
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

DARMA: A C++ Portability Layer for

Asynchronous Many-Task Runtimes

Dr. Robert L. Clay

Oct 2, 2017

RIKEN K-Computer Center

Kobe, Japan

SAND2017-10960PE

The DARMA Development Team

 Janine C. Bennett (PI)

 Robert L. Clay (PM)

 David Hollman

 Hemanth Kolla

 Jonathan Lifflander

 Aram H. Markosyan

 Francesco Rizzi

 Nicole Slattengren

 Jeremiah J. Wilke

MOTIVATION

3

Extreme-scale HPC system architectures introduce a
number of complexities

 Performance Heterogeneity
 Accelerators

 Thermal throttling

 General system noise

 Responses to transient failures

 Energy Constraints

 Decreased system reliability

 Deep memory hierarchies

4

Image courtesy of www.cal-design.org

Current imperative programming models and runtime systems
require mitigation of challenges largely at application-

developer level

Get a piece of bread
If likes mustard

Add mustard
If not vegetarian

Add meat
Add cheese
Add veggies
Put more bread on top
Cut in half

What is the alternative?

5

DeclarativeImperative
Make me a sandwich

Imperative vs declarative programming in a nutshell

Get a piece of bread
If likes mustard

Add mustard
If not vegetarian

Add meat
Add cheese
Add veggies
Put more bread on top
Cut in half

What is the alternative?

6

DeclarativeImperative
Make me a sandwich

Imperative vs declarative programming in a nutshell

Programmer uses explicit
statements to control program

state and prescribe order of
operations

Programmer expresses logic
without prescribing control-flow

A declarative style of programming enables mitigation
of challenges at the runtime-level

 Application developer
specification of desired
result

 Not a “magic bullet”:
complexity must still be
managed

 Separation of concerns:
complexity management at
runtime-level

7

Image courtesy of www.cal-design.org

 Directed acyclic graph (DAG) encodes data-
task dependencies

 Enables a runtime system to reason about
 Task and data parallelism

 Overlapping communication and computation

 Dynamic load balancing

 When and where to execute work and move data

What is it about AMT models that enables a declarative
programming approach?

8

data-task graph

subset

reads

Common misconception: AMT seeks to replace MPI

 MPI is a transport layer

 AMT runtimes can and do use MPI as their transport layer

Rather: AMT research focus is on developing abstractions to

 Facilitate expression and management of asynchrony

 Express and manage task parallelism (in addition to data-
parallelism)

 Capture semantic information that enables runtime-
management of data movement and control-flow execution in
complex memory and execution spaces

 Active research area

 Habanero-UPC++, HPX, Legion, OCR, PaRSEC, SCIOTO, STAPL, Uintah,
Charm++, StarPU, …

9

2015 study to assess leading AMT runtimes led to DARMA

10

 Broad survey of many AMT runtime systems

 Deep dive on Charm++, Legion, Uintah

 Programmability: Does this runtime enable
efficient expression of ATDM workloads?

 Performance: How performant is this
runtime for our workloads on current
platforms and how well suited is this runtime
to address future architecture challenges?

 Mutability: What is the ease of adopting this
runtime and modifying it to suit our code
needs?

Aim: inform Sandia’s technical roadmap for next generation codes

2015 study to assess leading AMT runtimes led to DARMA

11

 Conclusions
 AMT systems show great promise
 Gaps in requirements for Sandia

applications
 No common user-level APIs
 Need for best practices and standards

 Survey recommendations led to DARMA
 C++ abstraction layer for AMT runtimes
 Requirements driven by Sandia

applications
 A single user-level API
 Support multiple AMT runtimes to begin

identification of best practices

Aim: inform Sandia’s technical roadmap for next generation codes

WHAT IS DARMA?

12

What is DARMA?

13

DARMA is a C++ abstraction layer for asynchronous many-task
(AMT) runtimes.

It provides a set of abstractions to facilitate the expression of
tasking that map to a variety of underlying AMT runtime system

technologies.

Sandia is using DARMA to inform its technical roadmap for next
generation codes.

DARMA provides a unified API to application
developers to specify tasks

14

Application code is translated into a series of backend
API calls to an AMT runtime

15

Application code is translated into a series of backend
API calls to an AMT runtime

16

 AMT runtimes often operate with a directed acyclic graph (DAG)
 Captures relationships between application data and inter-dependent tasks

 DAGs can be annotated to capture additional information
 Tasks’ read/write usage of data

 Task needs a subset of data

Considerations when developing a backend API that
maps to a variety of runtimes

17

data-task graph

subset

reads

 AMT runtimes often operate with a directed acyclic graph (DAG)
 Captures relationships between application data and inter-dependent tasks

 DAGs can be annotated to capture additional information
 Tasks’ read/write usage of data

 Task needs a subset of data

 Additional information enables runtime
to reason more completely about
 When and where to execute a task

 Whether to load balance

 Existing runtimes leverage DAGs with
varying degrees of annotation

data-task graph

subset

reads

Considerations when developing a backend API that
maps to a variety of runtimes

18

Runtime calls into DARMA to extract

data-task dependencies

Application

DARMA

Runtime

OS/ Hardware

Common API
across runtimes

Common API
across runt imes

Front End API
(Application User)

Translation Layer

Back End API
(Specificat ion for Runt ime)

Glue Code
(Specific to each runtime)

Runtime controls construction

and execution of the DAG

P
ro

d
u
ce

r
C

on
su

m
er

By design DARMA captures a declarative specification
of the application that does not prescribe control-flow

19

DARMA’s Backend Runtime System Responsibilities

 Manage data dependencies between tasks (data inputs and outputs)

 Exploit data usage (write/read/etc.) and sequencing information from the
frontend to schedule tasks without data conflicts

 Make scheduling decisions based on current state to copy, move, or stall data
accesses to optimize performance and memory usage

 Determine and track placement of data, tasks, and task collections across distinct
memory spaces

 Distributed reference counting of data to determine task readiness and schedule
appropriately

 Manage location of task collection elements to efficiently transfer data for
publishes (send) and fetches (receive) between elements

 Coordinate data movement utilizing the underlying communication transport layer

 Use frontend interface to serialize/de-serialize arbitrarily typed objects to move
C++ object across memory spaces

 Implement collective operations (currently only reduce and all-reduce)

20

DARMA’s Backend Runtime System Responsibilities

 Manage data dependencies between tasks (data inputs and outputs)

 Exploit data usage (write/read/etc.) and sequencing information from the
frontend to schedule tasks without data conflicts

 Make scheduling decisions based on current state to copy, move, or stall data
accesses to optimize performance and memory usage

 Determine and track placement of data, tasks, and task collections across distinct
memory spaces

 Distributed reference counting of data to determine task readiness and schedule
appropriately

 Manage location of task collection elements to efficiently transfer data for
publishes (send) and fetches (receive) between elements

 Coordinate data movement utilizing the underlying communication transport layer

 Use frontend interface to serialize/de-serialize arbitrarily typed objects to move
C++ object across memory spaces

 Implement collective operations (currently only reduce and all-reduce)

21
A runtime’s level of native support for these capabilities is a

contributing factor to the thickness of the “glue code”

Currently there are three back ends in various stages of
development

22

Strategy and implementation details for backend
mappings are included in a recent tech report

 Details for current backends:
 Charm++ -

 OnNode (threads)

 HPX3

 HPX5

 Strategy for other backends:
 REALM

 Legion (Discussion of differences and
similarities in programming model)

 MPI

23

DARMA-Charm++ Overview

 Manage data dependencies between tasks (data inputs and outputs)

 Not a direct mapping: implements local and distributed schedulers in Charm++
user-space to schedule and track DARMA data

 Determine and track placement of data, tasks, and task collections across distinct
memory spaces

 Not a direct mapping: utilizes Charm++’s groups, nodegroups, and chare arrays
to manage DARMA tasks and data.

 Carefully passes DARMA task collections to Charm++ chare arrays to utilize LB
effectively

 Coordinate data movement utilizing the underlying communication transport layer

 Close mapping: Uses Charm++’s native, platform-specific network layers (ugni,
ibverbs, tcp/ip, mpi) to transfer data

 Close mapping: Performs serialization/de-serialization by passing data to
Charm++’s extensive PUP (Pack/UnPack) interface

 Implement collective operations (currently only reduce and all-reduce)

 Not a direct mapping: Charm++ has a native reduce but not an all-reduce. Since
Charm++ has vastly different collective semantics, reduce and all-reduce are re-
implemented, but re-use Charm++ topological spanning trees

24

DARMA front end abstractions for data and tasks are
co-designed with Sandia application scientists

25

DARMA comprises abstractions for data and tasks

 Asynchronous smart pointers wrap user data and
track meta-data used to build and annotate the DAG
 darma::AccessHandle<T>

 darma::AccessHandleCollection<T>

 Tasks are annotated via several interfaces
 darma::create_work

 darma::create_concurrent_work

26

DARMA’s abstractions provide the application
developer with productivity and performance benefits

 Automatically capture dependencies and data effects through
C++ metaprogramming
 Visible code is just variables and functions, no tasks

 Creating DAG directly in user code is tedious and error-prone

 Each data block/variable tracked by logical identifier in
runtime
 Enables automatic migration of data structures (data movement)

 Enables automatic load balancing

 create_concurrent_work boundaries are natural
locations for load balancing

27

 Parallel algorithms are written to a data decomposition, not
execution units (process, rank, thread)
 Tunable granularity

 Overdecomposition (communication overlap, load-balancing
flexibility)

 Communication pattern automatically determined from data
effects
 Broadcast data if shared and read-only access

 Streaming communication pattern (not yet implemented) if
commutative access

 Shared-memory optimizations for tasks/data in same process

28

DARMA’s abstractions provide the application
developer with productivity and performance benefits

A recent report captures a detailed assessment of the
overall DARMA approach

29

 Uses proxy applications and
benchmarks representative of
Sandia applications

 Performance assessment on
Trinity Supercomputer

 Feedback from application
developers

 Assessment of
 interoperability challenges

 generality of backend API

APPLICATION DRIVERS

30

Proxy and benchmark overview

 Three benchmarks
 Written by DARMA developers
 Purpose: highlight benefits/limitations of the programming model and runtime

 Jacobi: memory-bound computation, latency-bound communication to expose
overheads

 Molecular dynamics: compute-bound with more bandwidth-intensive
communication to complement Jacobi

 Simulated Imbalance: assess load balancing capabilities

 Three proxy applications
 Written by application developers
 Purpose: co-development of APIs, acquire subjective feedback, requirements

 PIC: Direct collaboration with EMPIRE application team
– SimplePIC, MiniPIC

 UQ: Embedded analysis is a capability used by both applications

31

 SNL is developing a new code base for plasma simulations

 Component based approach using the Trilinos framework

 The PIC component of Empire is the basis for our proxy app work

 Two sets on unknowns, mesh data and particles
 Domain decomposition on the fields and the particles can be out of

balance

 Calculations are localized so colocation is important

 Work can be created in one location and migrate to a different location

 Potential solution – overdecomposition
 Overdecomposition breaks the problem up into more units than you have

computational cores

 Load balance at a middle level of work

 Overlap computation and communication
32

EMPIRE: ElectroMagnetic Plasma In Radiation
Environments

SimplePIC Proxy Overview

 PIC method allows the statistical representation of general
distribution functions in phase space

 It uses the fundamental equations retaining the full nonlinear
effects

 SimplePIC includes only particle move kernel

 Domain Decomposition: 2-level 3D structured grid
 Px

☓Py☓Pz grid of boxes (patches), nx☓ny☓nz grid within each box

 Computational costs:
 O(Nparticle) computation (memory bound), O(Nparticle

☓ patchsurf/patchvol)
communication,

 Proxy goal: serve as test ground for PIC algorithm design and
development on DARMA

33

SimplePIC Proxy Algorithm

• Decompose problem into patches and assign them to processing units

• For every patch initialize the swarm (particles on that patch)

• For each time step do (iteration)
• For each particle in the swarm do

• Advance particle until it reaches the patch interface or time expires

• If time is not expired do

• Put particle in the migrants (a buffer, corresponding to that patch interface)

• Remove particle from swarm

• Compute the total number of migrants in the entire domain

• While total number of migrants > 0 do (micro-iterations)

• For every patch interface exchange the migrants

• For each interface do

• For each particle in migrants do

• Advance particle until it reaches the patch interface or time expires

• If time expired add particle to swarm, otherwise put in migrants

• Compute the total number of migrants

34

MAPPING TO TRINITY

35

Trinity/Advanced Technology Systems (ATS)-1 is the
performance analysis target

36(Image courtesy of ACES)

Cray XC30

KNL: enables emerging architecture,
workflow, runtime system research

Haswell: enables support for
current applications

Performance analysis results are captured for both
Haswell and KNL architectures

37(Images courtesy of
ACES)

KNL should do better on highly-
parallel, numerically intensive
code

Haswell should have better serial
performance, and perform better on
system tasks (e.g., communication)

Balanced and Unbalanced SimplePIC Studies

38

 Balanced use case assesses overheads with respect to MPI-only
implementation
 Every computational cell has N randomly placed particles (5 - 30), with

random velocities (|v| = const).

 Imbalanced use case assesses benefits of overdecomposition
and load balancing
 Initially place 80% of particles into the 20% of the domain creating load

imbalance in the system.

 The computational experiment was designed such that the system will
reach to a fully balanced state in 500 iterations and come to the initial
state in 1000 iterations.

 In all studies we kept CFL number to a value of 0.96, which
translates into at most 2 micro-iterations per time step.

KNL architecture provides many possibilities for on-
node parallelism

 Empirical exploration of cpu-binding and affinity tradeoffs

 Increasing number of communication threads/node
 Fewer threads available for computation

 Communication is driven forward more quickly

 Increasing number of hyperthreads/core
 More threads actively computing

 Potential cache conflicts

 Weakened serial performance per thread

 CPU binding options
 Binding tasks to physical cores only or to specific hyperthreads

39

A CPU binding and affinity study determined proper
settings on KNL for SimplePIC

40

A variety of settings were
tested for MPI and DARMA.

Optimal settings:
MPI: 4-way hypertheading
with cpu_bind = threads

DARMA: 13 processes per
node, each with
• 16 compute threads (4

compute cores)
• 1 communication thread

DYNAMIC LOAD BALANCING

41

Strong scaling of balanced SimplePIC
up to 131K cores/2K nodes (KNL)

42

1.4B particles
143M cells

138B particles
4.6B cells

Mutrino (KNL, 4K cores) Trinity (KNL, 131K cores)

 DARMA overhead with respect to MPI is -5-24%.

 On 2K cores, grain size is too small and, hence,
degraded scaling.

 MPI scaling degradation is likely due to MPI only
launch on KNL.

 DARMA scales super-linearly up to 131K
cores.

Strong scaling of balanced SimplePIC
up to 32K cores/2K nodes (Haswell)

43

4.2B particles
141M cells

136B particles
4.5B cells

Mutrino (Haswell, 2K cores) Trinity (Haswell, 32K cores)

 DARMA scales consistently good on up to
32K cores.

 Slight overheads can be explained by the
small problem size on higher core counts.

 DARMA overhead with respect to MPI is 12-
19%.

 On 2K cores, grain size is too small and,
hence, DARMA does not have perfect linear
scaling.

 MPI scales ideally on up to 2K cores.

DARMA Strong scaling of imbalanced SimplePIC
up to 131K cores/2K nodes (KNL)

44

1.8B particles
55M cells
ODF = 8

40B particles
3.4B cells
ODF = 4

Mutrino (KNL, 2K cores) Trinity (KNL, 131K cores)

 For lower core counts, load balancing
provides around 50% speedup.

 For higher core counts, at least at this
overdecomposition level, speed up due to a
load balancer is 20%.

 These trends are similar for Haswell.

 Similar trends are present on Trinity at
these higher scales.

45

DARMA Time Profile Graph of Balanced SimplePIC on
2k Cores/64 nodes (Haswell) for 3 Iterations

 x-axis is time and
y-axis are
different cores

 Most of the time
is spent executing
application tasks

 There is a small
amount of idle
time (white) at
the end of each
iteration

ODF=1

ODF=8

46

DARMA Percentage Utilization Graph of Balanced
SimplePIC on 2k Cores/64 nodes (Haswell) for 3 Iterations

ODF=1

ODF=8

 x-axis is time and y-axis is the
proportional aggregate of work
type spent across the worker
cores

 With an overdecomposition
factor of 8 (ODF=8) the data
transfer time is slightly increased

 The idle time at the end of the
iteration is slightly reduced with
ODF=8 because the system is
able to overlap communication
with computation

47

DARMA Time Profile Graph of Balanced SimplePIC on
2k Cores/64 nodes (Haswell) for last 2 micro iterations

ODF=1

ODF=8

 Processor utilization for 2 micro
iterations

 Note the scale: this is 25
milliseconds

 Overdecomposition increases
the execution time because data
transfer is increased (note the
increase in green and blue area)

 More particles must cross the
boundaries with smaller boxes

 Overall processor utilization is
increased because there is more
overlap with communication

DARMA Projection views of imbalanced SimplePIC
on 2K cores (Haswell)

48

 Significant improvement
in load imbalance with
more frequent calls to
load balancer.

 The overhead (cost) of
load balancer is
essentially constant.

 Over 50% CPU utilization
increase after the first
load balancer call (in both
cases).

Conclusions on SimplePIC Performance Study

 Balanced SimplePIC study stressed DARMA overheads with
respect to MPI. In the worst cases we are off by 25%.

 Balanced SimplePIC also showed excellent scalability on 131K
cores (2K KNL nodes).

 Imbalanced SimplePIC demonstrated the benefits of
overdecomposition and load balancing on 131k cores (2K KNL
nodes), while maintaining strong scalability.

49

Lessons learned on productivity for SimplePIC proxy

 “Manual (dynamic) overdecompositon and load balancing in
MPI can be very tedious and error prone task even for
structured PIC. For unstructured case, the situation is very
complex.”

 “Data decomposition in DARMA provides intuitive
mechanisms for work load balancing, while runtime handles
scheduling.”

 ”DARMA abstractions are fairly intuitive and provide a
productive environment for code design and development.”

50Quotes from application developer

Summary of quotes on productivity from our
application developers

 “DARMA provides an intuitive means to reason about your
problem in an AMT way.”

 “Deferred semantics is a significant help for those who are
used to imperative programming only.”

 “Moving toward an AMT runtime is best achieved by
conceptualizing the application software as a set of tasks with
well-defined dependencies”

 “Future work should include focus on documentation and
productivity tools (timers, performance profilers, debuggers)”

51

Different load balancers have cost, scaling, and
optimality tradeoffs

52

LB Type LB Name Description Benefits Drawbacks

Centralized GreedyLB
Heap-based,
considers all tasks
for redistribution

Provides high quality
distribution

Not scalable, expensive
in memory and space

Centralized RefineLB
Heap-based,
considers only tasks
above threshold

Fast for centralized
load balancer

Not scalable, quality
might be low

Distributed,
gossip-based

DistributedLB
Gossip-based,
probabilistic transfer

Extremely fast, fully
decentralized

Quality may be low

Distributed,
tree-based

HierarchicalLB
Tree-based,
hierarchical transfer

Fast, typically provides
high quality

Greedy algorithm may
not be aggressive

Distributed,
group-based

HybridLB
Creates subgroups
of processors and
applies centralized

Can reuse centralized
LB schemes

May be expensive and
slow with large groups

Synthetic imbalance on Haswell (up to 64 nodes/2K
cores) shows overheads, scalabilities of each balancer

53

• Only Greedy, Hybrid load balancers competitive with optimal balance baseline
• All load balancers relatively scalable up to 64 nodes, different quality solutions

though
• All load balancers better than worst-case baseline with no load balancing

54

• Only Greedy, Hybrid load balancers competitive with optimal balance baseline
• All load balancers relatively scalable up to 64 nodes, different quality solutions
• All load balancers better than worst-case baseline with no load balancing

Synthetic imbalance on KNL (up to 64 nodes/2K cores)
shows overheads, scalabilities of each balancer

Large runs on Trinity (up to 2K nodes) highlight
scalability differences between load balancers (KNL)

55

• Refine load balancers skipped, could not finish in 30 minute time cutoff
• All load balancers still relatively scalable, Hierarchical has best scalability but

worse quality of load balance
• Only hybrid load balancer gets near optimal balance with low load balance

overheads

Load balancers redistribute work, shrink idle time
between iterations

56

• Red is active computation,
white is idle time for each
thread

• Execution shows certain
threads idling while large
tasks finish

• First iteration imbalanced, but
idle time shrinks as load
balancer finds nearly optimal
solution on second iteration

No load balancing

Greedy load balancer

Some load balancers improve results, but solution is
not optimal

57

• Red is active computation,
white is idle time for each
thread

• Execution shows certain
threads idling while large
tasks finish

• First iteration imbalanced, but
idle time shrinks as load
balancer finds nearly optimal
solution on second iteration

Hierarchical load balancer

Hybrid load balancer

Lessons learned on productivity for
synthetic imbalance benchmark

 Even for very basic linear imbalance problem, there is no
direct mapping to a scalable MPI collective, routine to derive
optimal task distribution

 MPI_Gather-Sort-MPI_Scatter could be easily implemented
for balancing, but is not scalable

 Ad hoc implementation of app-specific load balancers would
be tedious and error-prone

 Load balancing handled transparently in DARMA-Charm++
application, although some tuning may be required to select
best load balancer for each application

 Hybrid balancer seems a good universal starting choice

58

CONCLUSIONS & FUTURE WORK

59

Conclusions

 Productivity:

 Easier to express communication overlap: no Isend/wait pairs, communication progress not
explicit in application code

 Easier to express tunable granularity: data decomposition can mismatch execution resources
(overdecomposition) without changing application code

 Easier to enable load balancing: migratable data and work chunks can be transparently
rebalanced without explicit bookkeeping and rebalancing in application code

 Performance:

 Experiments up to 2K nodes show that DARMA is scalable (weak and strong)

 Load balancing shows major performance gains with minimal effort from app developer

 Deferred execution and sequential task model have overheads (~10% over MPI)

 Expect DARMA performance to improve as we tune the implementation

 Interoperability: It’s complicated, but the initial results are promising

 Generality: declarative backend specification facilitates mapping to different
technologies, development of “common components” across backend
implementations

60

Future Work

 Focus of DARMA team next year
 Interoperability with node-level libraries

 Hardening/Tuning

 Productivity tools (timers, performance profilers, debugging aides)

 Development of MPI backend

 Bigger picture/longer term efforts
 Best practices and standards-based runtime solutions

61

62

