV;,
(Pr)ij = (21)
0 otherwise

The final prolongation P}EI is obtained by improving P}} with a Jacobi smoother, that is,

P}y = (I —n(diag(B)) ™' By) Pfy, (22)

where diag(By) represents the diagonal part of By, and 7 is the smoothing parameter, which is chosen as 1.5,
where 6 is an estimate of the largest eigenvalue of diag(By,)~ By, (interested readers are referred to for more details).
In the next section we will demonstrate, via numerical experiments, that the two-level preconditioner based on the

coarse space and built using the smoothed aggregation approach is more efficient than the one-level method.

14

4 Numerical experiments

In this section, we discuss the performance of the proposed algorithm by simulating a graphite moderated nuclear
reactor. The simulation is carried out on a supercomputer consisting of Intel Xeon E5-2680 v3 CPUs connected by a
low latency InfiniBand network. In the following discussion, the term “NI” refers to the average number of Newton
iterations per time step, “LI” is the average number of GMRES iterations per Newton step, “Time” denotes the total
compute time in seconds, “EFF” is the parallel efficiency with respect to the number of processors, and “n,” is the
number of processors.

ILU(0) and 0 = 1 are used as the default subdomain solver configuration, unless otherwise specified. The relative
stopping condition for the Newton iterations is 10~% and that for the linear solver is 10~2. The spatial and temporal
discretizations are based on Rattlesnake®?, MOOSEM and libMesh’!?, and the nonlinear and linear solvers are
implemented on top of PETSc#. The simulation is carried out with 6t = 1072 s for ¢ € (0,0.1] for the reactor core
as shown in Figs. 3] and [4

The test problem we consider is a simplified version of the TREAT (the Transient Test Reactor at the Idaho

520 which consists of a cubic fuel core surrounded by graphite reflectors

National Laboratory) calibration transient 1
which are 200 and 400 cm across, respectively. Reactivity is increased by adding more fuel to the reactor and
removing some graphite such that the reactor becomes super-critical and starts the transient. The fuel consists of
highly-enriched Uranium particles in a graphite matrix.

TREAT is a “thermal” reactor, which means that the bulk of the fissions are caused by thermal neutrons. The
particular challenge when simulating TREAT is the upscattering of neutrons in the graphite. In upscattering, neutrons
are scattered from lower to higher energies. The Gauss-Seidel sweep moves from faster energies to slower energies and
therefore resolves downscattering, but lags upscattering. The fully coupled approach resolves both downscattering
and upscattering simultaneously.

The initial conditions, generated by solving an eigenvalue problem, are shown in Fig. [3] and the solutions at
t = 0.04 s and 0.06 s for the transient problem are given in Fig. [l We treat the initial solve of the eigenvalue problem

as an extra time step when reporting the number of Newton iterations, GMRES iterations, and compute time. The

cross section and fission rate parameters for and are given in”, and in the Appendix.

4.1 Comparison with Gauss-Seidel sweeps

The Gauss-Seidel sweep algorithm has traditionally been employed as an inner solver within the power iteration, but
it is not suitable for parallel processing since it sweeps through the various groups sequentially. In this section, we

compare the performance of the fully coupled Schwarz preconditioner with that of the Gauss-Seidel sweep. A mesh

15

flux_g6é flux_gl1

g 029005 |E5-255e'°°
“7.721e-6 “3.941e-6
| 5.147e-6 | 2.627e-6
f2-6740-6 1.314e-6
8.53%e-14
4.891e-12

Figure 3: Scalar flux for the 6th (left) and 11th (right) groups for the eigenvalue problem.

flux_gé flux_gé
l; .729e-05 [l .729e-05
E1.307e-5 él 307e-5
| E8.856e-6 58.8569-6
§4.639e-6 E4.639e-6
4.230e-07 4.230e-07
flux_gl1 flux_gl1
Es.szée-oc 18.826e-06
~6.62e-6 :6.62e-6
| 4M13e-6 4.413e-6
--2.207e-6 ;2.207e 6
8.134e-12 8.134e-12

Figure 4: Scalar flux of the 6th (top) and 11th (bottom) groups at ¢ = 0.04 s and 0.06 s.

with 274,625 vertices and 262,144 elements is used, and the corresponding nonlinear system has 3,020,875 unknowns
(11 degrees of freedom per vertex).

In Table[T] we observe that the number of Newton and GMRES iterations remain approximately constant for both
methods as the number of processors increases. The total compute time for the Gauss-Seidel sweep is comparable to
that of the fully coupled RAS when the number of processors is small (48 and 96), but the Gauss-Seidel algorithm
is slower (due to the improved concurrency of the RAS method) when more processors are used: 16% slower on 192
processors and 42% slower on 384. The average number of GMRES iterations required by the Gauss-Seidel sweep is

a little smaller than that of the fully coupled RAS, but it does not compensate for the extra cost incurred by the

sequential application of the preconditioner.

16

Table 1: A comparison between the fully coupled RAS and the Gauss-Seidel sweep. A nonlinear system with 3,020,875
unknowns is solved by the inexact Jacobian-free Newton-Krylov method. The “fully coupled RAS" here is a one-level
fully coupled RAS.

Fully coupled RAS Gauss-Seidel sweep

Ny NI LI Time [s] EFF [%)] NI LI Time [s] EFF [%)]

48 227 33.60 2258.70 100 2.36 27.50 2258.50 100

96 227 33.76 1229.30 92 2.36 28.64 1278.80 88

192 2.27 34.00 645.25 88 2.36 28.12 749.02 75
384 2.27 34.56 372.14 76 2.36 28.08 528.29 53
2500 T - 8 - -
—— linear —— linear
20001 ---- fully coupled RAS | 7 - - fully coupled RAS
0 -+-- Gauss-Seidel sweep 6| -+ - Gauss-Seidel sweep
Q
_g 1500 g 5| -
2 g -]
élOOO &4 IS Sl
8 3|
500+
2t
0 i i i i i i e i i i i i
48 96 192 384 48 96 192 384
Number of processors Number of processors

Figure 5: Total compute time (left) and speedup (right) using fully coupled RAS and Gauss-Seidel sweep. The “fully
coupled RAS" here is a one-level fully coupled RAS

The parallel efficiency of the fully coupled RAS is 76%, while that of the Gauss-Seidel sweep drops to 53% when
we use 384 processors. The total compute time and the corresponding speedup are also shown in Fig. 5} The compute
time and speedup of the fully coupled RAS is always better than that of the Gauss-Seidel sweep in Fig. [5} The
preconditioner consists of two stages; the setup and the application. Both stages are required to be scalable to make
the overall algorithm scalable.

We show the time spent on the preconditioner setup and application in Figs. [f] and [7] for both the fully coupled
RAS and the Gauss-Seidel sweep. In Fig. [6] we see that the setup of the fully coupled RAS is much cheaper than
that of the Gauss-Seidel sweep for all processor counts, and the corresponding speedup is also much better. The fully
coupled RAS is 5 times faster than that of the Gauss-Seidel sweep in terms of the time spent on the preconditioner
setup. In Fig.[7] the application of the fully coupled RAS is 10 times faster than that of the Gauss-Seidel sweep, and

it scales well as the number of processors increases.

4.2 Comparison with HYPRE BoomerAMG

HYPREY is a library of linear solvers and preconditioners, and its “BoomerAMG” preconditioner has been used suc-

cessfully in a wide range of application areas. In this section, we compare our proposed RAS approach to BoomerAMG

17

Figure 6: Compute time (left) and speedup (right) for preconditioner setup. The “fully coupled RAS" here is a
one-level fully coupled RAS

Figure 7: Compute time (left) and speedup (right) for preconditioner application. The “fully coupled RAS" here is a
one-level fully coupled RAS

for the same problem configuration discussed in the previous section. HYPRE’s default BoomerAMG parameters are
used, and the RAS parameters remain unchanged from the previous section. Both RAS and BoomerAMG are applied
directly to the full preconditioning matrix. The numerical results are summarized in Table 2] and Figs. 8] [0 and [I0}

As shown in Table[2] the number of Newton iterations is nearly identical for both cases as the number of processor
cores is increased, but the RAS algorithm requires more linear iterations per Newton iteration. Despite this, the total
computation time for RAS is less than BoomerAMG, especially for higher processor counts. The parallel efficiency of
BoomerAMG drops to 52% at 384 cores, while RAS achieves a parallel efficiency of 76% at this scale. The superior
nature of RAS can also be observed in Fig. [§] which compares the speedup of the two methods. On the left hand side
of Fig. 8] the total compute time of RAS is always less than that of BoomerAMG as the number of processor cores is
increased. Similarly, in Figs. [0]and RAS is more efficient than BoomerAMG in terms of the preconditioner setup
and application times. The setup and application phases of the RAS method both scale well with the number of

processor cores, which is necessary to ensure that the overall algorithm remains efficient for large processor counts.

18

Table 2: A comparison between RAS and HYPRE’s Boomer AMG preconditioner. A nonlinear system with 3,020,875
unknowns is solved by the inexact Jacobian-free Newton-Krylov method. The “fully coupled RAS" here is a one-level
fully coupled RAS

RAS HYPRE BoomerAMG
Ny NI LI Time [s] EFF [%)] NI LI Time [s] EFF [%)]
48 2.27 33.60 2258.70 100 2.36 18.73 2298 100
96 2.27 33.76 1229.30 92 2.36 18.73 1321.1 85
192 2.27 34.00 645.25 88 2.36 18.69 776.66 72
384 2.27 34.56 372.14 76 2.36 18.53 536.67 52

Figure 8: Total compute time (left) and speedup (right) using RAS and HYPRE. The “fully coupled RAS" here is a
one-level fully coupled RAS

Figure 9: Compute time (left) and speedup (right) for preconditioner setup using RAS and HYPRE. The “fully
coupled RAS" here is a one-level fully coupled RAS

4.3 Two-level method

The one-level method works well for relatively small-scale problems on moderate numbers of processors, but it
deteriorates as the number of unknowns increases. To address this issue, we introduce one coarse space to construct
the two-level method. We compare the performance of the two-level and one-level methods in this section. Both a

“small” (3,020,875 unknowns) and “large” (23,613,579 unknowns) version of the problem are tested. For the small

19

—— linear ||
---- RAS
- HYPRE [

PCApply time(s)

Ob—‘- .
48 96 192 384
Number of processors

Figure 10: Compute time (left) and speedup (right) for preconditioner application using RAS and HYPRE. The
“fully coupled RAS" here is a one-level fully coupled RAS

Table 3: Performance of the two-level method.

One-level Two-level

n, NI LI Time [s] EFF [%] NI LI Time [s] EFF [%]
3,020,875 unknowns

384 2.27 34.68 334.91 - 2.27 19.36 332.81 -

576 2.27 35.28 254.63 - 2.27 19.36 284.82 -

768 2.27 35.40 245.24 - 2.27 18.92 251.31 -

1152 2.27 35.96 320.00 - 2.27 18.72 270.40 -
23,613,579 unknowns

384 227 58.84 3916.6 100 2.27 19.24 2113.90 100

576 2.27 59.28 2679.3 97 2.27 19.24 1507.00 94

768 2.27 59.76 2077.7 94 2.27 19.28 1157.80 91

1152 2.27 60.16 1566.7 83 2.27 19.28 877.45 80

problem, the same mesh as in the previous test is used. The large problem employs a mesh with 2,146,689 vertices
and 2,097,152 elements. The test is carried out using 384, 576, 768, and 1152 processors.

The results are summarized in Table [3, where we observe, in particular, that the required number of GMRES
iterations is much higher for the one-level method than the two-level method. Slow growth in the number of linear
iterations is required in order for a method to be considered scalable. The one- and two-level methods have similar
performance for the small-scale problem in terms of the total compute time.

For the large-scale problem, the number of GMRES iterations for the two-level method is one-third that of the
one-level method, and therefore the two-level method is twice as fast as the one-level method in terms of the total
compute time. When we increase the number of processors, the number of GMRES iterations required for both
algorithms remains approximately constant. Both algorithms are scalable with respect to the number of processors

in terms of the total compute time and the number of GMRES iterations. We observed a parallel efficiency of around

20

Table 4: Impact of overlap size § for the two-level method.

n, & NI LI Time [s] EFF [%)]
384 0 227 20.48 2174 100
384 1 227 19.24 2120 100
384 2 227 19.00 2131 100
576 0 227 20.92 1578 92
576 1 227 19.24 1507 94
576 2 227 19.20 1505 94
768 0 2.27 20.80 1193 91
768 1 227 19.28 1156 92
768 2 227 19.24 1153 92

1152 0 2.27 21.52 963 75
1152 1 2.27 19.28 922 77
1152 2 227 19.24 872 81

80% for both algorithms even when running on over a thousand processors. Finally, note that in Table 3] we do not
report the parallel efficiency of the algorithms for the small-scale problem because in that case the problem is too

small to measure efficiency in a meaningful way.

4.4 Impact of Schwarz parameters

The Schwarz algorithm has several important parameters, such as the overlap size ¢, the ILU fill level, and the
submatrix reordering, which affect the parallel performance of the method. We test these parameters in this subsection
with the same configuration as above, and the results are summarized in Tables @H6l In Table [for example, we
see that the number of GMRES iterations slightly decreases and the number of Newton iterations stays constant as
we increase the overlap size. The total compute time when using § = 2 is smaller than that obtained using § = 0
or § = 1 for all processor counts except 384, where the algorithm with § = 1 is slightly better. When we increase
the number of processors, the average number of GMRES iterations for the § = 0 case increases slightly while the
number of iterations for the § = 1 and 2 cases remain approximately constant. All cases have good scalability in
terms of the compute time and the number of GMRES iterations.

Increasing the ILU fill level usually reduces the average number of GMRES iterations while increasing the cost of
the subdomain solver. In Table [5] when we increase the fill level, we see that the number of GMRES iterations is
indeed reduced, but the overall computation time is actually increased due to the extra complexity of the subdomain
solver. ILU(0) has the best performance among all these cases except when n, = 1152, where the compute time of
ILU(1) is less than ILU(0) by about 36 seconds. Again, we observe that all cases have good scalability.

Degree of freedom reordering is used to reduce the bandwidth and improve the matrix nonzero structure. In this

test, ILU(2) is used as the subdomain solver. In Table |§|, we see that different reordering schemes result in different

21

Table 5: Impact of ILU fill level on the two-level method.

np ILU NI LI Time [s] EFF [%]

384 ILU(0) 227 19.24 2120 100
384 ILU(1) 227 17.72 2166 100
384 ILU(2) 227 16.56 2594 100
576 ILU(0) 2.27 19.24 1507 94
576 ILU(1) 2.27 17.72 1528 95
576 ILU(2) 2.27 16.84 1839 94
768 ILU(0) 2.27 19.28 1156 92
768 ILU(1) 2.27 17.68 1166 94
768 ILU(2) 2.27 16.92 1437 90
1152 ILU(0) 2.27 19.28 922 77
1152 ILU(1) 2.27 17.84 886 81
1152 ILU(2) 2.27 17.28 1116 77

Table 6: Impact of submatrix reordering. ILU(2) is used as the subdomain solver, and the system of equations is
solved with the two-level method while varying the reordering scheme.

n, Reordering NI LI Time [s] EFF [%]

384 RCM 227 16.08 2423.8 100
384 ND 227 16.52 2779.4 100
384 1WD 2.27 16.12 2411.8 100
384 QMD 227 16.60 3642.9 100
576 RCM 227 16.40 1757.7 92
576 ND 227 16.92 1932.8 96
576 1WD 2.27 16.32 1711.2 94
576 QMD 227 16.96 2395.5 > 100
768 RCM 227 16.36 1422.3 85
768 ND 227 16.88 1552.6 90
768 1WD 2.27 16.40 1327.6 90
768 QMD 2.27 16.92 1770.7 > 100
1152 RCM 227 16.84 1016.1 79
1152 ND 227 17.24 1124.8 82
1152 1WD 227 16.84 1020.3 79
1152 QMD 227 17.24 1268.7 96

performance characteristics. QMD is the worst for this particular problem because QMD was originally designed for
symmetric matrices, and the matrices used in these tests are non-symmetric. RCM and 1WD have similar performance
in terms of the total compute time and the number of GMRES iterations. The ND reordering requires almost the
same number of iterations as QMD, but ND performs better than QMD in terms of the total compute time. For all

cases we observe linear scalability, that is, the compute time is halved when we double the number of processors.

22

4.5 Temperature feedback

In this section, we solve the multigroup neutron diffusion equations in a transient scenario coupled with adiabatic
heating (heat equation without conduction term) and temperature feedback to the nuclear cross sections. This
example is also based on the TREAT, which is designed to expose nuclear fuel experiments to high-power transients:
up to 18 GW, or about 6 times the power of a commercial light water reactor.

In TREAT, temperature feedback to the cross sections occurs through spectral shift, which decreases fission rates
and increases leakage and absorption with increasing temperature. In this scenario, the power increases almost
exponentially until the core reactivity is offset by spectral shift caused by the increase in temperature. After the
reactor runs through its peak power, it settles on a new equilibrium core temperature and power level at which it
will remain until further perturbation of its reactivity. We end the simulation sufficiently early that the effects of
heat conduction can be ignored.

The simulation is run for ¢ € (0,2] with a mesh of 274,625 nodes and 262,144 elements. The resulting system of
nonlinear equations has 3,020,875 unknowns in total. The entire simulation takes 4668.2 s on 768 processor cores.
The variation of the temperature and the power with time is shown in Fig. where “Averaged” represents the
average temperature over the whole computational domain, and “Maximum” represents the maximum temperature
point in the computational domain. In the graph on the right hand side of Fig. “power” is defined as fQ Ppower AT

We observe that the power grows rapidly and reaches a peak at about ¢ = 1.2 s, and then rapidly decreases for
t € [1.2,2]. The temperature increases slowly for ¢ € [0.,0.5], rapidly for ¢ € [0.5,1.5], and slowly again for ¢ € [1.5,2].
This complicated and realistic physical configuration challenges the nonlinear and linear solvers. The performance
of the algorithm (in terms of the average number of Newton and GMRES iterations required at each time step) is
shown in Fig. [12]

The number of required Newton iterations remains almost constant throughout the simulation. Two Newton
iterations are required for ¢ € [0,0.7] U [1.6,2] and three Newton iterations are required for ¢ € [0.7,1.6]. The trend
transition occurs for ¢ € [0.7,1.6], and therefore the resulting nonlinear system is expected to be more difficult to
solve during that time period. The average number of linear iterations per Newton step also remains close to constant
during the entire simulation.

The data of Fig.[12] demonstrate that the proposed algorithm is robust in the context of a realistic simulation with
temperature feedback. The strong scalability of the algorithm is shown in Table [7] The mesh used for the strong
scalability study consists of 2,146,689 nodes, 2,097,152 elements, and 23,613,579 unknowns. In Table [7] we observe
that both the Newton and GMRES iteration counts remain approximately constant as we increase the number of
processors, and the compute time is almost halved when we double the number of processor cores. The algorithm

exhibits a parallel efficiency of around 70% on 1152 processors.

450
..... Averaged

o425 Maximum
T 4001
3 ’
4t ’I ‘
{© 375+ / S
£ 3501
o Ay
F 325

3007 ‘__________‘.==:/’ ‘ | T

0.0 0.5 1.0 1.5 2.0
Time(s)

£ 0.4
0.21

23

0.0

1:0 1:5
Time(s)

Figure 11: Temperature and power feedback for ¢ € [0, 2].

10

Newton

Number of Newton iterations

0.0

1.0 1.

0.5 .
Time(s)

5 2.0

N
o

151

104

Number of linear iterations

LI

= g g == T T i

0.0

0.5

1.0 15

Time(s)

2.0

Figure 12: Number of the Newton and linear iterations for ¢ € [0,2] with the problem with temperature feedback.

In a multilevel method, the size of coarse space should remain small to ensure that its computation remains

inexpensive, but if it is too small, the resulting algorithm will require too many linear iterations. Good scalability also

requires that the coarse space dimension not change much as the number of processors increases. In Table [7] “rows,”

represents the number of coarse matrix rows, and “nonzeros.” denotes the number of coarse matrix nonzeros. We

observe that the ratio of rows, to fine matrix rows is around 0.6%, and the ratio of nonzeros, to fine matrix nonzeros

is 0.8%. The size of the coarse space remains approximately constant as we increase the number of subdomains,

which is an indication that the coarsening algorithm works effectively. Overall, the proposed algorithms are found to

be robust and scalable for the temperature feedback application.

5 Conclusions

An implicit Newton-Krylov method based on a fully coupled and scalable two-level Schwarz preconditioner was

studied for a challenging system of equations applicable to nuclear engineering analysis. This system was derived

from the discretization of the transient multigroup neutron diffusion equations by a standard finite element method

24

Table 7: Strong scaling of the algorithm for the temperature feedback problem. The number of unknowns is 23,613,579
and the number of nonzeros in the matrix is 1,711,998,750 at the fine level.

n, NI LI Time s rows, nonzeros, EFF [%]
192 227 17.16 4139.5 135,541 13,421,921 100
384 2.27 17.72 22839 135,965 13,512,525 91
576 2.27 17.72 1601.5 135,448 13,470,818 86
768 2.27 17.68 1246.3 135,156 13,420,703 83

1152 2.27 17.84 990.7 134,779 13,311,952 70

in space combined with an implicit time discretization. The coarse space (based on smoothed aggregation) was
introduced to construct the two-level version of a Schwarz preconditioner. The preconditioner is applied in a fully
coupled way so that all group variables are computed simultaneously. It was shown that the fully coupled method has
better performance than the block Gauss-Seidel sweep algorithm, and that the two-level method further improves
the parallel performance as the number of processors increases. The scalability of the proposed algorithm, in terms

of the total compute time and the number of nonlinear and linear iterations, was also demonstrated.

Acknowledgments

This manuscript has been authored by Battelle Energy Alliance, LL.C under Contract No. DE-AC07-05ID14517 with
the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article
for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States

Government purposes.

Appendix

This appendix contains tabulated data associated with the material coefficients in the multigroup neutron diffusion

equations.

25

Table 8: Material properties of the graphite domain at 7' = 293.6 K. Since there are no nuclear reactions occurring
on the graphite, material parameters for the fission term and the DNP term are zero. There are, however, still
scattering events in the graphite, and we show those parameters in a different table. The density of the nuclear fuel

is p = 1.52639336 gcm 2, and the density of the graphite is p = 0.

vy [ems™

Dy [em]

¥y [em™!]

© 00 O U Wi (Y

— =
]

2.959280e+9
9.412739e+8
1.731065¢+-8
3.238520e+7
7.313684e+6
1.920953e+-6
8.049456e+5
4.583182e+5
3.380228e+5
2.471632e+5
1.396748e+-5

4.371631e0
2.184245€0
1.321336e0
1.304055¢e0
1.300991e0
1.300082¢0
1.293077¢0
1.266950e0
1.216505¢e0
1.210840e0
1.196609¢0

3.390080e—2
1.161440e—2
1.211170e—2
1.300950e—2
1.516310e—2
1.622090e—2
3.782370e—2
3.890520e—2
6.807460e—2
5.145000e—2
4.873540e—2

T—90CLELC'C ©—20L8C80'C €—°0€669T°C V—O0LLETV'9 G—90V6EIL'E
¢—209L00C'y T—°066S¢E€'C C¢—o0IgGcL'e €—°0TPE0S'9 ¥—90L6£S0°€
€—90T69LC VY C©—°08¢S94'Cc 1—°0IV6C1°'C C—20IV¥98'C ¥—20T€E808L
¥—207061¢'8 €—20€0cV0'Vy ¢—90LI¥69'¢c 1—909Ce9¢'c ¢—20I¥6ES°€ G—30C1698°C
9—90TC0%E'c $—900€€9E'€ €—9009€T9'C T—200897€'C C—208L909'T
€—90LLCc0'T T—°09€CSS'c ¢—20¥cEIq'T
9—90GVL0G'E T—°06T19S'C C¢—°08T00E'T
T—20¢89L.G'¢ ¢—20800T¢'T 8—20¥cO¥e'T L—°098005T
T—206609¢°'Cc ¢—2060T9T°'T G—S0¢8TIT'9
T—200€9¥L°'T C©—209915€°€
¢—20¢6069'9

1T 0T 6 8 L 9 g 4 € 4 T

26

"M 9°¢6¢ = [, ye urewop 991ydels oY) uo ‘|, _uo| I ¥7 ‘s1ojeurered 3urielyeog 6 o[qe],

Tlramtworone g2

>

27

Table 10: Material properties for nuclear fuel at T' = 293.6 K. The scattering parameters of the nuclear fuel are shown
in a different table. Note that in this computation, for a given group, Xd,i,g = Xd,j,g, but in general, Xq,i.g 7 Xd,j.g-

g vg [ems™! Dy [cm] Srg [em™1] Vg lem™] &g, [Jem™ X Xp,g

1 2.949626e+9 3.171522e0 4.799060e—2 2.845520e—5 3.025787e—16 0.000000e0 1.731860e—1
2 9.821543e+8 1.700550e0 1.338930e—2 2.416280e—5 3.088935e—16 8.755640e—1 8.117770e—1
3 1.768128e+8 9.838443e—1 1.534450e—2 4.696380e—5 6.250405e—16 1.224150e—1 1.495740e—2
4 3.269320e+7 9.610330e—1 1.716630e—2 2.185340e—4 2.905171e—15 1.941470e—3 7.913460e—5
5 7.359868e+6 9.608252e—1 2.039280e—2 8.303450e—4 1.102883e—14 7.406730e—5 5.335540e—7
6 1.929057e+6 9.607034e—1 2.207510e—2 5.807100e—4 7.710701e—15 4.342090e—6 9.490130e—9
7 8.085774e+5 9.547515e—1 5.391220e—2 2.610080e—3 3.465703e—14 5.828650e—7 0.000000e0
8 4.619450e+5 9.384675e—1 6.345620e—2 4.400400e—3 5.842866e—14 0.000000e0 0.000000e0
9 3.382927e+5 9.075703e—1 1.192890e—1 6.558340e—3 8.708196e—14 0.000000e0 0.000000e0
10 2.475413e+5 8.973237e—1 9.463540e—2 9.526350e—3 1.264916e—13 3.104860e—7 0.000000e0
11 1.403660e+5 8.604660e—1 9.477190e—2 1.757570e—2 2.333717e—13 0.000000e0 0.000000e0

Table 11: Material properties for delayed neutron precursors for the nuclear fuel at T' = 293.6 K.

Ai [s71 Bi
1 1.333600e—2 2.403820e—4
2 3.273900e—2 1.247060e—3
3 1.207800e—1 1.193690e—3
4 3.027810e—1 2.654130e—3
5 8.494920e—1 1.092640e—3
6 2.853010e0 4.587350e—4

T—2078LS86'C ¢—20€68SL'E €—2061960'¢ V¥—2008VLT'L SG—°0009¥€°€
C—O0ELTLIL T—°0CV606'C C—20VI06¥'9 €—°0¥8LV9'6 ¥—°0818EL'C
€—9099096'9 ¢—200€914'Vy 1—°0¥V6509'C C—20Ic¥6S' v ¥—2000V.LEL
¥—20cL09¥'6 €—°2019¢0¥'9 ¢—207097S'Vy 1—°096160°€ ©—20600867 G—=0S¥€C9'C
9—90TLG0E'C G—909G649C'E €—°0C6LESGT T—°00€0ST'€ C—o0VEIST'C
€—908186%'T 1—209¢0S¥'€ C—20908L6°T
9—90LL88C'S T—P06ELIV'E CT—O08LLE8I'T
T—201€66V'€ ¢—207L9¢S'T 8—200¥VIch'c L—909.899°C
T—20080S7'€ ¢—209¥9€€'T G—=0TEVIC'6
T—20L9Y5C°C ©—200605L'V
C—9081.L88'8

11 0T 6 8 L 9 g i € 4 T

28

S 9°€67 = [¥e [o1y Iedpnu oty 10§ ‘[_wo] P ‘srojourered Surieyjesg g1 oqrl,

Tlramtworons 2

>

29

Table 13: Some of the temperature-dependent properties of the nuclear fuel. Other fuel and graphite material
properties, which have a similar temperature dependence, are not shown here.

T [K] Dy [Cm] Z/Eﬁll [Cmill 2371_@ [Cmill
2.936000e+2 8.604660e—1 1.757570e—2 4.750900e—2
4.000000e+2 8.38855le—1 1.735170e—2 4.750600e—2
6.000000e+2 8.004085e—1 1.709310e—2 4.748140e—2
8.000000e+2 7.660000e—1 1.691230e—2 4.748830e—2

30 REFERENCES

References

1. Adams MF. Algebraic multigrid methods for direct frequency response analyses in solid mechanics. Comput Mech. 2007;39(4): 497—
507.

2. Aragonés JM, Ahnert C, and Garcia-Herranz N. The analytic coarse-mesh finite difference method for multigroup and multidimen-
sional diffusion calculations. Nucl Sci Eng. 2007;157(1): 1-15.

3. Baker BA, Ortensi J, and DeHart MD. 2016. F'Y 2016 Status Report on the Modeling of the M8 Calibration Series using MAMMOTH,
Technical Report INL/EXT-16-40023, Idaho National Laboratory.

4. Balay S, Abhyankar S, Adams MF., Brown J, Brune P, Buschelman K, Dalcin L, Eijkhout V, Gropp WD., Kaushik D, Knepley MG.,
Mclnnes LC, Rupp K, Smith BF, Zampini S, Zhang H, and Zhang H. 2016. PETSc Users Manual, Technical Report ANL-95/11 -
Revision 3.7, Argonne National Laboratory.

5. Barrault M, Lathuiliere B, Ramet P, and Roman J. Efficient parallel resolution of the simplified transport equations in mixed-dual
formulation. J Comput Phys. 2011;230(5): 2004-2020.

6. Cai XC and Sarkis M. A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J Sci Comput. 1999;21(2):
792-797.

7. Dennis Jr JE and Schnabel RB. Numerical Methods for Unconstrained Optimization and Nonlinear Equations: SIAM; 1996.

8. Duderstadt JJ and Hamilton LJ. Nuclear Reactor Analysis: Wiley; 1976.

9. Falgout RD and Yang UM. Hypre: A library of high performance preconditioners, International conference on computational science;
2002. p. 632-641.

10. Gaston DR, Permann CJ, Peterson JW, Slaughter AE, Andrs D, Wang Y, Short MP, Perez DM, Tonks MR, Ortensi J, and Martineau
RC. Physics-based multiscale coupling for full core nuclear reactor simulation. Ann Nucl Eng. October 2015;84: 45-54.

11. Jamelot E and Ciarlet P. Fast non-overlapping Schwarz domain decomposition methods for solving the neutron diffusion equation.
J Comput Phys. 2013;241: 445-463.

12. Kaper HG, Leaf GK, and Lindeman AJ. A timing comparison study for some high order finite element approximation procedures
and a low order finite difference approximation procedure for the numerical solution of the multigroup neutron diffusion equation.
Nucl Sci Eng. 1972;49(1): 27-48.

13. Kirk BS, Peterson JW, Stogner RH, and Carey GF. libMesh: A C++ library for parallel adaptive mesh refinement/coarsening
simulations. Eng Comput. 2006;22(3-4): 237-254.

14. Knoll DA and Keyes DE. Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J Comput Phys.
2004;193(2): 357-397.

15. Knoll DA, Park H, and Newman C. Acceleration of k-eigenvalue/criticality calculations using the Jacobian-free Newton-Krylov
method. Nucl Sci Eng. 2011;167(2): 133-140.

16. Kong F and Cai XC. A highly scalable multilevel Schwarz method with boundary geometry preserving coarse spaces for 3D elasticity

problems on domains with complex geometry. SIAM J Sci Comput. 2016;38(2): C73-C95.

REFERENCES 31

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Kong F and Cai XC. Scalability study of an implicit solver for coupled fluid-structure interaction problems on unstructured meshes

in 3D. Int J High Perform Comput Appl. 2016.

Kong F and Cai XC. A scalable nonlinear fluid—structure interaction solver based on a Schwarz preconditioner with isogeometric

unstructured coarse spaces in 3D. J Comput Phys. 2017;340: 498-518.

Lewis EE and Miller WF. Computational Methods of Neutron Transport: John Wiley and Sons; 1984.

Ortensi J, DeHart MD, G Frederick N, Wang Y, Alberti AL, and Palmer TS. 2015. Full Core TREAT Kinetics Demonstration
Using Rattlesnake/BISON Coupling Within MAMMOTH, Technical Report INL/EXT-15-36268, Idaho National Laboratory.

Purwadi MD, Tsuji M, Narita M, and Itagaki M. A hierarchical domain decomposition boundary element method applied to the

multiregion problems of neutron diffusion equations. Nucl Sci Eng. 1998;129(1): 88-96.

Quarteroni A and Valli A. Domain Decomposition Methods for Partial Differential Equations: Oxford University Press; 1999.

Saad Y. Iterative Methods for Sparse Linear Systems: STAM; 2003.

Saad Y. Numerical Methods for Large Eigenvalue Problems: Revised Edition: STAM; 2011.

Saad Y and Schultz MH. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci

Stat Comput. 1986;7(3): 856—869.

Scheichl R. Parallel solvers for the transient multigroup neutron diffusion equations. Int J Numer Methods Eng. 2000;47(10): 1751—

1771.

Semenza LA, Lewis EE, and Rossow EC. The application of the finite element method to the multigroup neutron diffusion equation.

Nucl Sci Eng. 1972;47(3): 302-310.

Smith B, Bjorstad P, and Gropp WD. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations:

Cambridge University Press; 2004.

Toselli A and Widlund OB. Domain Decomposition Methods: Algorithms and Theory, Vol. 34: Springer; 2005.

Vancék P, Mandel J, and Brezina M. Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems.
Comput. 1996;56(3): 179-196.

Vidal-Ferrandiz A, Gonzalez-Pintor S, Ginestar D, Verdu G, and Demaziére C. Schwarz type preconditioners for the neutron diffusion

equation. J Comput Appl Math. 2017;309: 563-574.

Wang Y, Bangerth W, and Ragusa J. Three-dimensional h-adaptivity for the multigroup neutron diffusion equations. Prog Nucl
Eng. 2009;51(3): 543-555.

Wang Y, Schunert S, DeHart M, Martineau R, and Zheng W. Hybrid PN-SN with Lagrange multiplier and upwinding for the

multiscale transport capability in Rattlesnake. Prog Nucl Eng. 2017.

32

REFERENCES

	2048
	2048
	A fully coupled two-level Schwarz preconditioner based on smoothed aggregation for the transient multigroup neutron diffusion equations
	Abstract
	Introduction
	Multigroup neutron diffusion equations
	Scalable parallel algorithm framework
	Eigenvalue solver
	Newton-Krylov-Schwarz
	Smoothed aggregation based Schwarz coarse space

	Numerical experiments
	Comparison with Gauss-Seidel sweeps
	Comparison with HYPRE BoomerAMG
	Two-level method
	Impact of Schwarz parameters
	Temperature feedback

	Conclusions

