
The INL is a U.S. Department of Energy National Laboratory
operated by Battelle Energy Alliance

INL/CON-17-40867-Revision-2

A fully coupled two-level
Schwarz preconditioner
based on smoothed
aggregation for the
transient multigroup
neutron diffusion
equations

Fande Kong, Yaqi Wang, Cody J
Permann, Sebastian Schunert, John W
Peterson, David Andrs, Richard C
Martineau

May 2018

INL/CON-17-40867-Revision-2

A fully coupled two-level Schwarz preconditioner
based on smoothed aggregation for the transient

multigroup neutron diffusion equations

Fande Kong, Yaqi Wang, Cody J Permann, Sebastian Schunert, John W
Peterson, David Andrs, Richard C Martineau

May 2018

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

Article Type

A fully coupled two-level Schwarz preconditioner based on

smoothed aggregation for the transient multigroup neutron

diffusion equations

Fande Kong*,1 Yaqi Wang,2 Sebastian Schunert,2 John W. Peterson,1 Cody
J. Permann,1 David Andrš,1 and Richard C. Martineau1

1Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840, USA
2Nuclear Engineering Methods Development, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA

Correspondence: *Fande Kong, Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho

Falls, ID 83415, USA. Email: fande.kong@inl.gov; fdkong.jd@gmail.com

Received 26 April 2016; Revised 6 June 2016; Accepted 6 June 2016

Summary

The multigroup neutron diffusion equations (an approximation of the neutron transport equation) are widely used

for studying the motion of neutrons and their interactions with stationary background materials. Solving the

multigroup neutron diffusion equations is challenging because the unknowns are tightly coupled through scattering

and fission events, and solutions with high spatial resolution of full reactor cores in multiphysics environments are

frequently required. In this paper, we focus on the development of a scalable, parallel preconditioner for solving the

system of equations arising from the finite element discretization of the multigroup neutron diffusion equations in

space and an implicit finite difference scheme in time. The parallel preconditioner (here referred to as the “fully

coupled Schwarz preconditioner”) is constructed by monolithically applying the overlapping domain decomposition

method together with a smoothed aggregation-based coarse space to the coupled system. Our approach is different

from the traditional block Gauss-Seidel sweep method that applies the preconditioner from the fast group to the

thermal group sequentially, and we demonstrate that it provides significant improvements in terms of both the

2

number of iterations required and the total compute time for a system of equations with millions of unknowns on a

large supercomputer.

Keywords: parallel processing, two-level Schwarz preconditioner, multigroup neutron diffusion equations, Newton-Krylov-

Schwarz, smoothed aggregation, coarse space, finite element method

1 Introduction

The accurate prediction of the (angular or scalar) neutron flux is essential to the design of nuclear reactors and for

their safe and economic operation8, 19. The angular neutron flux is a quantity corresponding to the product of the

neutron speed and the neutron density, and is defined in a seven-dimensional phase space (3D space, 1D time, 2D

direction of motion, and 1D energy). The linear Boltzmann equation or the radiation transport equation is used to

describe the angular neutron flux distribution. Because the neutron energy spans ten orders of magnitude ranging from

0.001 eV to 20 MeV in a typical nuclear reactor, the computing resources required for performing multi-dimensional

transport calculations with continuous or point-wise energy resolution is prohibitive for any real application8.

Instead, the multigroup approximation is typically applied, where continuous-energy cross sections, used to char-

acterize the probability per unit path length for a nuclear reaction to occur, are collapsed for a selected set of energy

ranges (also referred to as energy groups). The multigroup cross sections are produced by integrating the energy

dependent cross sections and the neutron energy spectrum over the extent of an energy group. The spectra are

typically obtained from a separate lattice calculation8.

In the present work, the multigroup cross sections are taken to be given parameters. The multigroup approximation

to the transport equation (referred to as “multigroup neutron transport equations”) is still prohibitively expensive for

a full-core nuclear reactor simulation, and is further simplified to the multigroup diffusion equations by introducing

a scalar flux variable, which is defined as the integral of the angular neutron fluxes over all the directions of motion.

The multigroup neutron diffusion equations are well suited to modeling nuclear reactor cores with significant spatial

homogenization, and are much less expensive to solve than the neutron transport equation8, 19. However, as we

stated earlier, it is still challenging to solve the multigroup neutron diffusion equations in certain applications.

Fast, computationally efficient solvers of the multigroup neutron diffusion equations require scalable, parallel

algorithms which take advantage of the capabilities of modern supercomputers. In this paper, we propose a solver

consisting of an inexact Jacobian-free Newton method14 for the system of nonlinear equations, and a Krylov subspace

method23 for the solution of the Jacobian system, using a Schwarz preconditioner to improve convergence.

Over the past few decades, there have been many research articles on the various computational approaches to

numerical simulation of the neutron diffusion equations. Both finite element27, 32, and finite difference2 methods

3

have been used successfully for the spatial discretization, typically in conjunction with the power iteration for com-

puting the eigenvalue. A comparison between high order finite element methods and the finite difference method is

described in12. Parallel algorithms based on the preconditioned BiCGStab solver were developed in26 for the transient

multigroup neutron diffusion equations based on a finite volume discretization in space, and a combined Crank-

Nicholson/BDF2 discretization in time, and the resulting algorithm was shown to scale to 12 processors. Regardless

of the discretization method, the most computationally expensive part of the simulation is solving large, often ill-

conditioned, linear systems repeatedly. We propose a fully coupled overlapping domain decomposition method for

the large linear system in this paper.

Domain decomposition methods have been receiving increased attention in the nuclear engineering community

due to their ability to solve large systems of equations in parallel. In5 a non-overlapping domain decomposition

method based on Lagrange multipliers is applied to the simplified transport equations. In11, a non-overlapping

Schwarz method is studied for the one-speed neutron diffusion equation, and the Robin interface condition is used

to exchange data across subdomains. A hierarchical domain decomposition together with the boundary element

method is employed for the neutron diffusion equations on the multiregions in21. In31, a Schwarz and substructuring

based Schur complement method is studied for the neutron diffusion equations, and the domain decomposition based

preconditioners are shown to work better than those based on an incomplete LU factorization.

Most published works apply the domain decomposition method to the single-group diffusion equation obtained by

decoupling the multigroup diffusion equations. For example, in5, 31 an inverse power iteration is employed to solve

the k-eigenvalue problems, and during each power iteration, a Gauss-Seidel iteration is used to sweep through groups

from the fast group to the thermal group. In this case, the domain decomposition based preconditioner is applied

to each group separately. This decoupled application of the preconditioner can degrade the overall efficiency of the

algorithm in certain applications.

In this paper, we propose a fully coupled Schwarz preconditioner for the multigroup neutron diffusion equations.

To further improve the parallel performance for large-scale problems, a coarse space based on smoothed aggregation

is introduced to construct a two-level method. Compared with the one-level method, the two-level version performs

better in terms of the compute time and the number of linear iterations required. Note that the eigenvalue and

the transient problems are solved using the same algorithm framework, namely, Newton-Krylov-Schwarz. The fully

coupled Schwarz serves as the preconditioner of the linear solvers for both the eigenvalue and the transient problems.

We also note that the fully coupled Schwarz preconditioner has been successfully applied to elasticity16 and fluid-

structure interaction17, 18 problems. Here, we extend and adapt the algorithm to the transient multigroup neutron

diffusion equations.

4

The remainder of this paper is organized as follows. In Section 2, we present the multigroup neutron diffusion

equations and their spatial and temporal discretizations. In Section 3, we discuss a parallel algorithm for solving the

discretized nonlinear equations (and associated nonlinear eigenvalue system), and the corresponding preconditioned

Krylov subspace method. We report on the parallel performance of the proposed algorithm in Section 4, and finally

conclusions are drawn in Section 5.

2 Multigroup neutron diffusion equations

As mentioned previously, the multigroup neutron diffusion equations are used to study the motion of particles and

their interactions with stationary background materials8, 19. Denoting the scalar neutron flux of energy group g by

Φg [cm−2s−1], the multigroup neutron diffusion equations are

∂

∂t

(
Φg
vg

)
−∇ ·Dg∇Φg + Σr,gΦg =

Qg,0 +

G∑
g′=1
g′ 6=g

Σs,g′→gΦg′ + (1− β)χp,g

G∑
g′=1

νΣf,g′Φg′ +

I∑
i=1

χd,i,gλiCi

∂Ci
∂t

= βi

G∑
g′=1

νΣf,g′Φg′ − λiCi

Φg = Φ0
g at t = 0

Ci =
βi
∑G
g′=1 νΣf,g′Φ

0
g′

λi
at t = 0

Φg = Φg,d in Γd

−DgΦg · n = Jg,n in Γn = ∂Ω \ Γd,



(1)

where, unless otherwise noted, the equations apply on the entire spatial domain Ω, I is the number of delayed neutron

precursor groups (6 in this paper), G is the number of energy groups (11 in this paper), vg [cm s−1] is the group

averaged neutron speed (that is, the neutron speed averaged for all neutrons over the group g, indicating how fast

on average the neutrons of the gth group move), Dg [cm] is the diffusion coefficient, Σr,g [cm−1] is the macroscopic

removal cross section, Qg,0 [cm−3s−1] is the external source, Σs,g′→g [cm−1] denotes the macroscopic scattering cross

section from group g′ to group g, βi is the delayed neutron fraction, β =
∑I
i=1 βi is the total delayed neutron fraction,

χp,g is the prompt fission spectrum, ν is the average number of neutrons emitted per fission, Σf,g [cm−1] is the

macroscopic fission cross section, λi [s−1] is the decay constant, χd,i,g is the delayed fission spectrum, and Ci [cm−3]

is the concentration of delayed neutron precursors. Φg,d [cm−2s−1] is the given scalar flux on Dirichlet boundary Γd,

and Jg,n [cm−2s−1] is the net current on Neumann boundary Γn.

5

The set of equations (1) represents the neutron balance for all energy groups. In the first equation of (1), the first

term on the left hand side represents the rate of change of neutron population in the group g, the second term is the

leakage rate due to diffusion (referred to as the “diffusion term") and the third is the neutron removal by collision

(“removal term”). The second term on the right hand side represents the neutrons transferred via scattering into

group g from other groups (“scattering term”); this term couples the fluxes of all groups together. The third term of

the right hand side is the fission neutron production rate, and the fourth term represents the number of the neutrons

from the delayed neutron precursors (DNP). Most neutrons born from fission reactions appear instantaneously, but a

fraction appear delayed as the decay products of fission product nuclides, and are referred to as neutron precursors.

To simulate the transient behavior of nuclear reactors, it is essential to track neutron precursor concentrations.

Neutron precursors are separated into groups by their decay constants, and these constants govern their dynamic

behavior. The fission, scattering, and removal cross sections and the diffusion coefficient Dg depend, in a complicated

way, on the temperature within a multiphysics environment. For real applications, the explicit form of this dependence

is not available, and we resort to interpolating the cross section values using pre-generated tabulated data.

More precisely, in this work, a few pairs (Σ
(j)
··· , T

(j)) are provided during multigroup cross section generations,

and for a given temperature T , the cross sections are calculated using a linear interpolation with Σ
(j)
··· and Σ

(j+1)
··· if

T (j) < T < T (j+1). The temperature T is obtained by solving the following differential equation:

ρcp
∂T

∂t
=

G∑
g′

κΣf,g′Φg′ , (2)

where cp [Jg−1K−1] is the heat capacity, which, for the nuclear fuel, depends on the temperature according to

cp = −5.8219× 10−10T 3 − 4.3694× 10−7T 2

+ 2.8369× 10−3T − 1.009× 10−2. (3)

The material density is ρ [gcm−3], and κ [J] is the energy released per fission. The right hand side of (2) is also

referred to as the “power density”, ρpower [Wcm−3]. In Equation (2), we assume that the transient is so fast (on the

order of a few seconds) that the heat generated from fission does not have time to diffuse away.

In Equation (1), Φ0
g is the initial condition that is obtained by solving the generalized eigenvalue problem:

−∇ ·Dg∇Φ0
g + Σr,gΦ

0
g =

∑
g′ 6=g

Σs,g′→gΦ
0
g′ +

1

k
χg
∑
g′

νΣ0
f,g′Φ

0
g′ , (4)

6

Figure 1: Computational domain for the eigenvalue problem and the transient problem. Left: computational domain
for the generalized eigenvalue problem, right: computational domain for the transient problem. The red cube is the
nuclear fuel; the gray part is graphite.

where χg = (1 − β)χp,g +
∑I
i=1 βiχd,i,g is the average spectrum. Here k is typically used to adjust the fission cross

sections, Σf,g = 1/kΣ0
f,g, for the transient Equation (1) so that the loss and production of neutrons in the system is

balanced.

We call the maximum k (corresponding to the smallest eigenvalue of (4)) and its corresponding eigenvector the

“fundamental mode” of the generalized eigenvalue problem. k is also referred to as the system’s multiplication factor.

Equation (4) is defined on the same computational domain as Equation (1), and we ignore the temperature dependence

by assuming the power is low. The transient is initiated by substituting a block of graphite with fuel as indicated in

Fig. 1. This is used to mimic the generation of a transient by pulling out a control-rod in the nuclear reactor.

To discretize (1) and (4) in space, a hexahedral mesh Ωh is generated for the computational domain Ω, and the

standard Galerkin finite element method is employed. The corresponding semi-discrete systems of equations for (1)

are written as

dy(t)

dt
= Nyy(y(t)) +Nyc(c(t)) + F (5)

dc(t)

dt
= Ncy(y(t)) +Ncc(c(t)) (6)

where y(t) = {y1, y2, ..., yG} is a vector of nodal values of {Φ1,Φ2, ...,ΦG} at time t, and Nyy(y(t)) corresponds to

all the terms of the first equation of (1) except the time derivative, the DNP terms and the external source term. F

is the external source term, and Nyc(c(t)) is the DNP term coupling the variables c(t) and y(t). c(t) = {c1, c2, ..., cI}

is the discrete version of {C1, C2, .., CI} that is a function of the scalar fluxes, y(t), satisfying the second equation

7

of (1). Ncy couples y(t) and c(t), and corresponds to the first term on the right hand side of the second equation

of (1), while Ncc(c(t)) corresponds to the second term on the right hand side.

The Crank-Nicolson method is used to discretize (5) in time, resulting in

Myn+1 −
δt

2
(Nyy(yn+1) +Nyc(cn+1) + Fn+1) = Myn +

δt

2
(Nyy(yn) +Nyc(cn) + Fn), (7)

where yn+1 is the solution at time step n+ 1, and δt is the time step size. Fn+1 is the external source at the (n+ 1)st

step and M is the mass matrix. In order to compute cn+1, the second equation of (1) is dicretized by backward

Euler in time,

cn+1 = δt(Ncy(yn+1) +Ncc(cn+1)) + cn, (8)

where cn+1 is the solution at the (n+ 1)st time step. With a given initial concentration as in (1), cn+1 is computed

using (8) for a given yn+1 by inverting the diagonal matrix Ncc. To save memory while solving the coupled system

defined by (7) and (8), the variable cn+1 is eliminated from (7) by rewriting (8) as

cn+1 = (I − δtNcc)−1(δtNcy(yn+1) + cn). (9)

Since (I − δtNcc) is a diagonal matrix, the computation of the inverse matrix is straightforward and inexpensive.

Therefore, we substitute (9) into (7), and the resulting system is a nonlinear system of equations with scalar fluxes,

yn+1, as its independent variables.

We also do a similar elimination for the temperature equation. The temperature equation is different from the

delayed neutron precursor equation in two respects. First, Equation (2) is a nonlinear differential equation because

both cp (heat capacity) and the fission cross sections Σf,g depend on the temperature T . Second, the updated tem-

perature will be used to evaluate the cross sections, thereby making the system (1) nonlinear. Using the Trapezoidal

rule, equation (2) is discretized as:

ρcp(T
n+1)(Tn+1 − Tn) =

δt

2
NTy(yn+1 + yn) (10)

where NTy corresponds to the right hand side of (2). The system of nonlinear equations (10) is solved by a local

Newton iteration at each quadrature point. No communication is involved in this local Newton solve because only

local data is required, and since there is only one unknown per Newton solve, no linear solver is required. We refer

8

Figure 2: Pattern of neutron scattering matrix.

to this Newton iteration as “local” to distinguish it from the global Newton iteration (to be introduced in the next

section) that is used for solving the nonlinear equation (7).

For simplicity, we rewrite (7) as

F(y) = 0, (11)

ignoring the n+ 1 subscript. Equation (11) is solved by a Jacobian-free Newton method as in15. We note that (11) is

nonlinear because of the temperature feedback (10). If we do not consider the temperature feedback, Equation (11)

is linear. The parallel algorithm we develop here is general enough to be applicable for both nonlinear and linear

problems.

The corresponding Jacobian system for the nonlinear system (11) is difficult to compute because

1. The group variables are coupled through scattering, as shown in Fig. 2, and fission events. The fission cross

sections in the nuclear fuel are non-zero for all energy groups and therefore couple together all the group

variables (although fission neutrons are mainly present in the fast energy groups).

2. The material coefficients (including the cross sections and the diffusion coefficients) in Equation (1), shown in

Tables 8–13 in the Appendix, are discontinuous across the graphite/nuclear fuel interface.

3. If temperature feedback is considered, then the fluxes depend on the temperature and vice-versa.

To solve the nonlinear system (11), an accurate representation of the Jacobian matrix is required to compute the

Newton descent direction, otherwise the solver will require a suboptimal number of Newton iterations, or possibly

diverge. To overcome this difficulty, we employ the Jacobian-free version of Newton’s method that approximates the

action of the Jacobian using finite differences. The method is described in detail in the next section.

9

3 Scalable parallel algorithm framework

There are two systems of equations to be solved: the generalized eigenvalue problem (12) and the system of nonlinear

equations (11). We first present a parallel eigenvalue solver for computing the fundamental mode. The eigenvalue

solver is further accelerated by converting the eigenvalue system to a system of nonlinear equations. Finally, we

describe a fully coupled nonlinear solver together with a parallel preconditioner.

3.1 Eigenvalue solver

The generalized eigenvalue problem (4) takes the following form after spatial discretization:

Ay0 =
1

k
By0, (12)

where B corresponds to the fission in (4), and A represents the other terms. We remark that (12) is a linear eigenvalue

problem in the present work, but it is a system of nonlinear equations if we insert k = ‖By0‖ into (12), and therefore

our solver is designed with both scenarios in mind.

The simplest algorithm for computing the smallest eigenvalue is the inverse power iteration24. The inverse power

iteration works well for problems in which the ratio between the smallest and second smallest eigenvalues is much

smaller than 1, otherwise it may converge very slowly. An improved algorithm based on Newton’s method is used in

such a case15. More precisely, the eigenvalue problem is reformulated as a nonlinear problem

Ay0 =
1

‖By0‖
By0. (13)

where k ≡ ‖By0‖. An inexact Newton method (to be described in next section) is employed to solve Equation (13).

Newton’s method converges quadratically if the initial guess is sufficiently close to the solution. An effective way to

compute an initial guess for (13) is to apply a few inverse power iterations.

3.2 Newton-Krylov-Schwarz

We next describe a parallel algorithm framework for solving (11) and (13), followed by a coarse space to improve

convergence and scalability. A Jacobian-free Newton method14 is used for solving the nonlinear system (11) and (13).

During each Newton iteration, the Jacobian system is computed using a Krylov subspace method23, e.g. GMRES25,

together with a Schwarz preconditioner to be described shortly. More precisely, the solution at the current Newton

step, y(k+1), is updated by adding a Newton descent direction δy(k) to the previous Newton step solution y(k), that

10

is,

y(k+1) = y(k) + α(k)δy(k), (14)

where α(k) is a linesearch step size calculated using a backtracking method7, and δy(k) is obtained by approximately

solving the Jacobian system,

J (y(k))δy(k) = −F(y(k)), (15)

where F(y(k)) is the nonlinear function residual evaluated at y(k), and J (y(k)) is the Jacobian matrix evaluated at

y(k), although it is not explicitly formed. The action of J (y(k)) on a vector r is computed via finite differences as

J (y(k))r ≈ F(y(k) + γr)− F(y(k))

γ
, (16)

where γ is a small parameter. To speed up the convergence of the Krylov subspace method used in solving (15), we

construct a Schwarz preconditioner based on the matrix Bh ≈ J (y(k)). We neglect the derivatives of the material

coefficients with respect to the fluxes when computing Bh, because their analytical forms are not available. As stated

earlier, the material coefficients depend on the temperature through interpolation of the tabulated data, and the

temperature is a nonlinear function of the fluxes. Neglecting the derivatives greatly simplifies the computation of Bh

while still retaining the operator’s effectiveness as a preconditioner.

The right-preconditioned Jacobian system is defined as

JB−1
h Bhδy = −F (17)

where we ignore the superscript k and arguments for J , δy and F to simplify the notation. The preconditioning

procedure is accomplished via two substeps. First, JB−1
h r = −F is solved for r using GMRES together with one

preconditioner application per GMRES iteration, and then Bhδy = r is solved for δy via one application of the

preconditioner. We will next discuss the construction of the preconditioner.

We consider two approaches to constructing the preconditioner for the multigroup neutron diffusion equations.

The first approach, the block Gauss-Seidel algorithm, involves solving Equation (17) in a group-by-group manner.

Let us consider one application of the preconditioner for the equation Bhδy = r. In group-by-group notation, this

11

equation is given by: 

Bh,11 Bh,12 Bh,13 ... Bh,1G

Bh,21 Bh,22 Bh,23 ... Bh,2G

Bh,31 Bh,32 Bh,33 ... Bh,3G
...

...
...

...
...

Bh,G1 Bh,G2 Bh,G3 ... Bh,GG





δy1

δy2

δy3

...

δyG


=



r1

r2

r3

...

rG


, (18)

where Bh,gg′ represents a submatrix of Bh coupling groups g and g′, δyg is a subvector of δy for the group g, and rg

is a subvector of r corresponding to the group g. The block Gauss-Seidel algorithm is carried out with δy = 0, and

solve the first group equation for δy1, then substitute it into the right hand side of the second group equation, solve

for δy2, etc. for the remaining groups.

The block Gauss-Seidel algorithm was traditionally preferred because the individual subproblems are small and

can be solved on limited memory computers. In contrast, on large supercomputers, in our numerical results it

appears better to solve for all of the group fluxes simultaneously by employing a scalable, parallel preconditioner.

The preconditioner must be designed in such a way that the computational load remains well-balanced and the cost

and amount of inter-processor communication is minimized.

In the present work, we construct the preconditioner B−1
h based on a fully coupled overlapping domain decom-

position method. The basic idea of the overlapping domain decomposition method6, 22, 28, 29 is to partition the

computational domain (mesh) Ωh into np subdomains Ωh,i, and then each subdomain is extended to overlap with

its neighbors by a number of layers we denote by δ. This extension is accomplished without using information from

the mesh. Instead, a graph derived from the sparsity pattern of the preconditioning matrix Bh is employed.

We now briefly describe the fully coupled DDM. We define the block index set Sh = {S1
h, S

2
h, S

3
h, ..., S

nnode
h }

corresponding to the global degree of freedom indices, where the Sih represent sets of variable indices associated with

mesh node i, and nnode is the number of total mesh nodes. Sh is distributed across np processors by dividing it into

subsets Si, i = 1, 2, ..., np such that Sh = ∪np

i=1Si, Si ∩ Sj = ∅ when i 6= j.

The block structure of Sh is taken into account when Sh is distributed so that each block Sih is owned by a single

processor. It is advantageous to preserve the tightly coupled block structure during partitioning since the physics are

naturally coupled together in the same manner. Si is extended to overlap with its neighbors by δ layers, where each

block is treated as a single unknown, and the corresponding overlapping subset is denoted as Sδi . The same idea is

applied to the construction of the subdomain vector rδh,i and the restriction operator Rδh,i. Here, the operator Rδh,i

is used to extract the corresponding components for rδh,i from a global vector rh. The submatrix Bδh,i is extracted

12

from its global counterpart using Rδh,i as well, that is,

Bδh,i = Rδh,iBh(Rδh,i)
T , i = 1, 2, ..., np.

Based on these components, a fully coupled restricted additive Schwarz (RAS) preconditioner is given by

B−1
one =

np∑
i=1

(R0
h,i)

T (Bδh,i)
−1Rδh,i, (19)

where R0
h,i returns the subvectors defined on the non-overlapping subdomains, and (Bδh,i)

−1 represents a subdomain

solver, which is an incomplete LU (ILU) factorization in this work. The ILU factorization can employ a specific

submatrix reordering scheme (e.g. nested dissection (ND), one-way dissection (1WD), quotient minimum degree

(QMD), and reverse Cuthill-McKee (RCM)23). Sometimes the reordering schemes improve the performance of the

algorithm. (R0
h,i)

T discards the overlapping part of the solution to reduce communication and improve the convergence

of the algorithm.

The performance of the one-level method can be further improved by introducing a coarse space to construct a

two-level method. Let us denote the coarse space as SH , and a prolongation operator from the coarse space to the

fine space as PhH . The transpose of the prolongation operator, (PhH)T , is used as the restriction operator from the fine

space to the coarse space. BH represents a matrix defined on the coarse space SH . We denote the two-level Schwarz

preconditioner as B−1
two, and its action on a vector is implemented via Algorithm 1, that is,

δyh = B−1
tworh. (20)

At line 4 of Algorithm 1, B−1
H represents a coarse solver that is another restricted Schwarz with ILU as the subdomain

solver in this work. B−1
h is B−1

one when using the one-level method, and it is B−1
two for the two-level method.

Algorithm 1 Two-level Schwarz preconditioner B−1
two.

1: Input a residual from the outer solver rh
2: Solve δy(1/3)

h = B−1
onerh

3: Compute rH = (PhH)T (rh −Bhδy(1/3)
h)

4: Solve δy(2/3)
h = δy

(1/3)
h + PhHB

−1
H rH

5: Compute r̄h = rh −Bhδy(2/3)
h

6: Solve δyh = δy
(2/3)
h +B−1

oner̄h
7: Return δyh

13

We mention that a parallel RAS with ILU as the subdomain solver is chosen as the block solver of the block

Gauss-Seidel method. In Guass-Seidel, the parallel RAS is applied group-by-group, and it is different from its fully

coupled version where all the group fluxes are computed simultaneously.

3.3 Smoothed aggregation based Schwarz coarse space

The coarse space SH plays a critical role, and the algorithm performs poorly if a bad coarse space is used. We use

the smoothed aggregation (SA) method, as discussed in1, 30, to construct the coarse operator BH for Algorithm 1.

The basic idea of SA is to decompose the entire graph into a number of disjoint aggregates, where each aggregate

corresponds to an unknown on the coarse space. The coarse operator BH is computed using the Galerkin method,

BH = (PhH)TBhP
h
H .

More precisely, a graph, denoted as G = {vi, eij}, is constructed based on the numerical values of Bh such that an

edge eij between the unknowns vi and vj is formed if |(Bh)ij | > ω
√
|(Bh)ii||(Bh)jj |. Here ω ∈ [0, 1) is a parameter

which controls which values are dropped; smaller values of ω correspond to more connections being kept. We apply a

maximum independent set (MIS) algorithm to partition G into a number of aggregates, {Vi}, such that Vi ∩ Vj = ∅,

i 6= j, and ∪Vi = M, where M is the set of all nodes in G. The aggregate, Vi, collapses to form a coarse space node

i. The dimension of {Vi} might not be small enough after applying MIS, so a post-processing procedure, as suggested

in1, may be carried out. This procedure tries to merge small aggregates together if they are strongly connected, in

order to reduce the dimension of the coarse space. An initial prolongation operator P̃hH is formed using the aggregates

as follows

(P̃hH)ij =

 1 if i ∈ Vj ,

0 otherwise
(21)

The final prolongation PhH is obtained by improving P̃hH with a Jacobi smoother, that is,

PhH = (I − η(diag(Bh))−1Bh)P̃hH , (22)

where diag(Bh) represents the diagonal part of Bh, and η is the smoothing parameter, which is chosen as 1.5θ−1,

where θ is an estimate of the largest eigenvalue of diag(Bh)−1Bh (interested readers are referred to1 for more details).

In the next section we will demonstrate, via numerical experiments, that the two-level preconditioner based on the

coarse space and built using the smoothed aggregation approach is more efficient than the one-level method.

14

4 Numerical experiments

In this section, we discuss the performance of the proposed algorithm by simulating a graphite moderated nuclear

reactor. The simulation is carried out on a supercomputer consisting of Intel Xeon E5-2680 v3 CPUs connected by a

low latency InfiniBand network. In the following discussion, the term “NI” refers to the average number of Newton

iterations per time step, “LI” is the average number of GMRES iterations per Newton step, “Time” denotes the total

compute time in seconds, “EFF” is the parallel efficiency with respect to the number of processors, and “np” is the

number of processors.

ILU(0) and δ = 1 are used as the default subdomain solver configuration, unless otherwise specified. The relative

stopping condition for the Newton iterations is 10−8 and that for the linear solver is 10−3. The spatial and temporal

discretizations are based on Rattlesnake33, MOOSE10 and libMesh13, and the nonlinear and linear solvers are

implemented on top of PETSc4. The simulation is carried out with δt = 10−2 s for t ∈ (0, 0.1] for the reactor core

as shown in Figs. 3 and 4.

The test problem we consider is a simplified version of the TREAT (the Transient Test Reactor at the Idaho

National Laboratory) calibration transient 1520, which consists of a cubic fuel core surrounded by graphite reflectors

which are 200 and 400 cm across, respectively. Reactivity is increased by adding more fuel to the reactor and

removing some graphite such that the reactor becomes super-critical and starts the transient. The fuel consists of

highly-enriched Uranium particles in a graphite matrix.

TREAT is a “thermal” reactor, which means that the bulk of the fissions are caused by thermal neutrons. The

particular challenge when simulating TREAT is the upscattering of neutrons in the graphite. In upscattering, neutrons

are scattered from lower to higher energies. The Gauss-Seidel sweep moves from faster energies to slower energies and

therefore resolves downscattering, but lags upscattering. The fully coupled approach resolves both downscattering

and upscattering simultaneously.

The initial conditions, generated by solving an eigenvalue problem, are shown in Fig. 3, and the solutions at

t = 0.04 s and 0.06 s for the transient problem are given in Fig. 4. We treat the initial solve of the eigenvalue problem

as an extra time step when reporting the number of Newton iterations, GMRES iterations, and compute time. The

cross section and fission rate parameters for (1) and (4) are given in3, and in the Appendix.

4.1 Comparison with Gauss-Seidel sweeps

The Gauss-Seidel sweep algorithm has traditionally been employed as an inner solver within the power iteration, but

it is not suitable for parallel processing since it sweeps through the various groups sequentially. In this section, we

compare the performance of the fully coupled Schwarz preconditioner with that of the Gauss-Seidel sweep. A mesh

15

Figure 3: Scalar flux for the 6th (left) and 11th (right) groups for the eigenvalue problem.

Figure 4: Scalar flux of the 6th (top) and 11th (bottom) groups at t = 0.04 s and 0.06 s.

with 274,625 vertices and 262,144 elements is used, and the corresponding nonlinear system has 3,020,875 unknowns

(11 degrees of freedom per vertex).

In Table 1, we observe that the number of Newton and GMRES iterations remain approximately constant for both

methods as the number of processors increases. The total compute time for the Gauss-Seidel sweep is comparable to

that of the fully coupled RAS when the number of processors is small (48 and 96), but the Gauss-Seidel algorithm

is slower (due to the improved concurrency of the RAS method) when more processors are used: 16% slower on 192

processors and 42% slower on 384. The average number of GMRES iterations required by the Gauss-Seidel sweep is

a little smaller than that of the fully coupled RAS, but it does not compensate for the extra cost incurred by the

sequential application of the preconditioner.

16

Table 1: A comparison between the fully coupled RAS and the Gauss-Seidel sweep. A nonlinear system with 3,020,875

unknowns is solved by the inexact Jacobian-free Newton-Krylov method. The “fully coupled RAS" here is a one-level
fully coupled RAS.

Fully coupled RAS Gauss-Seidel sweep

np NI LI Time [s] EFF [%] NI LI Time [s] EFF [%]

48 2.27 33.60 2258.70 100 2.36 27.50 2258.50 100

96 2.27 33.76 1229.30 92 2.36 28.64 1278.80 88

192 2.27 34.00 645.25 88 2.36 28.12 749.02 75

384 2.27 34.56 372.14 76 2.36 28.08 528.29 53

48 96 192 384
Number of processors

0

500

1000

1500

2000

2500

C
o
m
p
u
te
 t
im

e
(s
)

linear

fully coupled RAS

Gauss-Seidel sweep

48 96 192 384
Number of processors

1

2

3

4

5

6

7

8

S
p
e
e
d
u
p

linear

fully coupled RAS

Gauss-Seidel sweep

Figure 5: Total compute time (left) and speedup (right) using fully coupled RAS and Gauss-Seidel sweep. The “fully
coupled RAS" here is a one-level fully coupled RAS

The parallel efficiency of the fully coupled RAS is 76%, while that of the Gauss-Seidel sweep drops to 53% when

we use 384 processors. The total compute time and the corresponding speedup are also shown in Fig. 5. The compute

time and speedup of the fully coupled RAS is always better than that of the Gauss-Seidel sweep in Fig. 5. The

preconditioner consists of two stages; the setup and the application. Both stages are required to be scalable to make

the overall algorithm scalable.

We show the time spent on the preconditioner setup and application in Figs. 6 and 7 for both the fully coupled

RAS and the Gauss-Seidel sweep. In Fig. 6, we see that the setup of the fully coupled RAS is much cheaper than

that of the Gauss-Seidel sweep for all processor counts, and the corresponding speedup is also much better. The fully

coupled RAS is 5 times faster than that of the Gauss-Seidel sweep in terms of the time spent on the preconditioner

setup. In Fig. 7, the application of the fully coupled RAS is 10 times faster than that of the Gauss-Seidel sweep, and

it scales well as the number of processors increases.

4.2 Comparison with HYPRE BoomerAMG

HYPRE9 is a library of linear solvers and preconditioners, and its “BoomerAMG” preconditioner has been used suc-

cessfully in a wide range of application areas. In this section, we compare our proposed RAS approach to BoomerAMG

17

Figure 6: Compute time (left) and speedup (right) for preconditioner setup. The “fully coupled RAS" here is a
one-level fully coupled RAS

Figure 7: Compute time (left) and speedup (right) for preconditioner application. The “fully coupled RAS" here is a
one-level fully coupled RAS

for the same problem configuration discussed in the previous section. HYPRE’s default BoomerAMG parameters are

used, and the RAS parameters remain unchanged from the previous section. Both RAS and BoomerAMG are applied

directly to the full preconditioning matrix. The numerical results are summarized in Table 2 and Figs. 8, 9, and 10.

As shown in Table 2, the number of Newton iterations is nearly identical for both cases as the number of processor

cores is increased, but the RAS algorithm requires more linear iterations per Newton iteration. Despite this, the total

computation time for RAS is less than BoomerAMG, especially for higher processor counts. The parallel efficiency of

BoomerAMG drops to 52% at 384 cores, while RAS achieves a parallel efficiency of 76% at this scale. The superior

nature of RAS can also be observed in Fig. 8, which compares the speedup of the two methods. On the left hand side

of Fig. 8, the total compute time of RAS is always less than that of BoomerAMG as the number of processor cores is

increased. Similarly, in Figs. 9 and 10, RAS is more efficient than BoomerAMG in terms of the preconditioner setup

and application times. The setup and application phases of the RAS method both scale well with the number of

processor cores, which is necessary to ensure that the overall algorithm remains efficient for large processor counts.

18

Table 2: A comparison between RAS and HYPRE’s BoomerAMG preconditioner. A nonlinear system with 3,020,875

unknowns is solved by the inexact Jacobian-free Newton-Krylov method. The “fully coupled RAS" here is a one-level
fully coupled RAS

RAS HYPRE BoomerAMG

np NI LI Time [s] EFF [%] NI LI Time [s] EFF [%]

48 2.27 33.60 2258.70 100 2.36 18.73 2298 100

96 2.27 33.76 1229.30 92 2.36 18.73 1321.1 85

192 2.27 34.00 645.25 88 2.36 18.69 776.66 72

384 2.27 34.56 372.14 76 2.36 18.53 536.67 52

Figure 8: Total compute time (left) and speedup (right) using RAS and HYPRE. The “fully coupled RAS" here is a
one-level fully coupled RAS

Figure 9: Compute time (left) and speedup (right) for preconditioner setup using RAS and HYPRE. The “fully
coupled RAS" here is a one-level fully coupled RAS

4.3 Two-level method

The one-level method works well for relatively small-scale problems on moderate numbers of processors, but it

deteriorates as the number of unknowns increases. To address this issue, we introduce one coarse space to construct

the two-level method. We compare the performance of the two-level and one-level methods in this section. Both a

“small” (3,020,875 unknowns) and “large” (23,613,579 unknowns) version of the problem are tested. For the small

19

48 96 192 384
Number of processors

0

100

200

300

400

500

600

700

800

PC
Ap

pl
y
tim

e(
s)

linear
RAS
HYPRE

Figure 10: Compute time (left) and speedup (right) for preconditioner application using RAS and HYPRE. The
“fully coupled RAS" here is a one-level fully coupled RAS

Table 3: Performance of the two-level method.

One-level Two-level
np NI LI Time [s] EFF [%] NI LI Time [s] EFF [%]

3,020,875 unknowns

384 2.27 34.68 334.91 – 2.27 19.36 332.81 –
576 2.27 35.28 254.63 – 2.27 19.36 284.82 –
768 2.27 35.40 245.24 – 2.27 18.92 251.31 –

1152 2.27 35.96 320.00 – 2.27 18.72 270.40 –

23,613,579 unknowns

384 2.27 58.84 3916.6 100 2.27 19.24 2113.90 100

576 2.27 59.28 2679.3 97 2.27 19.24 1507.00 94

768 2.27 59.76 2077.7 94 2.27 19.28 1157.80 91

1152 2.27 60.16 1566.7 83 2.27 19.28 877.45 80

problem, the same mesh as in the previous test is used. The large problem employs a mesh with 2,146,689 vertices

and 2,097,152 elements. The test is carried out using 384, 576, 768, and 1152 processors.

The results are summarized in Table 3, where we observe, in particular, that the required number of GMRES

iterations is much higher for the one-level method than the two-level method. Slow growth in the number of linear

iterations is required in order for a method to be considered scalable. The one- and two-level methods have similar

performance for the small-scale problem in terms of the total compute time.

For the large-scale problem, the number of GMRES iterations for the two-level method is one-third that of the

one-level method, and therefore the two-level method is twice as fast as the one-level method in terms of the total

compute time. When we increase the number of processors, the number of GMRES iterations required for both

algorithms remains approximately constant. Both algorithms are scalable with respect to the number of processors

in terms of the total compute time and the number of GMRES iterations. We observed a parallel efficiency of around

20

Table 4: Impact of overlap size δ for the two-level method.

np δ NI LI Time [s] EFF [%]

384 0 2.27 20.48 2174 100

384 1 2.27 19.24 2120 100

384 2 2.27 19.00 2131 100

576 0 2.27 20.92 1578 92

576 1 2.27 19.24 1507 94

576 2 2.27 19.20 1505 94

768 0 2.27 20.80 1193 91

768 1 2.27 19.28 1156 92

768 2 2.27 19.24 1153 92

1152 0 2.27 21.52 963 75

1152 1 2.27 19.28 922 77

1152 2 2.27 19.24 872 81

80% for both algorithms even when running on over a thousand processors. Finally, note that in Table 3, we do not

report the parallel efficiency of the algorithms for the small-scale problem because in that case the problem is too

small to measure efficiency in a meaningful way.

4.4 Impact of Schwarz parameters

The Schwarz algorithm has several important parameters, such as the overlap size δ, the ILU fill level, and the

submatrix reordering, which affect the parallel performance of the method. We test these parameters in this subsection

with the same configuration as above, and the results are summarized in Tables 4–6. In Table 4, for example, we

see that the number of GMRES iterations slightly decreases and the number of Newton iterations stays constant as

we increase the overlap size. The total compute time when using δ = 2 is smaller than that obtained using δ = 0

or δ = 1 for all processor counts except 384, where the algorithm with δ = 1 is slightly better. When we increase

the number of processors, the average number of GMRES iterations for the δ = 0 case increases slightly while the

number of iterations for the δ = 1 and 2 cases remain approximately constant. All cases have good scalability in

terms of the compute time and the number of GMRES iterations.

Increasing the ILU fill level usually reduces the average number of GMRES iterations while increasing the cost of

the subdomain solver. In Table 5, when we increase the fill level, we see that the number of GMRES iterations is

indeed reduced, but the overall computation time is actually increased due to the extra complexity of the subdomain

solver. ILU(0) has the best performance among all these cases except when np = 1152, where the compute time of

ILU(1) is less than ILU(0) by about 36 seconds. Again, we observe that all cases have good scalability.

Degree of freedom reordering is used to reduce the bandwidth and improve the matrix nonzero structure. In this

test, ILU(2) is used as the subdomain solver. In Table 6, we see that different reordering schemes result in different

21

Table 5: Impact of ILU fill level on the two-level method.

np ILU NI LI Time [s] EFF [%]

384 ILU(0) 2.27 19.24 2120 100

384 ILU(1) 2.27 17.72 2166 100

384 ILU(2) 2.27 16.56 2594 100

576 ILU(0) 2.27 19.24 1507 94

576 ILU(1) 2.27 17.72 1528 95

576 ILU(2) 2.27 16.84 1839 94

768 ILU(0) 2.27 19.28 1156 92

768 ILU(1) 2.27 17.68 1166 94

768 ILU(2) 2.27 16.92 1437 90

1152 ILU(0) 2.27 19.28 922 77

1152 ILU(1) 2.27 17.84 886 81

1152 ILU(2) 2.27 17.28 1116 77

Table 6: Impact of submatrix reordering. ILU(2) is used as the subdomain solver, and the system of equations is
solved with the two-level method while varying the reordering scheme.

np Reordering NI LI Time [s] EFF [%]

384 RCM 2.27 16.08 2423.8 100

384 ND 2.27 16.52 2779.4 100

384 1WD 2.27 16.12 2411.8 100

384 QMD 2.27 16.60 3642.9 100

576 RCM 2.27 16.40 1757.7 92

576 ND 2.27 16.92 1932.8 96

576 1WD 2.27 16.32 1711.2 94

576 QMD 2.27 16.96 2395.5 > 100

768 RCM 2.27 16.36 1422.3 85

768 ND 2.27 16.88 1552.6 90

768 1WD 2.27 16.40 1327.6 90

768 QMD 2.27 16.92 1770.7 > 100

1152 RCM 2.27 16.84 1016.1 79

1152 ND 2.27 17.24 1124.8 82

1152 1WD 2.27 16.84 1020.3 79

1152 QMD 2.27 17.24 1268.7 96

performance characteristics. QMD is the worst for this particular problem because QMD was originally designed for

symmetric matrices, and the matrices used in these tests are non-symmetric. RCM and 1WD have similar performance

in terms of the total compute time and the number of GMRES iterations. The ND reordering requires almost the

same number of iterations as QMD, but ND performs better than QMD in terms of the total compute time. For all

cases we observe linear scalability, that is, the compute time is halved when we double the number of processors.

22

4.5 Temperature feedback

In this section, we solve the multigroup neutron diffusion equations in a transient scenario coupled with adiabatic

heating (heat equation without conduction term) and temperature feedback to the nuclear cross sections. This

example is also based on the TREAT, which is designed to expose nuclear fuel experiments to high-power transients:

up to 18 GW, or about 6 times the power of a commercial light water reactor.

In TREAT, temperature feedback to the cross sections occurs through spectral shift, which decreases fission rates

and increases leakage and absorption with increasing temperature. In this scenario, the power increases almost

exponentially until the core reactivity is offset by spectral shift caused by the increase in temperature. After the

reactor runs through its peak power, it settles on a new equilibrium core temperature and power level at which it

will remain until further perturbation of its reactivity. We end the simulation sufficiently early that the effects of

heat conduction can be ignored.

The simulation is run for t ∈ (0, 2] with a mesh of 274,625 nodes and 262,144 elements. The resulting system of

nonlinear equations has 3,020,875 unknowns in total. The entire simulation takes 4668.2 s on 768 processor cores.

The variation of the temperature and the power with time is shown in Fig. 11, where “Averaged” represents the

average temperature over the whole computational domain, and “Maximum” represents the maximum temperature

point in the computational domain. In the graph on the right hand side of Fig. 11, “power” is defined as
∫

Ω
ρpower dx.

We observe that the power grows rapidly and reaches a peak at about t = 1.2 s, and then rapidly decreases for

t ∈ [1.2, 2]. The temperature increases slowly for t ∈ [0., 0.5], rapidly for t ∈ [0.5, 1.5], and slowly again for t ∈ [1.5, 2].

This complicated and realistic physical configuration challenges the nonlinear and linear solvers. The performance

of the algorithm (in terms of the average number of Newton and GMRES iterations required at each time step) is

shown in Fig. 12.

The number of required Newton iterations remains almost constant throughout the simulation. Two Newton

iterations are required for t ∈ [0, 0.7] ∪ [1.6, 2] and three Newton iterations are required for t ∈ [0.7, 1.6]. The trend

transition occurs for t ∈ [0.7, 1.6], and therefore the resulting nonlinear system is expected to be more difficult to

solve during that time period. The average number of linear iterations per Newton step also remains close to constant

during the entire simulation.

The data of Fig. 12 demonstrate that the proposed algorithm is robust in the context of a realistic simulation with

temperature feedback. The strong scalability of the algorithm is shown in Table 7. The mesh used for the strong

scalability study consists of 2,146,689 nodes, 2,097,152 elements, and 23,613,579 unknowns. In Table 7, we observe

that both the Newton and GMRES iteration counts remain approximately constant as we increase the number of

processors, and the compute time is almost halved when we double the number of processor cores. The algorithm

exhibits a parallel efficiency of around 70% on 1152 processors.

23

0.0 0.5 1.0 1.5 2.0
Time(s)

300

325

350

375

400

425

450

Te
m
pe

ra
tu
re
(K
)

Averaged
Maximum

0.0 0.5 1.0 1.5 2.0
Time(s)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Po
we

r(W
)

1e9
power

Figure 11: Temperature and power feedback for t ∈ [0, 2].

0.0 0.5 1.0 1.5 2.0
Time(s)

0

2

4

6

8

10

Nu
m

be
r o

f N
ew

to
n

ite
ra

tio
ns

Newton

0.0 0.5 1.0 1.5 2.0
Time(s)

0

5

10

15

20

Nu
m

be
r o

f l
in

ea
r i

te
ra

tio
ns

GMRES

Figure 12: Number of the Newton and linear iterations for t ∈ [0, 2] with the problem with temperature feedback.

In a multilevel method, the size of coarse space should remain small to ensure that its computation remains

inexpensive, but if it is too small, the resulting algorithm will require too many linear iterations. Good scalability also

requires that the coarse space dimension not change much as the number of processors increases. In Table 7, “rowsc”

represents the number of coarse matrix rows, and “nonzerosc” denotes the number of coarse matrix nonzeros. We

observe that the ratio of rowsc to fine matrix rows is around 0.6%, and the ratio of nonzerosc to fine matrix nonzeros

is 0.8%. The size of the coarse space remains approximately constant as we increase the number of subdomains,

which is an indication that the coarsening algorithm works effectively. Overall, the proposed algorithms are found to

be robust and scalable for the temperature feedback application.

5 Conclusions

An implicit Newton-Krylov method based on a fully coupled and scalable two-level Schwarz preconditioner was

studied for a challenging system of equations applicable to nuclear engineering analysis. This system was derived

from the discretization of the transient multigroup neutron diffusion equations by a standard finite element method

24

Table 7: Strong scaling of the algorithm for the temperature feedback problem. The number of unknowns is 23,613,579

and the number of nonzeros in the matrix is 1,711,998,750 at the fine level.

np NI LI Time [s] rowsc nonzerosc EFF [%]

192 2.27 17.16 4139.5 135,541 13,421,921 100
384 2.27 17.72 2283.9 135,965 13,512,525 91
576 2.27 17.72 1601.5 135,448 13,470,818 86
768 2.27 17.68 1246.3 135,156 13,420,703 83

1152 2.27 17.84 990.7 134,779 13,311,952 70

in space combined with an implicit time discretization. The coarse space (based on smoothed aggregation) was

introduced to construct the two-level version of a Schwarz preconditioner. The preconditioner is applied in a fully

coupled way so that all group variables are computed simultaneously. It was shown that the fully coupled method has

better performance than the block Gauss-Seidel sweep algorithm, and that the two-level method further improves

the parallel performance as the number of processors increases. The scalability of the proposed algorithm, in terms

of the total compute time and the number of nonlinear and linear iterations, was also demonstrated.

Acknowledgments

This manuscript has been authored by Battelle Energy Alliance, LLC under Contract No. DE-AC07-05ID14517 with

the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article

for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-

wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States

Government purposes.

Appendix

This appendix contains tabulated data associated with the material coefficients in the multigroup neutron diffusion

equations.

25

Table 8: Material properties of the graphite domain at T = 293.6 K. Since there are no nuclear reactions occurring
on the graphite, material parameters for the fission term and the DNP term are zero. There are, however, still
scattering events in the graphite, and we show those parameters in a different table. The density of the nuclear fuel
is ρ = 1.52639336 gcm−3, and the density of the graphite is ρ = 0.

g vg [cm s−1] Dg [cm] Σr,g [cm−1]

1 2.959280e+9 4.371631e0 3.390080e−2

2 9.412739e+8 2.184245e0 1.161440e−2

3 1.731065e+8 1.321336e0 1.211170e−2

4 3.238520e+7 1.304055e0 1.300950e−2

5 7.313684e+6 1.300991e0 1.516310e−2

6 1.920953e+6 1.300082e0 1.622090e−2

7 8.049456e+5 1.293077e0 3.782370e−2

8 4.583182e+5 1.266950e0 3.890520e−2

9 3.380228e+5 1.216505e0 6.807460e−2

10 2.471632e+5 1.210840e0 5.145000e−2

11 1.396748e+5 1.196609e0 4.873540e−2

26

T
ab

le
9:

Sc
at
te
ri
ng

pa
ra
m
et
er
s,

Σ
s
,g

′ →
g
[c

m
−

1
],
on

th
e
gr
ap

hi
te

do
m
ai
n
at
T

=
2
9
3.

6
K
.

g
′
→
g

1
2

3
4

5
6

7
8

9
1
0

1
1

1
6
.6

9
0
9
2
0
e−

2
2

3
.3

5
1
6
5
0
e−

2
1
.7

4
6
3
0
0
e−

1
3

6
.1

1
1
8
2
0
e−

5
1
.1

6
1
0
9
0
e−

2
2
.5

6
0
9
9
0
e−

1
4

1
.5

0
0
8
6
0
e−

7
1
.3

4
0
2
4
0
e−

8
1
.2

1
0
0
8
0
e−

2
2
.5

7
6
8
2
0
e−

1
5

1
.3

0
0
1
8
0
e−

2
2
.5

6
1
1
9
0
e−

1
3
.5

0
7
4
5
0
e−

6
6

1
.5

1
3
2
4
0
e−

2
2
.5

5
2
3
5
0
e−

1
1
.0

2
2
7
7
0
e−

3
7

1
.6

0
6
7
8
0
e−

2
2
.3

4
6
8
0
0
e−

1
2
.6

1
3
6
0
0
e−

3
3
.3

5
3
3
0
0
e−

5
2
.3

5
0
2
1
0
e−

6
8

2
.8

6
9
1
2
0
e−

5
3
.5

3
9
4
1
0
e−

2
2
.3

6
3
2
5
0
e−

1
2
.6

9
4
1
7
0
e−

2
4
.0

4
2
0
3
0
e−

3
8
.2

1
9
0
4
0
e−

4
9

7
.8

0
8
3
1
0
e−

4
2
.8

6
4
4
1
0
e−

2
2
.1

2
9
4
1
0
e−

1
2
.5

6
5
2
8
0
e−

2
4
.2

7
5
9
1
0
e−

3
10

3
.0

5
3
9
7
0
e−

4
6
.5

0
5
4
2
0
e−

3
3
.7

2
5
2
1
0
e−

2
2
.3

2
5
9
9
0
e−

1
4
.2

0
0
7
6
0
e−

2
11

3
.7

1
3
9
4
0
e−

5
6
.4

1
3
7
7
0
e−

4
3
.1

6
9
9
3
0
e−

3
2
.0

8
2
8
7
0
e−

2
2
.2

7
3
7
2
0
e−

1

27

Table 10: Material properties for nuclear fuel at T = 293.6 K. The scattering parameters of the nuclear fuel are shown
in a different table. Note that in this computation, for a given group, χd,i,g = χd,j,g, but in general, χd,i,g 6= χd,j,g.

g vg [cm s−1] Dg [cm] Σr,g [cm−1] νΣf,g [cm−1] κΣf,g [J cm−1] χd,i,g χp,g

1 2.949626e+9 3.171522e0 4.799060e−2 2.845520e−5 3.025787e−16 0.000000e0 1.731860e−1
2 9.821543e+8 1.700550e0 1.338930e−2 2.416280e−5 3.088935e−16 8.755640e−1 8.117770e−1
3 1.768128e+8 9.838443e−1 1.534450e−2 4.696380e−5 6.250405e−16 1.224150e−1 1.495740e−2
4 3.269320e+7 9.610330e−1 1.716630e−2 2.185340e−4 2.905171e−15 1.941470e−3 7.913460e−5
5 7.359868e+6 9.608252e−1 2.039280e−2 8.303450e−4 1.102883e−14 7.406730e−5 5.335540e−7
6 1.929057e+6 9.607034e−1 2.207510e−2 5.807100e−4 7.710701e−15 4.342090e−6 9.490130e−9
7 8.085774e+5 9.547515e−1 5.391220e−2 2.610080e−3 3.465703e−14 5.828650e−7 0.000000e0
8 4.619450e+5 9.384675e−1 6.345620e−2 4.400400e−3 5.842866e−14 0.000000e0 0.000000e0
9 3.382927e+5 9.075703e−1 1.192890e−1 6.558340e−3 8.708196e−14 0.000000e0 0.000000e0
10 2.475413e+5 8.973237e−1 9.463540e−2 9.526350e−3 1.264916e−13 3.104860e−7 0.000000e0
11 1.403660e+5 8.604660e−1 9.477190e−2 1.757570e−2 2.333717e−13 0.000000e0 0.000000e0

Table 11: Material properties for delayed neutron precursors for the nuclear fuel at T = 293.6 K.

λi [s−1] βi

1 1.333600e−2 2.403820e−4

2 3.273900e−2 1.247060e−3

3 1.207800e−1 1.193690e−3

4 3.027810e−1 2.654130e−3

5 8.494920e−1 1.092640e−3

6 2.853010e0 4.587350e−4

28

T
ab

le
12
:S

ca
tt
er
in
g
pa

ra
m
et
er
s,

Σ
s
,g

′ →
g
[c

m
−

1
],
fo
r
th
e
nu

cl
ea
r
fu
el

at
T

=
2
9
3.

6
K
.

g
′
→
g

1
2

3
4

5
6

7
8

9
1
0

1
1

1
8
.8

8
7
1
8
0
e−

2
2

4
.7

5
0
9
0
0
e−

2
2
.2

5
4
6
7
0
e−

1
3

9
.2

1
4
3
1
0
e−

5
1
.3

3
6
4
6
0
e−

2
3
.4

5
0
8
0
0
e−

1
4

2
.6

6
8
7
5
0
e−

7
2
.4

2
1
4
0
0
e−

8
1
.5

2
6
7
4
0
e−

2
3
.4

9
9
3
1
0
e−

1
5

1
.6

8
7
7
8
0
e−

2
3
.4

6
7
3
9
0
e−

1
5
.2

8
8
7
7
0
e−

6
6

1
.9

7
8
0
5
0
e−

2
3
.4

5
0
2
6
0
e−

1
1
.4

9
8
1
8
0
e−

3
7

2
.1

5
1
3
4
0
e−

2
3
.1

5
0
3
0
0
e−

1
4
.5

3
7
9
2
0
e−

3
3
.2

5
9
5
5
0
e−

5
2
.3

0
5
7
1
0
e−

6
8

2
.6

2
3
4
5
0
e−

5
4
.9

8
0
0
9
0
e−

2
3
.0

9
1
9
6
0
e−

1
4
.5

4
6
0
4
0
e−

2
6
.4

0
2
6
1
0
e−

3
9
.4

6
0
7
2
0
e−

4
9

7
.3

7
4
0
0
0
e−

4
4
.5

9
4
2
1
0
e−

2
2
.6

0
5
9
4
0
e−

1
4
.5

1
6
3
0
0
e−

2
6
.9

6
0
6
5
0
e−

3
10

2
.7

3
8
1
8
0
e−

4
9
.6

4
7
8
4
0
e−

3
6
.4

9
0
1
4
0
e−

2
2
.9

0
9
4
2
0
e−

1
7
.6

7
1
7
3
0
e−

2
11

3
.3

4
6
0
0
0
e−

5
7
.1

7
4
8
0
0
e−

4
5
.0

9
6
1
9
0
e−

3
3
.7

5
8
9
3
0
e−

2
2
.9

5
7
8
4
0
e−

1

29

Table 13: Some of the temperature-dependent properties of the nuclear fuel. Other fuel and graphite material
properties, which have a similar temperature dependence, are not shown here.

T [K] D11 [cm] νΣf,11 [cm−1] Σs,1→2 [cm−1]

2.936000e+2 8.604660e−1 1.757570e−2 4.750900e−2

4.000000e+2 8.388551e−1 1.735170e−2 4.750600e−2

6.000000e+2 8.004085e−1 1.709310e−2 4.748140e−2

8.000000e+2 7.660000e−1 1.691230e−2 4.748830e−2

30 REFERENCES

References

1. Adams MF. Algebraic multigrid methods for direct frequency response analyses in solid mechanics. Comput Mech. 2007;39(4): 497–

507.

2. Aragonés JM, Ahnert C, and Garcia-Herranz N. The analytic coarse-mesh finite difference method for multigroup and multidimen-

sional diffusion calculations. Nucl Sci Eng. 2007;157(1): 1–15.

3. Baker BA, Ortensi J, and DeHart MD. 2016. FY 2016 Status Report on the Modeling of the M8 Calibration Series using MAMMOTH,

Technical Report INL/EXT–16-40023, Idaho National Laboratory.

4. Balay S, Abhyankar S, Adams MF., Brown J, Brune P, Buschelman K, Dalcin L, Eijkhout V, Gropp WD., Kaushik D, Knepley MG.,

McInnes LC, Rupp K, Smith BF, Zampini S, Zhang H, and Zhang H. 2016. PETSc Users Manual, Technical Report ANL-95/11 -

Revision 3.7, Argonne National Laboratory.

5. Barrault M, Lathuiliere B, Ramet P, and Roman J. Efficient parallel resolution of the simplified transport equations in mixed-dual

formulation. J Comput Phys. 2011;230(5): 2004–2020.

6. Cai XC and Sarkis M. A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J Sci Comput. 1999;21(2):

792–797.

7. Dennis Jr JE and Schnabel RB. Numerical Methods for Unconstrained Optimization and Nonlinear Equations: SIAM; 1996.

8. Duderstadt JJ and Hamilton LJ. Nuclear Reactor Analysis: Wiley; 1976.

9. Falgout RD and Yang UM. Hypre: A library of high performance preconditioners, International conference on computational science;

2002. p. 632–641.

10. Gaston DR, Permann CJ, Peterson JW, Slaughter AE, Andrš D, Wang Y, Short MP, Perez DM, Tonks MR, Ortensi J, and Martineau

RC. Physics-based multiscale coupling for full core nuclear reactor simulation. Ann Nucl Eng. October 2015;84: 45–54.

11. Jamelot E and Ciarlet P. Fast non-overlapping Schwarz domain decomposition methods for solving the neutron diffusion equation.

J Comput Phys. 2013;241: 445–463.

12. Kaper HG, Leaf GK, and Lindeman AJ. A timing comparison study for some high order finite element approximation procedures

and a low order finite difference approximation procedure for the numerical solution of the multigroup neutron diffusion equation.

Nucl Sci Eng. 1972;49(1): 27–48.

13. Kirk BS, Peterson JW, Stogner RH, and Carey GF. libMesh: A C++ library for parallel adaptive mesh refinement/coarsening

simulations. Eng Comput. 2006;22(3–4): 237–254.

14. Knoll DA and Keyes DE. Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J Comput Phys.

2004;193(2): 357–397.

15. Knoll DA, Park H, and Newman C. Acceleration of k-eigenvalue/criticality calculations using the Jacobian-free Newton-Krylov

method. Nucl Sci Eng. 2011;167(2): 133–140.

16. Kong F and Cai XC. A highly scalable multilevel Schwarz method with boundary geometry preserving coarse spaces for 3D elasticity

problems on domains with complex geometry. SIAM J Sci Comput. 2016;38(2): C73–C95.

REFERENCES 31

17. Kong F and Cai XC. Scalability study of an implicit solver for coupled fluid-structure interaction problems on unstructured meshes

in 3D. Int J High Perform Comput Appl. 2016.

18. Kong F and Cai XC. A scalable nonlinear fluid–structure interaction solver based on a Schwarz preconditioner with isogeometric

unstructured coarse spaces in 3D. J Comput Phys. 2017;340: 498–518.

19. Lewis EE and Miller WF. Computational Methods of Neutron Transport: John Wiley and Sons; 1984.

20. Ortensi J, DeHart MD, G Frederick N, Wang Y, Alberti AL, and Palmer TS. 2015. Full Core TREAT Kinetics Demonstration

Using Rattlesnake/BISON Coupling Within MAMMOTH, Technical Report INL/EXT–15-36268, Idaho National Laboratory.

21. Purwadi MD, Tsuji M, Narita M, and Itagaki M. A hierarchical domain decomposition boundary element method applied to the

multiregion problems of neutron diffusion equations. Nucl Sci Eng. 1998;129(1): 88–96.

22. Quarteroni A and Valli A. Domain Decomposition Methods for Partial Differential Equations: Oxford University Press; 1999.

23. Saad Y. Iterative Methods for Sparse Linear Systems: SIAM; 2003.

24. Saad Y. Numerical Methods for Large Eigenvalue Problems: Revised Edition: SIAM; 2011.

25. Saad Y and Schultz MH. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci

Stat Comput. 1986;7(3): 856–869.

26. Scheichl R. Parallel solvers for the transient multigroup neutron diffusion equations. Int J Numer Methods Eng. 2000;47(10): 1751–

1771.

27. Semenza LA, Lewis EE, and Rossow EC. The application of the finite element method to the multigroup neutron diffusion equation.

Nucl Sci Eng. 1972;47(3): 302–310.

28. Smith B, Bjorstad P, and Gropp WD. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations:

Cambridge University Press; 2004.

29. Toselli A and Widlund OB. Domain Decomposition Methods: Algorithms and Theory, Vol. 34: Springer; 2005.

30. Vaněk P, Mandel J, and Brezina M. Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems.

Comput. 1996;56(3): 179–196.

31. Vidal-Ferràndiz A, González-Pintor S, Ginestar D, Verdú G, and Demazière C. Schwarz type preconditioners for the neutron diffusion

equation. J Comput Appl Math. 2017;309: 563–574.

32. Wang Y, Bangerth W, and Ragusa J. Three-dimensional h-adaptivity for the multigroup neutron diffusion equations. Prog Nucl

Eng. 2009;51(3): 543–555.

33. Wang Y, Schunert S, DeHart M, Martineau R, and Zheng W. Hybrid PN-SN with Lagrange multiplier and upwinding for the

multiscale transport capability in Rattlesnake. Prog Nucl Eng. 2017.

32 REFERENCES

	2048
	2048
	A fully coupled two-level Schwarz preconditioner based on smoothed aggregation for the transient multigroup neutron diffusion equations
	Abstract
	Introduction
	Multigroup neutron diffusion equations
	Scalable parallel algorithm framework
	Eigenvalue solver
	Newton-Krylov-Schwarz
	Smoothed aggregation based Schwarz coarse space

	Numerical experiments
	Comparison with Gauss-Seidel sweeps
	Comparison with HYPRE BoomerAMG
	Two-level method
	Impact of Schwarz parameters
	Temperature feedback

	Conclusions

