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        Pebble bed High Temperature Reactors (HTRs) are 
characterized by many advantageous design features, 
such as excellent passive heat removal in accidents, large 
margins to fuel failure, and online refueling potential. 
However, a significant challenge in the core modeling of 
pebble bed reactors is the complex fuel-coolant structure. 
This paper presents a new porous media simulation code, 
Pronghorn, that aims to alleviate modeling challenges for 
pebble bed reactors by providing a fast-running, medium-
fidelity core simulator. Pronghorn is intended to 
accelerate the design and analysis cycle for pebble bed 
and prismatic HTRs by permitting fast scoping studies 
and providing boundary conditions for systems-level 
analysis. Pronghorn is built on the Multiphysics Object-
Oriented Simulation Environment (MOOSE) using 
modern software practices and a thorough testing 
framework. This paper describes the physical models used 
in Pronghorn and demonstrates Pronghorn’s capability 
for modeling gas-cooled pebble bed HTRs by presenting 
simulation results obtained for the German SANA pebble 
bed decay heat experiments. Within the limitations of the 
porous media approximation and existing available 
closure relationships, Pronghorn predicts the SANA 
experimental pebble temperatures well, expanding the 
code’s validation base. A brief code-to-code comparison 
shows a level of accuracy comparable to other porous 
media simulation tools. Pronghorn’s advantages over 
these related tools include: an arbitrary equation of state, 
unstructured mesh capabilities, compressible flow 
models, the ability to couple to MOOSE fuels 
performance and systems-level thermal-hydraulics codes, 
and modern software design. 
 

 
I. INTRODUCTION 

 
Pebble bed High Temperature Reactors (HTRs) are 

expected to display excellent heat removal characteristics 
in operational and accident scenarios due to graphite's 
capability for storing and transferring heat, the very high 
failure temperatures of particle fuel, and the low power 
densities involved. However, a major challenge associated 
with the modeling of pebble bed reactors is the complex 

fuel-coolant structure in the core. Hundreds of thousands 
of fuel pebbles make full-core Computational Fluid 
Dynamics (CFD) simulations too expensive, while the 
lack of a natural subchannel makes subchannel codes 
difficult to adapt. By averaging the flow equations in 
space and providing additional closure relationships to 
express the effect of a porous solid matrix of fuel on the 
coolant, porous media models can provide medium-
fidelity simulation results in reasonable run times to 
facilitate accelerated design and analysis. Both the 
lengthy mesh generation process required for CFD, and 
the correspondingly long run times, are alleviated through 
the use of a porous media model1. Porous media models 
cannot capture flow details around the pebbles and the 
highly asymmetric drag and heat transfer in the bed, but 
for the purposes of engineering-scale analysis, porous 
media models generally predict the fluid flow and fluid-
solid heat transfer fairly well1,2.  

Pronghorn is a Finite Element (FE), porous media 
thermal-hydraulics simulation code built on the 
Multiphysics Object-Oriented Simulation Environment 
(MOOSE) framework3 that is intended to provide 
simulation results in short turnaround times for design 
scoping studies, or core boundary conditions for systems-
level analysis of pebble bed HTRs. An advantage 
associated with software built on the MOOSE framework 
is that all applications share a common code base, which 
facilitates relatively easy coupling. This leverages the 
many domain-specific man-hours dedicated to individual 
physics codes to be combined for sophisticated 
multiphysics analysis. 

Pronghorn began development in 2008, but due to 
recent changes in the MOOSE framework and improved 
porous media models, was recently redeveloped from 
scratch. This paper presents an introduction to the models 
used in this modernized Pronghorn and its validation with 
the SANA pebble bed experiments4 conducted in 
Germany from 1994-1996. The remainder of this report is 
organized as follows. Section II discusses the physical 
models used in Pronghorn; Section III introduces the 
SANA experiments and provides justification of several 
key modeling assumptions made; Section IV presents a 
brief overview of Pronghorn’s verification framework and 



modern software practices; Section V presents Pronghorn 
simulation results for several of the SANA experiments 
and a comparison with results obtained with comparable 
porous media codes; Section VI provides conclusions. 
 
II. PHYSICAL MODELS 
 

Numerical solutions to the fluid flow equations for 
Reynolds numbers of interest for nuclear reactor 
applications are very computationally expensive due to 
the need to resolve thin boundary layers, capture fine-
scale turbulent motions, and, depending on the numerical 
method, ensure stability. This computational cost can be 
prohibitive to accelerated design and analysis of 
engineering-scale phenomena such as reactor response to 
a loss of offsite power. Provided the global impact of 
local variation in the fluid flow can be approximated, a 
simpler set of equations can be solved to predict reactor 
response. Porous media models, of common use in the 
chemical and geological engineering fields, approximate a 
solid-fluid medium as a two-phase mixture of solid and 
fluid, where the porosity 𝜀  reflects the fraction of a 
representative volume that is fluid, 

 
 𝜀 = fluid	
  volume

total	
  volume
	
  . (1) 

 
The porosity in a cylindrical packed bed of spheres is 

a damped oscillatory function of the distance from the 
bounding wall5. At the wall, the porosity is nearly unity 
due to point contacts with the wall. Within four to five 
pebble diameters of the wall, the porosity reaches its bed 
average value that is typically in the range of 0.35-0.45 
for beds of spheres. This large variation induces several 
important effects on the fluid flow. The pressure drop 
decreases approximately linearly with porosity, and a 1% 
change in porosity in the classic Ergun drag correlation 
produces about a 10% change in the local pressure drop6. 
The lower-porosity region near the bounding walls 
therefore leads to a flow-channeling effect. Velocities 
near the wall are about 2-3 times higher than in the center 
of the bed7. The variation of pressure drop with porosity 
is approximated by a porous medium friction factor, 𝑊. 

In addition to porous media drag, the porosity 
influences the convective and conductive heat transfer in 
the bed. Lower porosities yield improved convective heat 
transfer due to the more tortuous fluid paths. The 
convective heat transfer coefficient 𝛼  decreases 
approximately linearly with porosity. While the 
correlation between porosity and convective heat transfer 
coefficient is not as strong as the correlation between 
porosity and pressure drop, a 1% change in the porosity 
produces about a 3% change in the local convective heat 
transfer coefficient6. Finally, the solid conductive heat 
transfer, represented by an effective solid thermal 
conductivity 𝜅3 , is also a function of porosity. While 

conduction occurs within each solid pebble, heat transfer 
also occurs through pebble contact areas and by radiation 
and conduction across fluid gaps. Higher porosities 
therefore lead to improved radiation heat transfer, but 
reduced contact conduction8.  

The porous media versions of the fluid flow 
equations are derived by averaging the equations over a 
representative volume consisting of a mixture of solid and 
fluid9. This averaging process produces several 
constitutive terms that are not normally present in the 
governing equations. The governing equations used for 
simulation of the SANA facility are discussed in Section 
II.A, followed by the semi-empirical and empirical 
correlations developed for porous media closure terms in 
Section II.B, and finally the thermophysical fluid and 
solid properties in Section II.C. 
 
II.A. Governing Equations 

 
Pronghorn solves the porous media equivalents of the 

Euler equations for the fluid pressure 𝑃, momentum 𝜌6𝑉, 
and temperature 𝑇6 , and the porous media solid energy 
equation for solid temperature 𝑇3 . A detailed derivation 
and description of these governing models and closure 
relationships is beyond the scope of this paper, but can be 
found elsewhere10.  Several additional assumptions are 
made beyond those associated with the Euler equations 
that are acceptable for slowly-evolving transients. 
Ongoing work involves numerical stabilization that will 
permit full-core solutions with the porous media Euler 
equations. All of the equations presented in this section 
are obtained by averaging the governing equations over a 
representative elementary volume consisting of solid and 
fluid. The conservation of momentum equation is 

 
 9 :;<=

9>
+ 𝛻 ⋅ 𝜀𝜌6𝑉𝑉 + 𝜀𝛻𝑃 − 𝜀𝜌6𝑔 +𝑊𝜌6𝑉 = 0, (2) 

 
where 𝜌6  is the fluid intrinsic density, 𝑉 is the fluid 

intrinsic velocity, and 𝑔 is the gravitational acceleration 
vector. By neglecting the time rate of change of 
momentum and the advection of momentum, the 
momentum conservation equation simplifies to 
 
 𝜀𝛻𝑃 − 𝜀𝜌6𝑔 +𝑊𝜌6𝑉 = 0	
  .	
   (3) 
 

This form of the momentum equation is valid for low 
Reynolds number flows and slowly-evolving transients, 
since changes in momentum are instantaneously reflected 
as changes in pressure. Because drag effects are about 
1000 times more significant than advection effects in low-
flow gas-cooled pebble bed reactors11, neglecting the 
advection of momentum is justified for the SANA 
experiments. However, as mentioned, ongoing work 
focuses on improving stabilization such that momentum 



advection need not be neglected. Eq. (3) is solved for 
fluid momentum. The conservation of mass equation is 

 
 9 :;<

9>
+ 𝛻 ⋅ 𝜀𝜌6𝑉 = 0	
  .	
   (4) 

 
Eq. (4) can be transformed to a diffusive equation by 

rearranging Eq. (3) for momentum and substituting into 
Eq. (4), giving a pressure Poisson equation, 
 
 9 :;<

9>
+ 𝛻 ⋅ :F

G
−𝛻𝑃 + 𝜌6𝑔 = 0	
  .	
   (5) 

 
Eq. (5) is solved for the fluid pressure, and the fluid 

density is provided by an Equation of State (EOS) 
corresponding to e.g. ideal gas, stiffened gas, barotropic 
fluid, etc. This flexibility alleviates the ideal gas EOS 
restrictions of many earlier porous media codes. 

The fluid temperature equation is derived from the 
conservation of total energy equation using equilibrium 
thermodynamics. Neglecting compression work and 
viscous heating gives 
 
 𝜌6𝑐I6

9 :J<
9>

+ 𝜀𝜌6𝑐I6𝑉 ⋅ 𝛻𝑇6 −	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   (6) 
 𝛻 ⋅ 𝜅6𝛻𝑇6 + 𝛼 𝑇6 − 𝑇3 + 𝑞6 = 0,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   

 
where 𝑐I6 is the fluid isobaric specific heat, 𝑇6 is the 

intrinsic fluid temperature, 𝜅6  is the effective fluid 
thermal conductivity, 𝑇3 is the intrinsic solid temperature, 
and 𝑞6 is a heat source in the fluid. Eq. (6) is solved for 
the fluid temperature. The same derivation is performed 
for the solid energy equation, giving 
 
 𝜌3𝑐I3

9 LM: JN
9>

− 𝛻 ⋅ 𝜅3𝛻𝑇3 + 𝛼 𝑇3 − 𝑇6 + 𝑞3 = 0, (7) 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   

where 𝜌3 is the solid intrinsic density, 𝑐I3 is the solid 
isobaric specific heat, 𝜅3  is the effective solid thermal 
conductivity, and 𝑞3 is the heat source in the solid. Eq. (7) 
is solved for the solid temperature. Because the heat 
source in the SANA experiments is not a volumetric 
source and the pebbles contain no fissile material, 𝑞6 and 
𝑞3 are zero. The solid phase is assumed to be stationary 
and incompressible, therefore no conservation of mass or 
momentum equations are required for this phase.  
 
II.A.1 Numerical Method 
 

The governing equations are solved using the Finite 
Element Method (FEM). By multiplying each equation by 
a test function and applying integration by parts when 
possible, the weak form of each equation is derived. The 
derivation of these weak forms is given in detail 
elsewhere10.  

After spatial discretization by the FEM, the Jacobian 
Free Newton Krylov (JFNK) method is used to solve the 

system of coupled, nonlinear equations12. This solution 
method requires an outer loop over Newton iterations, and 
an inner loop over linear iterations. The Jacobian required 
for the Newton iterations is approximated with a first-
order accurate finite difference derivative. The linear 
iterations are performed using the Generalized Minimal 
Residual Method (GMRES) method13. The Method of 
Lines temporal discretization method is used. Both 
explicit and implicit time discretization schemes are 
available in MOOSE; only implicit schemes are used in 
the present work. 
 
II.A.2 Boundary Conditions 
 

Two general types of Boundary Conditions (BCs), 
Dirichlet and Neumann, can be specified in Pronghorn. A 
Dirichlet BC strongly enforces a known value for a 
variable on a boundary. Neumann BCs arise from the FE 
integration by parts discussed in Section II.A.1, and allow 
the user to weakly enforce a specified flux (such as heat 
flux) at the boundary. 

For hyperbolic equations, because information travels 
along characteristics, some BCs can only be specified on 
inflow boundaries. Special “free” BCs are needed on 
outflow boundaries to avoid the default zero-Neumann 
BC arising from the FE discretization. In the discussion of 
BCs that follows, the 𝑖  and 𝑜  subscripts indicate known 
inlet and outlet values, and 𝑖𝑛 , 𝑜𝑢𝑡 , and 𝑤𝑎𝑙𝑙  indicate 
inflow, outflow, and solid wall boundaries. 𝜕𝛺 indicates a 
boundary, and 𝑛  is the unit outward normal for that 
boundary. The Neumann-type BC for the pressure 
Poisson equation is 

 

 :F

G
−𝛻𝑃 + 𝜌6𝑔 ⋅ 𝑛 =

𝜌6Y𝑉Y ⋅ 𝑛
𝜌6𝑉 ⋅ 𝑛
0

𝜕𝛺YZ
𝜕𝛺[\>
𝜕𝛺]^__

.	
   (8) 

 
Because the pressure Poisson equation is parabolic in 

nature, a Dirichlet BC for pressure can be specified on 
any boundary, provided a Neumann BC is not also 
specified on that boundary. This Dirichlet BC is 
commonly specified on the outflow so that an inlet 
momentum can still be specified. Hence, a Dirichlet 
pressure BC can be specified on 𝜕𝛺[\>  instead of the 
𝜕𝛺[\>	
  condition shown in Eq. (8). 

No BCs are required for the momentum equation. For 
the fluid energy equation, a Dirichlet value for fluid 
temperature can be specified on any boundary. The 
Neumann BCs for the fluid energy equation are 

 

 −𝜅6𝛻𝑇6 ⋅ 𝑛 =
𝑞6

ℎ]^__ 𝑇6 − 𝑇]^__
𝜕𝛺heat	
  flux
𝜕𝛺convection

	
  ,	
   (9) 

 
where 𝑞6 is a known value of heat flux, ℎ]^__ is the 

convective heat transfer coefficient between the fluid and 



a bounding wall, and 𝑇]^__ is the known wall temperature. 
Radiation heat transfer between the fluid and the 
surroundings is neglected, as the solid temperature for 
reactor applications will be significantly larger than the 
fluid temperature.  

For the solid energy equation, a Dirichlet value for 
solid temperature can be specified on any boundary. The 
Neumann-type BCs for the solid energy equation are 

 
−𝜅3𝛻𝑇3 ⋅ 𝑛 =  (10) 

 
𝑞3

𝜖]𝜎 𝑇3g − 𝑇hg +	
  ℎij 𝑇3 − 𝑇h
𝜕𝛺heat	
  flux
𝜕𝛺rad	
  +	
  conv

	
  , 

 
where 𝑞3  is a known value of heat flux, 𝜖]  is the 

emissivity of the wall, 𝜎  is the Stefan-Boltzmann 
constant, ℎij  is the natural convection coefficient 
between the outer wall and the ambient, and 𝑇h  is the 
ambient temperature. The BCs for the SANA experiments 
are described in Section III.B. 
 
II.B Porous Media Closure Relationships 
 

𝜀, 𝑊, 𝛼, 𝜅6, and 𝜅3 are additional terms that appear in 
the averaging process that are required to express the drag 
and heat transfer characteristics of the porous medium. 
Because the governing equations discussed in the 
previous section become stiff near the walls where 
porosity approaches unity7, and because wall channeling 
effects generally only have local impacts on the overall 
bed solution14, a constant porosity of 0.4 is assumed for 
the SANA benchmarks as a first approximation, though 
Pronghorn does include capabilities for spatially-
dependent porosity. 

The friction factor 𝑊 represents the sum of the Darcy 
and Forchheimer drag coefficients. The Darcy drag is 
linearly proportional to velocity, and hence represents 
friction drag in laminar flows. At higher Reynolds 
numbers, though still in the laminar regime, inertial 
effects such as expansion/contraction through pores and 
fluid bending induces a quadratic velocity dependence 
that is captured by the Forchheimer model. In the 
turbulent regime, a drag reduction effect is often observed 
relative to the laminar drag15,16; for gas-cooled pebble 
beds, KTA provides a correlation for the overall drag that 
uses a Reynolds-number-dependent Forchheimer drag17, 

 
 𝑊 = Llm LM: F

:nF
o<
;<
+ 3 LM:

qr

m.L LM: =
n

,	
   (11) 

 
where 𝜇6 is the fluid viscosity and 𝑅𝑒 is the Reynolds 

number based on the extrinsic velocity and pebble 
diameter 𝑑. Eq. (11) is valid for 1 < 𝑅𝑒 1 − 𝜀 < 10y 
and 0.36 < 𝜀 < 0.42. KTA also provides the convective 
heat transfer coefficient for beds of spherical pebbles18, 
 

 𝑁𝑢 = 1.27 ��
� �qr�.��

:�.��
+ 0.033 ��

�.�qr�.��

:�.��
,	
   (12) 

 
where 𝑁𝑢 is the Nusselt number based on 𝑑 and 𝑃𝑟 is 

the Prandtl number. Eq. (12) is valid for 100 < 𝑅𝑒 < 10y 
and 0.36 < 𝜀 < 0.42 . The volumetric heat transfer 
coefficient is obtained by multiplying the solid surface 
area per unit volume, which for a bed of spheres gives5 

 
 𝛼 = l LM:

n

�<i\

n
	
  , (13) 

 
where 𝑁𝑢  is given by Eq. (12). For heat transfer 

between the bed and the walls5, 
 
 𝑁𝑢]^__ = 1 − n

�
𝑅𝑒m.lL𝑃𝑟L �,	
   (14) 

 
where 𝐷 is the bed diameter. After heat is transferred 

to the wall, it is conducted through the wall and is finally 
transferred to the ambient by natural convection, which 
can be approximated by correlations developed for natural 
convection from a vertical flat plate. 

𝜅6 represents the effective fluid thermal conductivity. 
For simplicity, this is simply taken as 

 
 𝜅6 = 𝜀𝑘6	
  ,	
   (15) 

 
which assumes that the only reduction in conductive 

heat transfer occurs due to flow area reduction. More 
accurate models for 𝜅6 that account for the tortuosity of 
the medium and the enhancement of thermal energy 
dispersion due to fluctuations in velocity and temperature 
due to interactions with the porous solid are ongoing19. 

𝜅3  represents the combined effects of solid-to-solid 
radiation, solid-fluid-solid conduction, and solid-solid 
conduction via pebble contact areas. A modified Zehner-
Bauer-Schlunder correlation20 is used for 𝜅3 , with 
Knudsen effects in the fluid neglected and the fluid 
assumed transparent to thermal radiation, 

 
 𝜅3 = 𝑘6 1 − 1 − 𝜀 1 + 𝜀𝜘q +	
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  𝑘6 1 − 𝜀 𝜑𝜆 + 1 − 𝜑 𝜘�� ,	
   
 

where 𝜑 is the contact area fraction8, 𝜆 is the solid-to-
fluid thermal conductivity ratio, 𝜘q  is the effective 
thermal conductivity due to radiation, and 𝜘�� is given by 
 
 𝜘�� =

�
^

����ML
^F� �

ln ����
�

− �ML
^
+ ��L

��
𝜘q − 𝐵 .	
   (17) 

 
The remaining numerical factors 𝑎 and 𝐵 are given as 

 
 𝑎 = 1 + ��M�

�
,	
   (18) 

and 

 𝐵 = 1.25 LM:
:

Lm �
.	
   (19) 



 
The radiation component indicated by 𝜘q	
   is set to 

zero in order to permit the use of a different correlation, 
and is instead computed by  
 
 𝜅�^n =

�N
�

1 − 1 − 𝜀 𝜀 +	
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for easier comparison with the models used in 
THERMIX21,22, where 𝜖3 is the emissivity of the pebbles 
and 𝛬 is 
 
 𝛬 = �N

g�JN�n
.	
   (21) 

 
Then, 𝜅3  is computed as the sum of Eqs. (20) and 

(16), where 𝜘q  is set to zero in Eq. (16). The closure 
relationships presented in this section are all specific to 
pebble bed reactors. Pronghorn includes more options for 
the required pebble bed closure models – a discussion can 
be found in the theory manual10. Future work is intended 
to expand Pronghorn’s application space to include 
prismatic-type reactors. 
 
II.C Thermophysical Properties 
 

Correlations for helium density, viscosity, thermal 
conductivity, and a constant value for specific heat are 
obtained from the literature23. These correlations are valid 
over a wide range of pressures and temperatures.. A 
generalized fluid properties module is under development 
in MOOSE, and to avoid duplicating those efforts, 
constant values of 𝜇6 = 3.5932×10My  Pa ⋅ s, 𝑘6 =
0.055197 W/m⋅K, and 𝑐I6 = 1122.3 J/kg⋅K are used for 
nitrogen, while the ideal gas law is used for density. 

For graphite properties, tabulated data for thermal 
conductivity and density are provided with the SANA 
documentation4. Graphite specific heat is obtained from 
the literature24. The graphite emissivity, Young’s 
modulus, and Poisson ratio are taken as 0.8, 9×10�  Pa, 
and 0.136, respectively22. 
 
III. THE SANA FACILITY 
 

The SANA facility consists of a cylindrical steel 
vessel containing about 9500 spherical graphite pebbles. 
The bed is heated by one to four electrical resistance 
heater elements, and the temperature is measured 
throughout the bed with thermocouples. Either nitrogen, 
helium, or argon gas flows through the bed at low 
velocities on the order of 10My  m/s. About 40 cm of 
insulation is present at the top and bottom of the bed. The 
maximum power density of 28 kW/m3 corresponds to 
0.93% of the full power of a typical HTR design. Over 50 
experiments were completed, though the present work 

focuses only on the simulation of six of these 
experiments. All of these experiments use a single, long, 
central heater and graphite pebbles with steady state 
conditions. Table 1 shows case letters that will be used to 
refer to these six experiments throughout this report. 

 
TABLE I. Summary of SANA experiments completed in 

the present work and case letters for easy reference. 
Case Coolant Nominal Power (kW) 

A helium 10.00 
B helium 20.00 
C helium 35.10 
D nitrogen 10.03 
E nitrogen 20.00 
F nitrogen 24.97 

 
III.A Geometrical Modeling Assumptions 
 

Because no significant azimuthal asymmetries exist 
with the selected cases, Pronghorn is run in a 2-D 
cylindrically symmetric geometry. It should be noted that, 
due to the flexibility of the FEM, Pronghorn can in 
general run on 3-D, unstructured meshes. For simplicity, 
only the core itself is modeled. The presence of the upper 
and lower insulation layers, the central heater, and the 
vessel wall is approximated through the BCs discussed in 
Section III.B.  
 
III.B Boundary Condition Selection 
 

The central heater is not modeled explicitly, but is 
treated as a known heat flux boundary, with heat flux 
given by the power divided by the heater surface area, and 
is assumed to be uniform over the heater surface. This 
heat flux is assumed to be split amongst the solid and 
fluid in a 1 − 𝜀 ∶ 𝜀	
   ratio. Due to the large amount of 
insulation at the top and bottom of the bed, these 
boundaries are assumed insulated for the fluid and solid 
energy equations. At the outer wall, it is assumed that the 
fluid transfers its heat first to the solid phase, so that the 
fluid has an insulated boundary on the vessel wall. For 
this reason, ℎ]^__ is set to zero in the present work. The 
solid is assumed to transfer its heat directly to the ambient 
via natural convection and radiation, as no vessel wall is 
explicitly modeled. A constant ℎij = 18.4  W/m2 ⋅K is 
recommended25 and is used in the present work. 𝜖]  is 
assumed to be 1. Work is ongoing to develop more 
sophisticated solid boundary models using Eq. (14) and 
combined porous-nonporous media modeling. 

The inlet and outlet velocity is set to zero due to the 
very low flow rates involved. A no-penetration velocity is 
set at the vertical walls. The initial pressure is taken to be 
1 atm. 

 
 



IV. VERIFICATION RESULTS 
 

Before attempting any validation efforts, all of the 
physics models in Pronghorn were subjected to a rigorous 
verification and testing framework10. All spatially-
dependent kernels, BCs, and constitutive relationships are 
required to show theoretical linear and quadratic element 
convergence rates using the Method of Manufactured 
Solutions (MMS) combined with mesh refinement studies 
in 2-D and 3-D. Over 300 individual tests have been 
created to ensure model correctness. The convergence 
rates calculated using the L2-norm of the FE solution error 
is shown in Fig. 2 for the time-independent portion of Eq. 
(5). The expected convergence rates of 2 and 3 for linear 
and quadratic elements, respectively, are obtained. For 
time-dependent physics, four different time discretization 
schemes are selected, and a linear-in-space MMS solution 
is chosen such that the error introduced by the spatial 
discretization is essentially zero. Fig. 2 shows the 
temporal convergence study for the time derivative in Eq. 
(6). Expected rates of convergence are observed for all 
four time discretization schemes.  

In addition to these rigorous testing requirements, 
Pronghorn is version controlled and modern software 
practices are employed in its development. All changes 
made to the master branch of the code require all the 
previously discussed MMS tests to provide the same 
simulation results as reference cases, thus maintaining 
code correctness in tandem with feature development26. 
Code formatting standards improve readability. Peer 
review of all merge requests ensures high code standards. 

 

 
Fig. 1. Mesh convergence study for the time-independent 
portion of Eq. (5) for three different analytical solutions in 
2-D. Convergence rates are shown as “m” in the legend. 
 
 

 
Fig. 2. Time step convergence study for the time-
dependent kernel in Eq. (6) for four different time 
discretization methods. Convergence rates are shown as 
“m” in the legend. 
 
V. SANA VALIDATION RESULTS 
 

Prior to assessing results, mesh independence studies 
were conducted to ensure sufficiently refined meshes. 
After determining appropriate mesh refinements, to 
improve stability, each simulation is run as a transient 
until steady state is reached. Figs. 3-5 show Pronghorn 
radial solid temperature results for cases A, B, and C, 
respectively, at three different vertical elevations, 𝑧. 
 

 
Fig. 3. Experimental and Pronghorn radial solid 
temperature at three different elevations for case A. 
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Fig. 4. Experimental and Pronghorn radial solid 
temperature at three different elevations for case B. 
 

 
Fig. 4. Experimental and Pronghorn radial solid 
temperature at three different elevations for case C. 
 

For these three helium cases, temperatures tend to be 
overpredicted near the center of the bed, and 
underpredicted near the outer periphery. Reasonable 
temperature predictions are obtained in the bulk of the 
bed. The largest errors occur for the lowest power case. 

Figs. 6-8 show Pronghorn radial solid temperature 
results for cases D, E, and F, respectively, at the same 
three axial elevations. At 600℃ and 1 atm, the thermal 
conductivity of helium is about 5.5 times larger than that 
of nitrogen. Because nitrogen does not conduct heat as 
efficiently as helium, a larger portion of the heat transfer 
occurs by natural convection. This causes the larger axial 
temperature gradients seen in Figs. 6-8 relative to Figs. 3-
5. 

 

 
Fig. 6. Experimental and Pronghorn radial solid 
temperature at three different elevations for case D. 
 

 

 
Fig. 7. Experimental and Pronghorn radial solid 
temperature at three different elevations for case E. 

 

 
Fig. 8. Experimental and Pronghorn radial solid 
temperature at three different elevations for case F. 
 

In general, the Pronghorn simulation results for 
nitrogen are less accurate than those for helium. 
Temperatures are generally underpredicted at the two 
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lowest elevations, but slightly overpredicted at the higher 
elevations. Contrary to the helium cases, the largest errors 
are generally in the bulk of the bed where the porous 
media assumption is the “most valid.”  

Fig. 9 shows velocity vectors for case A. Natural 
circulation flow is clearly visible, as the hot inner wall 
heats the fluid, causing it to rise in the inner bed region. 
The fluid is cooled in the outer bed region by natural 
convection and radiation heat transfer to the ambient, 
causing the fluid to flow downwards at the outer wall. A 
stagnation region forms about 2/3 of the radial distance 
from the center of the bed. No experimental velocity 
measurements are provided for comparison, but 
physically-realistic behavior is observed. 

 

 
Fig. 9. Pronghorn velocity vector field, colored with 
velocity magnitude, for case A. 
 
V.A Assessment of Modeling Errors 
 

Many model improvements can be identified that 
would likely improve the simulation results presented 
here. The simulation results were found to be very 
sensitive to the correlation chosen for 𝜅3. For case A, a 
slightly different model20 for the radiation component of 
𝜅3 gave temperatures 75℃ higher in the center of the bed 
where the radiation transfer is most significant due to the 
high temperatures, than those shown in Fig. 3. Many other 
correlations for the radiation component of 𝜅3 have been 
used for the SANA benchmarks in the literature. Several 
of these correlations better account for radiation heat 
transfer between distant regions of the bed27; future work 
will investigate these other models and their impact on 
accuracy in the highest-temperature regions of the bed. 

The approximation that the core transfers its heat by 
natural convection directly to the ambient, rather than 
through the vessel wall, is likely the origin of the errors at 
the outer edges of the bed. Work is currently ongoing to 
add the capability to apply BCs between a porous media 

and a non-porous media such as a vessel wall to more 
accurately capture this conjugate heat transfer. Also, the 
assumption of a constant ℎij  should be relaxed by 
implementing flat plate convection correlations. Errors at 
both the inner and outer edges of the bed can also be 
partially attributed to using a constant porosity28. Larger 
errors near the edges of a packed bed are also to be 
expected, simply due to the nature of the porous media 
assumption, which treats the packed bed as a continuum. 
Work is currently ongoing to develop stabilization 
schemes to aid in solving the stiff equations that result 
near the walls where porosity tends to unity. 

The largest errors for helium are observed for the 
lowest-power cases. At low powers, natural convection 
heat transfer constitutes a greater fraction of the total heat 
transfer. The correlation used for 𝛼 is only valid for 𝑅𝑒 >
100. Due to the very low flowrates involved, future work 
will focus on the implementation of natural convection 
heat transfer coefficient correlations. The largest errors 
for nitrogen are observed in the bulk of the bed and at the 
highest powers. In the bulk of the bed, the porous media 
approximation is the “most valid.” This observation, and 
the fact that the high powers show larger variation in 
temperatures, and thus thermophysical properties, 
suggests that the errors in the nitrogen simulations are 
primarily due to the use of constant viscosity and thermal 
conductivity, rather than BCs or the use of constant 
porosity (both of which have a larger effect on the 
solution near the walls). Improved results will likely be 
obtained when the generalized fluid properties module in 
MOOSE becomes available. 

For both helium and nitrogen, the largest errors are 
typically observed at the lowest elevation. This may be 
caused by the approximation of zero inlet velocity, but 
may also be due to the choice of heat transfer coefficient. 
There appears to be disagreement in the literature as to 
whether the convective heat transfer coefficient should be 
larger or smaller than the average bulk value in the 
entrance layers to the bed. Achenbach, as well as the KTA 
correlation for 𝛼 , suggest that 𝛼  is about two times 
smaller in the first few pebble layers in the bed5,18. On the 
other hand, CFD simulations have shown that 𝛼 is about 
two times larger in the first few pebble layers than in the 
bulk of the bed29. Future investigations are needed to 
clarify this effect. 

Finally, simulation results will be improved in 
general once thermal dispersion is implemented. A 
consistent stabilization scheme is nearing completion, 
which will allow the inclusion of the advection term in the 
momentum equation, which likely would not be 
significant for the very low flow rates in the SANA 
facility, but may be important for reactor analysis. 

 
 
 
 



V.B A Brief Discussion of Other Benchmark 
Participant Results 
 

A detailed code-to-code comparison of the SANA 
experiments is beyond the scope of this paper, but a brief 
discussion of comparable porous media simulation results 
is illustrative. ANSYS CFX25, a legacy version of 
Pronghorn30 (circa 2008), MGT-3D25, THERMIX22, 
TINTE22, and TRIO-EF22 are a selection of porous media 
codes that have computed one or more SANA experiment 
cases. Of these codes, the majority modeled the insulation 
layers and vessel wall. Several even included models of 
thermocouple casings and other small geometric features. 
Except for the present and legacy Pronghorn simulations, 
all codes used a spatially-varying porosity, usually a 
piecewise constant function that is constant in the bed, 
with a higher, still constant value, within a half pebble 
diameter of the bounding walls.  

The present Pronghorn results improve upon the 
legacy Pronghorn results via the selection of BCs. The 
legacy simulation results specified Dirichlet values for 
fluid and solid temperatures using values measured in the 
experiments. This a priori knowledge of the solution is 
unrealistic to use when trying to assess a code's predictive 
capability. All of the BCs used in the present results do 
not assume any a priori knowledge of the solution, and 
hence are more representative of the way the code will be 
used in practice. In a similar vein, the MGT-3D and CFX 
results were obtained by fine-tuning the wall heat transfer 
coefficient and the emissivity within the gap of the 
resistance heater until good agreement with the 
experimental measurements was obtained25, and then 
these two values were fixed for the remainder of the 
simulations. Because model calibration with experimental 
data is in general not possible, the BCs used in the present 
results yield a more accurate representation of predictive 
results that could be obtained by a realistic user. 

Despite these differences in fidelity and assumptions, 
temperature variations on the order of 50-100℃ in some 
locations are typical for all of the test codes. The CFX 
simulation, which includes a turbulence model, shows 
excellent results. This observation suggests the addition of 
turbulence models in Pronghorn may be a fruitful 
endeavor, as turbulence is currently only approximated 
through the correlations used for 𝑊 and 𝛼. Based on the 
good agreement with other codes and the results presented 
in Section V, Pronghorn can model gas-cooled pebble 
beds reasonably well. Furthermore, we are confident that 
more accurate results will also be obtained once the future 
work outlined in Section V.A is undertaken. 
 
 
VI. CONCLUSIONS 

 
      Porous media models of pebble bed reactors have 
runtimes about 1% or less than those of detailed CFD 

models and employ much simpler meshes1. At the 
expense of approximating the local flow and heat transfer 
effects, medium-fidelity simulations can be performed to 
accelerate the design process of advanced pebble bed 
HTRs. This paper has presented a new porous media 
thermal-hydraulics simulation code, Pronghorn. In 
addition to the advantages associated with porous media 
models in general, Pronghorn 1) permits an arbitrary EOS 
to allow future simulation of liquid-cooled HTRs, 2) can 
use unstructured meshes, 3) is based on modern software 
practices, and 4) is built on the MOOSE framework, 
which makes possible interesting multiphysics simulation 
studies incorporating nuclear fuels, systems-level thermal-
hydraulics, and many other applications.  

Essential to the development of any new simulation 
tool is the establishment of a strong validation base. This 
paper has introduced the models in Pronghorn and shown 
their validation with the SANA experiments. Future work 
involving numerical stabilization, higher-fidelity models, 
and generalized improvements to the MOOSE framework 
has been outlined with the goals of permitting widespread 
use of a fast and accurate thermal-hydraulics simulator for 
pebble bed and prismatic reactors. 
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