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Simulation- and atomic-scale models: foundations of HED () Nt

Radiation-nydrodynamic simulations are indispensable tools for
design and diagnostics of laboratory and astrophysical HED
plasmas.

Simulations rely on atomic-scale models for material properties:
- Equations of state
- Transport coefficients (electrical, thermal, stopping powers)
- Opacities and emissivities

These properties are not always consistent with each other,
especially when simplifying constraints (e.g. LTE) are relaxed.

This talk will describe ongoing efforts to increase the consistency
of constitutive properties used in hydro codes — and how John
Castor and many others have guided these efforts along the way.

“refreshingly direct”
-- The Observatory
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Electrons are treated quantum mechanically in a
self-consistent field much like Purgatorio?, within
an ion correlation sphere instead of muffin-tin.
lons are treated with the quantum Ornstein-
Zernike equations? using a potential generated
from the self-consistent electronic structure.
(Thanks, Brian, Vijay, Charlie, and Balazs!)

To ensure smooth transitions under pressure
lonization, we define quasi-bound wavefunctions
P(n*l) = <P(e,l)>, and assign them to the ion.
(Thanks, Brian!)

Mixtures are treated by pressure-matching
elements at fixed total density and pressure —
trivial for TF, but can be tricky for quantum
models. (Thanks, John and Phil!)




With self-consistent electronic and ionic structure,
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collisions and transport can be directly calculated
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With S; (k) and phase shifts 1, from
continuum states, the Ziman electrical
conductivity is completely specified, offering
Improved consistency over treatments using

lon structure factors from external sources
e.g. OCP; (thanks, Hugh!).

For thermal conductivities, an additional
electron-electron scattering term (not yet
fully consistent within the model) is required
to provide a non-Lorenz reduction factor.
(thanks, John!)

For mixtures, conductivities should be
volume-weighted and added in series.
(thanks, John!)




Optical properties can be generated from the wavefunctions () &=
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We use Kubo-Greenwood' to generate
o(®) 2 &(m), n(w), o), T(w) — consistent with
Ziman at o = 0 (Thanks, Walter & Joe!)

This provides crude but strictly complete opacities
— and completeness matters! (Thanks, Carlos!)
cf. Iglesias and Hansen, Ap. J 835, 284 (2017).

We are exploring ways to increase consistency by
using the optical properties to generate frequency-
dependent collisional lifetimes for use Iin
Lorenztian lineshapes, using S;(k) to generate
P(E) for Stark splitting, and generating stopping
numbers with g(w).




Scattering calculations are also fully constrained (A gionar
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We find good agreement of the self-consistent average- = ,
atom model with time-dependent density functional theory

— A. Baczewski et al., PRL 116, 115004 (2016). 600 £700 6200 6900 ?[;U
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Consistency matters, since complex systems are susceptible to ) e
compensating errors

n; (% . (©, df do(e,6) The complexity of expressions for transport,
(0ziman) 3nn§j0 Ak Sk fo e 3 o0 scattering, and stopping tempts us to
acréz, 6) _ p12 i (20 + 1)sinne" P (coso) simplify wherever we can.
=0
2ne [ #\ &Pp However, unless consistency is enforced
o(w) = 5? "\ oE ) 2mh)? among the model parts, we run a real risk of
42+ p generating hidden compensating errors
Sef (k) = z; Flene(1 = F(e)Mlene) when fitting to (sparse!) data: we risk being
, “right” for the wrong reasons
< ) Aues [Tuees (pob) (thanks, Andrew!)
€16,
Ity (p.k) = é f Peg,(r) joy (k1) Pug(r)y/ f4(r)dr, If the present model is wrong, it will be
| . : consistently (and hopefully obviously)
(E): 47 (ZE' ) j p(r] Lip.V)dmrd wrong. And because its predictions are
dx m AV - dk | interdependent, measurement of one
L(p,V)= mdw( —l) property can help constrain others.
*n'mn e(k,w)




Completeness matters as well, and can be challenging to
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achieve with highly detailed opacity models

Computational costs vary dramatically,
and adequate inline non-LTE models
have only recently become available
(Thanks, Howard!)
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While sufficient detail is important for comparisons with
experiment, completeness is a first-order requirement.3

=



Can a consistent and complete model help address the iron )
opacity puzzle? Laboratories
1.E-11 : : _ High-precision measurements (Bailey et al.,
L eqq |20sOrPtionCross section (cm’) PRL 99, 265002 (2007) and Nature 517, 56
. (speculativel) lifetime (s) : .
- (2015)) showed good agreement with detailed

HE models at 150 eV, n, = 8x102! e/cc but profound
disagreement at 180 eV, n_, = 3x1022 e/cc.
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energy (eV) (Thanks, Richard!)




As we push material to increasingly extreme conditions, ) i
density effects become significant octron density (10 em?) T 00y
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Conclusions (FiD) e

« Enforcing consistency in atomic-scale model predictions for multiple material properties can
Increase confidence in both diagnostics and simulations of HED plasmas.
« Scattering, emissivity and opacity (including two-photon processes)
« Collisionality and transport (thermal, electrical, and stopping powers)
« Coupled electronic and ionic structure (Equations of State)

« |If the present model is wrong, it will at least be consistently wrong —
and its wrongness can be determined by measurement[s] of inter-dependent observables.

« The rich and collaborative scientific environment at LLNL offers researchers amazing
opportunities to develop and apply their own contributions to HED science...
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« Enforcing consistency in atomic-scale model predictions for multiple material properties can
Increase confidence in both diagnostics and simulations of HED plasmas.
« Scattering, emissivity and opacity (including two-photon processes)
« Collisionality and transport (thermal, electrical, and stopping powers)
« Coupled electronic and ionic structure (Equations of State)

« |If the present model is wrong, it will at least be consistently wrong —
and its wrongness can be determined by measurement[s] of inter-dependent observables.

« The rich and collaborative scientific environment at LLNL offers researchers amazing
opportunities to develop and apply their own contributions to HED science...

Thanks, John! (and many, many others!)




Electronic boundary conditions influence EOS (A o
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These curves use ideal-gas behavior for ions and so reveal differences between electronic
boundary conditions in IS & NPA models; the NPA consistency can be improved.




Stopping Powers are calculated following Wang et al. @ Sandia
(cf. Faussurier) using data fro
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2
Stopping power is the integral of g % ) j p(r)L(p,V)4mr’d
. X
stopping number L(p,V) over

average-atom electron density p(r):

m

(ﬁ)*““(z‘ﬁ

dk

The stopping number is related to the Lip, V)_
dielectric -- currently using RPA L(p,V)
from Arista & Piriz, PRA 35, 3450
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These all-electron calculations take about a minute for a single p,T point
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These calculations (AA-LDA) described Zylstra’s recent
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measurements of 14 MeV proton stopping reasonably well
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FIG. 5 (color online). Mean ionization potential (T) inferred

: : from the stopping-power data in the cold (a) and warm (b) cases
calculated Slmply by averaging Eb'nd'”g + compared to the Andersen-Ziegler empirical fits (7). the ideal

EFermi for all electrons in the Average Atom plasma case (fiw,,), and electronic structure theory.

b
~ FromZylstraetal, Phys Rev Lett 114, 215002 (2015)

Mean ionization potential can be



Electrons: Quantum mechanical average atom Ok
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All-electron, fully quantum-mechanical® semi-relativistic self-consistent field solver with flexible exchange

10eV,5g/cc: Z¥=2.6,Zc=2.9 | 10eV, 8 gI/cc: Z¥=3.2,2c=8.0 Key ansatz:
o i E | —dos | i —°* _ Quasi-bound states are averaged
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-100 50 0 -50 0 50 . . e *
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Near-solid iron at T = 10 eV




lons: Quantum Ornstein-Zernike Ok
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Self-consistent V,; & g. obtained by finding electron density with (p*!) and without (p®*!) central charge*

10eV,5g/cc: Z¥=2.6,2c=2.9 10eV,8g/cc: Z¥=3.2,Z2c=8.0 PA ot \
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Constitutive properties: static and dynamic conductivities (i) Netera
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We find fair agreement with DFT-MD static electrical and ee- We find favorable agreement with DFT-MD calculations® of
corrected thermal conductivities of 10 g/cc hydrogen, though the Cuo(w) at0.5g/ccand T =1 -3 eV. Here, the optical lines
o = 0 limit can be tricky [Burrill and Starrett, HEDP 19, 1 (2016).] shift to higher energy as the average ion charge increases.




Fe K-edge shape and depth roughly constrain liner conditions () s,

180 —T =7 eV
Fe K e T=13eV
— - e
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| 5eV
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120 -2 :
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100 !
1
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The temperature broadening of the Fermi
distribution feeds into shape of the K-edge
absorption and is independent of density for
T < Epgnif4”

For this lineout, T = 10 +/- 3 eV and the edge
exhibits a modest shift of +5 eV from cold iron.
(If there are other sources of broadening, T ~
10 eV may be an upper limit.)
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The pR inferred
from the Fe K-edge
depth is consistent
with pR inferred
from bulk Be
absorption and
low-energy self-
emission images

With known Fe impurity concentration, the K-
edge depth constrains pR and is independent
of temperature for T < 1 keV. Here, pR = 0.75
+/- 0.1 g/cm?

Since pR increases monotonically with
compression, we can infer a uniform liner
density p = 15 +/- 5 g/cm3 (n, ~ 2 x10%* e/cc),
assuming no axial redistribution or mass loss
and final inner liner radius of 50 um.




Observables in extreme WDM:

absorption edges and fluorescence lines
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Calculations (dashed lines) anchored to the
K-edge of ambient data (solid gray) show
good agreement with line and edge shifts
and broadening due from a warm
compressed MagLIF liner backlit by
stagnation emission (solid blue) with T ~ 10
eV and n, ~ 2x10%* e/cc.

This agreement indicates that self-
consistent DFT models describe electronic
structure in extreme conditions with better
fidelity than ad-hoc models of density
effects.




We are pursing additional efforts to assess uncertainties in the@ Sanda
constituent models used in hydro codes

A first transport code comparison workshop was held at SNL in October 2016
40 attendees and 20 codes representing MD, DFT-MD, AA/NPA DFT, and analytic approaches

contributed Z*, x, o, v, d, dE/dx... for H, C, and CH at degenerate to classical conditions
' 10 g/cc hydrogen

10 g/cc hydrogen
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If you are interested in participating in the next workshop, planned for spring 2018 at LLNL,
please contact Alex Zylstra, Paul Grabowski, Frank Graziani, Michael Murillo, or me!




