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MOTIVATION
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Extreme-scale HPC system architectures introduce a 
number of complexities

 Performance Heterogeneity
 Accelerators

 Thermal throttling

 General system noise

 Responses to transient failures

 Energy Constraints

 Decreased system reliability

 Deep memory hierarchies
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Image courtesy of www.cal-design.org

Current imperative programming models and runtime systems 
require mitigation of challenges largely at application-

developer level



Get a piece of bread
If likes mustard

Add mustard
If not vegetarian

Add meat
Add cheese
Add veggies
Put more bread on top
Cut in half

What is the alternative?
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DeclarativeImperative
Make me a sandwich

Imperative vs declarative programming in a nutshell
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DeclarativeImperative
Make me a sandwich

Imperative vs declarative programming in a nutshell

Programmer uses explicit 
statements to control program 

state and prescribe order of 
operations

Programmer expresses logic 
without prescribing control-flow



A declarative style of programming enables mitigation 
of challenges at the runtime-level

 Application developer 
specification of desired 
result 

 Not a “magic bullet”: 
complexity must still be 
managed

 Separation of concerns: 
complexity management at 
runtime-level
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 Directed acyclic graph (DAG) encodes data-
task dependencies

 Enables a runtime system to reason about
 Task and data parallelism

 Overlapping communication and computation

 Dynamic load balancing

 When and where to execute work and move data

What is it about AMT models that enables a declarative 
programming approach?
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Common misconception: AMT seeks to replace MPI

 MPI is a transport layer

 AMT runtimes can and do use MPI as their transport layer

Rather: AMT research focus is on developing abstractions to

 Facilitate expression and management of asynchrony 

 Express and manage task parallelism (in addition to data-
parallelism)

 Capture semantic information that enables runtime-
management of data movement and control-flow execution in 
complex memory and execution spaces

 Active research area

 Habanero-UPC++, HPX, Legion, OCR, PaRSEC, SCIOTO, STAPL, Uintah, 
Charm++, StarPU, …
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2015 study to assess leading AMT runtimes led to DARMA
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 Broad survey of many AMT runtime systems

 Deep dive on Charm++, Legion, Uintah

 Programmability: Does this runtime enable 
efficient expression of ATDM workloads?

 Performance: How performant is this 
runtime for our workloads on current 
platforms and how well suited is this runtime 
to address future architecture challenges?

 Mutability: What is the ease of adopting this 
runtime and modifying it to suit our code 
needs?

Aim: inform Sandia’s technical roadmap for next generation codes



2015 study to assess leading AMT runtimes led to DARMA
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 Conclusions
 AMT systems show great promise
 Gaps in requirements for Sandia 

applications
 No common user-level APIs
 Need for best practices and standards

 Survey recommendations led to DARMA
 C++ abstraction layer for AMT runtimes
 Requirements driven by Sandia 

applications
 A single user-level API
 Support multiple AMT runtimes to begin 

identification of best practices

Aim: inform Sandia’s technical roadmap for next generation codes



WHAT IS DARMA?
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What is DARMA?
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DARMA is a C++ abstraction layer for asynchronous many-task 
(AMT) runtimes.

It provides a set of abstractions to facilitate the expression of 
tasking that map to a variety of underlying AMT runtime system 

technologies. 

Sandia is using DARMA to inform its technical roadmap for next 
generation codes.



DARMA provides a unified API to application 
developers to specify tasks
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Application code is translated into a series of backend 
API calls to an AMT runtime
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Application code is translated into a series of backend 
API calls to an AMT runtime
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 AMT runtimes often operate with a directed acyclic graph (DAG)
 Captures relationships between application data and inter-dependent tasks

 DAGs can be annotated to capture additional information
 Tasks’ read/write usage of data

 Task needs a subset of data

Considerations when developing a backend API that 
maps to a variety of runtimes
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 AMT runtimes often operate with a directed acyclic graph (DAG)
 Captures relationships between application data and inter-dependent tasks

 DAGs can be annotated to capture additional information
 Tasks’ read/write usage of data

 Task needs a subset of data

 Additional information enables runtime                                            
to reason more completely about 
 When and where to execute a task

 Whether to load balance

 Existing runtimes leverage DAGs with                                       
varying degrees of annotation

data-task graph

subset

reads

Considerations when developing a backend API that 
maps to a variety of runtimes
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Runtime calls into DARMA to extract 

data-task dependencies 

Application

DARMA

Runtime

OS/ Hardware

Common API
across runtimes

Common API
across runt imes

Front End API
(Application User)

Translation Layer

Back End API
(Specificat ion for Runt ime)

Glue Code
(Specific to each runtime)

Runtime controls construction 

and execution of the DAG

P
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d
u
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r
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m
er

By design DARMA captures a declarative specification 
of the application that does not prescribe control-flow
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DARMA’s Backend Runtime System Responsibilities

 Manage data dependencies between tasks (data inputs and outputs) 

 Exploit data usage (write/read/etc.) and sequencing information from the 
frontend to schedule tasks without data conflicts

 Make scheduling decisions based on current state to copy, move, or stall data 
accesses to optimize performance and memory usage

 Determine and track placement of data, tasks, and task collections across distinct 
memory spaces

 Distributed reference counting of data to determine task readiness and schedule 
appropriately

 Manage location of task collection elements to efficiently transfer data for 
publishes (send) and fetches (receive) between elements

 Coordinate data movement utilizing the underlying communication transport layer

 Use frontend interface to serialize/de-serialize arbitrarily typed objects to move 
C++ object across memory spaces

 Implement collective operations (currently only reduce and all-reduce) 
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A runtime’s level of native support for these capabilities is a 

contributing factor to the thickness of the “glue code”



Currently there are three back ends in various stages of 
development
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Strategy and implementation details for backend 
mappings are included in a recent tech report

 Details for current backends:
 Charm++ -

 OnNode (threads)

 HPX3 

 HPX5

 Strategy for other backends:
 REALM

 Legion  (Discussion of differences and 
similarities in programming model)

 MPI
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DARMA-Charm++ Overview

 Manage data dependencies between tasks (data inputs and outputs) 

 Not a direct mapping: implements local and distributed schedulers in Charm++ 
user-space to schedule and track DARMA data

 Determine and track placement of data, tasks, and task collections across distinct 
memory spaces

 Not a direct mapping: utilizes Charm++’s groups, nodegroups, and chare arrays 
to manage DARMA tasks and data.

 Carefully passes DARMA task collections to Charm++ chare arrays to utilize LB 
effectively

 Coordinate data movement utilizing the underlying communication transport layer

 Close mapping: Uses Charm++’s native, platform-specific network layers (ugni, 
ibverbs, tcp/ip, mpi) to transfer data

 Close mapping: Performs serialization/de-serialization by passing data to 
Charm++’s extensive PUP (Pack/UnPack) interface

 Implement collective operations (currently only reduce and all-reduce)

 Not a direct mapping: Charm++ has a native reduce but not an all-reduce. Since 
Charm++ has vastly different collective semantics, reduce and all-reduce are re-
implemented, but re-use Charm++ topological spanning trees
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DARMA front end abstractions for data and tasks are 
co-designed with Sandia application scientists
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DARMA comprises abstractions for data and tasks 

 Asynchronous smart pointers wrap user data and 
track meta-data used to build and annotate the DAG
 darma::AccessHandle<T>

 darma::AccessHandleCollection<T>

 Tasks are annotated via several interfaces
 darma::create_work

 darma::create_concurrent_work
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DARMA’s abstractions provide the application 
developer with productivity and performance benefits

 Automatically capture dependencies and data effects through 
C++ metaprogramming
 Visible code is just variables and functions, no tasks

 Creating DAG directly in user code is tedious and error-prone

 Each data block/variable tracked by logical identifier in 
runtime
 Enables automatic migration of data structures (data movement)

 Enables automatic load balancing

 create_concurrent_work boundaries are natural 
locations for load balancing

27



 Parallel algorithms are written to a data decomposition, not 
execution units (process, rank, thread)
 Tunable granularity

 Overdecomposition (communication overlap, load-balancing 
flexibility)

 Communication pattern automatically determined from data 
effects
 Broadcast data if shared and read-only access

 Streaming communication pattern (not yet implemented) if 
commutative access

 Shared-memory optimizations for tasks/data in same process

28

DARMA’s abstractions provide the application 
developer with productivity and performance benefits



A recent report captures a detailed assessment of the 
overall DARMA approach
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 Uses proxy applications and 
benchmarks representative of 
Sandia applications

 Performance assessment on 
Trinity Supercomputer

 Feedback from application 
developers

 Assessment of 
 interoperability challenges

 generality of backend API



APPLICATION DRIVERS
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Proxy and benchmark overview

 Three benchmarks
 Written by DARMA developers
 Purpose: highlight benefits/limitations of the programming model and runtime 

 Jacobi: memory-bound computation, latency-bound communication to expose 
overheads

 Molecular dynamics: compute-bound with more bandwidth-intensive 
communication to complement Jacobi

 Simulated Imbalance: assess load balancing capabilities

 Three proxy applications
 Written by application developers
 Purpose: co-development of APIs, acquire subjective feedback, requirements

 PIC: Direct collaboration with EMPIRE application team
– SimplePIC, MiniPIC

 UQ: Embedded analysis is a capability used by both applications
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 SNL is developing a new code base for plasma simulations

 Component based approach using the Trilinos framework

 The PIC component of Empire is the basis for our proxy app work

 Two sets on unknowns, mesh data and particles
 Domain decomposition on the fields and the particles can be out of 

balance

 Calculations are localized so colocation is important

 Work can be created in one location and migrate to a different location 

 Potential solution – overdecomposition
 Overdecomposition breaks the problem up into more units than you have 

computational cores

 Load balance at a middle level of work

 Overlap computation and communication
32

EMPIRE: ElectroMagnetic Plasma In Radiation 
Environments



SimplePIC Proxy Overview

 PIC method allows the statistical representation of general 
distribution functions in phase space

 It uses the fundamental equations retaining the full nonlinear 
effects 

 SimplePIC includes only particle move kernel 

 Domain Decomposition: 2-level 3D structured grid 
 Px

☓Py☓Pz grid of boxes (patches), nx☓ny☓nz grid within each box

 Computational costs:
 O(Nparticle) computation (memory bound), O(Nparticle

☓ patchsurf/patchvol) 
communication, 

 Proxy goal: serve as test ground for PIC algorithm design and 
development on DARMA
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SimplePIC Proxy Algorithm

• Decompose problem into patches and assign them to processing units

• For every patch initialize the swarm (particles on that patch)

• For each time step do (iteration)
• For each particle in the swarm do

• Advance particle until it reaches the patch interface or time expires

• If time is not expired do

• Put particle in the migrants (a buffer, corresponding to that patch interface) 

• Remove particle from swarm

• Compute the total number of migrants in the entire domain

• While total number of migrants > 0 do (micro-iterations)

• For every patch interface exchange the migrants

• For each interface do

• For each particle in migrants do

• Advance particle until it reaches the patch interface or time expires

• If time expired add particle to swarm, otherwise put in migrants

• Compute the total number of migrants
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MAPPING TO TRINITY
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Trinity/Advanced Technology Systems (ATS)-1 is the 
performance analysis target 

36(Image courtesy of ACES)

Cray XC30 

KNL: enables emerging architecture,
workflow, runtime system research 

Haswell: enables support for
current applications



Performance analysis results are captured for both 
Haswell and KNL architectures

37(Images courtesy of 
ACES)

KNL should do better on highly-
parallel, numerically intensive 
code

Haswell should have better serial 
performance, and perform better on 
system tasks (e.g., communication)



Balanced and Unbalanced SimplePIC Studies
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 Balanced use case assesses overheads with respect to MPI-only 
implementation
 Every computational cell has N randomly placed particles (5 - 30), with 

random velocities (|v| = const). 

 Imbalanced use case assesses benefits of overdecomposition
and load balancing
 Initially place 80% of particles into the 20% of the domain creating load 

imbalance in the system. 

 The computational experiment was designed such that the system will 
reach to a fully balanced state in 500 iterations and come to the initial 
state in 1000 iterations. 

 In all studies we kept CFL number to a value of 0.96, which 
translates into at most 2 micro-iterations per time step. 



KNL architecture provides many possibilities for on-
node parallelism

 Empirical exploration of cpu-binding and affinity tradeoffs

 Increasing number of communication threads/node 
 Fewer threads available for computation

 Communication is driven forward more quickly 

 Increasing number of hyperthreads/core
 More threads actively computing

 Potential cache conflicts

 Weakened serial performance per thread

 CPU binding options
 Binding tasks to physical cores only or to specific hyperthreads
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A CPU binding and affinity study determined proper 
settings on KNL for SimplePIC 
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A variety of settings were 
tested for MPI and DARMA.

Optimal settings:
MPI: 4-way hypertheading
with cpu_bind = threads

DARMA: 13 processes per 
node, each with 
• 16 compute threads (4 

compute cores) 
• 1 communication thread 



DYNAMIC LOAD BALANCING
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Strong scaling of balanced SimplePIC 
up to 131K cores/2K nodes (KNL)
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1.4B particles
143M cells

138B particles
4.6B cells

Mutrino (KNL, 4K cores) Trinity (KNL, 131K cores)

 DARMA overhead with respect to MPI is -5-24%.

 On 2K cores, grain size is too small and, hence, 
degraded scaling.

 MPI scaling degradation is likely due to MPI only 
launch on KNL. 

 DARMA scales super-linearly up to 131K 
cores. 



Strong scaling of balanced SimplePIC 
up to 32K cores/2K nodes (Haswell)
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4.2B particles
141M cells

136B particles
4.5B cells

Mutrino (Haswell, 2K cores) Trinity (Haswell, 32K cores)

 DARMA scales consistently good on up to 
32K cores. 

 Slight overheads can be explained by the 
small problem size on higher core counts. 

 DARMA overhead with respect to MPI is 12-
19%.

 On 2K cores, grain size is too small and, 
hence, DARMA does not have perfect linear 
scaling.

 MPI scales ideally on up to 2K cores.



DARMA Strong scaling of imbalanced SimplePIC 
up to 131K cores/2K nodes (KNL)
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1.8B particles
55M cells
ODF = 8

40B particles
3.4B cells
ODF = 4

Mutrino (KNL, 2K cores) Trinity (KNL, 131K cores)

 For lower core counts, load balancing 
provides around 50% speedup.

 For higher core counts, at least at this 
overdecomposition level, speed up due to a 
load balancer is 20%. 

 These trends are similar for Haswell. 

 Similar trends are present on Trinity at 
these higher scales. 
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DARMA Time Profile Graph of Balanced SimplePIC on 
2k Cores/64 nodes (Haswell) for 3 Iterations

 x-axis is time and 
y-axis are 
different cores

 Most of the time 
is spent executing 
application tasks

 There is a small 
amount of idle 
time (white) at 
the end of each 
iteration

ODF=1

ODF=8
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DARMA Percentage Utilization Graph of Balanced
SimplePIC on 2k Cores/64 nodes (Haswell) for 3 Iterations

ODF=1

ODF=8

 x-axis is time and y-axis is the 
proportional aggregate of work 
type spent across the worker 
cores

 With an overdecomposition 
factor of 8 (ODF=8) the data 
transfer time is slightly increased

 The idle time at the end of the 
iteration is slightly reduced with 
ODF=8 because the system is 
able to overlap communication 
with computation
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DARMA Time Profile Graph of Balanced SimplePIC on 
2k Cores/64 nodes (Haswell) for last 2 micro iterations

ODF=1

ODF=8

 Processor utilization for 2 micro 
iterations 

 Note the scale: this is 25 
milliseconds

 Overdecomposition increases 
the execution time because data 
transfer is increased (note the 
increase in green and blue area) 

 More particles must cross the 
boundaries with smaller boxes

 Overall processor utilization is 
increased because there is more 
overlap with communication



DARMA Projection views of imbalanced SimplePIC 
on 2K cores (Haswell)
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 Significant improvement 
in load imbalance with 
more frequent calls to 
load balancer. 

 The overhead (cost) of 
load balancer is 
essentially constant. 

 Over 50% CPU utilization 
increase after the first 
load balancer call (in both 
cases).



Conclusions on SimplePIC Performance Study

 Balanced SimplePIC study stressed DARMA overheads with 
respect to MPI. In the worst cases we are off by 25%. 

 Balanced SimplePIC also showed excellent scalability on 131K 
cores (2K KNL nodes).

 Imbalanced SimplePIC demonstrated the benefits of 
overdecomposition and load balancing on 131k cores (2K KNL 
nodes), while maintaining strong scalability.
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Lessons learned on productivity for SimplePIC proxy

 “Manual (dynamic) overdecompositon and load balancing in 
MPI can be very tedious and error prone task even for 
structured PIC. For unstructured case, the situation is very 
complex.” 

 “Data decomposition in DARMA provides intuitive 
mechanisms for work load balancing, while runtime handles 
scheduling.”

 ”DARMA abstractions are fairly intuitive and provide a 
productive environment for code design and development.”

50Quotes from application developer



Summary of quotes on productivity from our 
application developers

 “DARMA provides an intuitive means to reason about your 
problem in an AMT way.” 

 “Deferred semantics is a significant help for those who are 
used to imperative programming only.”

 “Moving toward an AMT runtime is best achieved by 
conceptualizing the application software as a set of tasks with 
well-defined dependencies”

 “Future work should include focus on documentation and 
productivity tools (timers, performance profilers, debuggers)”
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Different load balancers have cost, scaling, and 
optimality tradeoffs
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LB Type LB Name Description Benefits Drawbacks

Centralized GreedyLB
Heap-based,
considers all tasks 
for redistribution

Provides high quality 
distribution

Not scalable, expensive 
in memory and space

Centralized RefineLB
Heap-based, 
considers only tasks 
above threshold

Fast for centralized 
load balancer

Not scalable, quality 
might be low

Distributed,
gossip-based

DistributedLB
Gossip-based,
probabilistic transfer

Extremely fast, fully 
decentralized

Quality may be low

Distributed,
tree-based

HierarchicalLB
Tree-based,
hierarchical transfer

Fast, typically provides 
high quality 

Greedy algorithm may
not be aggressive

Distributed,
group-based

HybridLB
Creates subgroups 
of processors and 
applies centralized

Can reuse centralized 
LB schemes

May be expensive and 
slow with large groups



Synthetic imbalance on Haswell (up to 64 nodes/2K 
cores) shows overheads, scalabilities of each balancer
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• Only Greedy, Hybrid load balancers competitive with optimal balance baseline
• All load balancers relatively scalable up to 64 nodes, different quality solutions 

though
• All load balancers better than worst-case baseline with no load balancing
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• Only Greedy, Hybrid load balancers competitive with optimal balance baseline
• All load balancers relatively scalable up to 64 nodes, different quality solutions 
• All load balancers better than worst-case baseline with no load balancing

Synthetic imbalance on KNL (up to 64 nodes/2K cores) 
shows overheads, scalabilities of each balancer



Large runs on Trinity (up to 2K nodes) highlight 
scalability differences between load balancers (KNL)
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• Refine load balancers skipped, could not finish in 30 minute time cutoff 
• All load balancers still relatively scalable, Hierarchical has best scalability but 

worse quality of load balance
• Only hybrid load balancer gets near optimal balance with low load balance 

overheads



Load balancers redistribute work, shrink idle time 
between iterations 
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• Red is active computation, 
white is idle time for each 
thread

• Execution shows certain 
threads idling while large 
tasks finish

• First iteration imbalanced, but 
idle time shrinks as load 
balancer finds nearly optimal 
solution on second iteration

No load balancing

Greedy load balancer



Some load balancers improve results, but solution is 
not optimal
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• Red is active computation, 
white is idle time for each 
thread

• Execution shows certain 
threads idling while large 
tasks finish

• First iteration imbalanced, but 
idle time shrinks as load 
balancer finds nearly optimal 
solution on second iteration

Hierarchical load balancer

Hybrid load balancer



Lessons learned on productivity for 
synthetic imbalance benchmark

 Even for very basic linear imbalance problem, there is no 
direct mapping to a scalable MPI collective, routine to derive 
optimal task distribution

 MPI_Gather-Sort-MPI_Scatter could be easily implemented 
for balancing, but is not scalable 

 Ad hoc implementation of app-specific load balancers would 
be tedious and error-prone

 Load balancing handled transparently in DARMA-Charm++ 
application, although some tuning may be required to select 
best load balancer for each application

 Hybrid balancer seems a good universal starting choice
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CONCLUSIONS & FUTURE WORK
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Conclusions

 Productivity:

 Easier to express communication overlap: no Isend/wait pairs, communication progress not 
explicit in application code

 Easier to express tunable granularity: data decomposition can mismatch execution resources 
(overdecomposition) without changing application code

 Easier to enable load balancing: migratable data and work chunks can be transparently 
rebalanced without explicit bookkeeping and rebalancing in application code

 Performance:

 Experiments up to 2K nodes show that DARMA is scalable (weak and strong) 

 Load balancing shows major performance gains with minimal effort from app developer

 Deferred execution and sequential task model have overheads (~10% over MPI)

 Expect DARMA performance to improve as we tune the implementation

 Interoperability: It’s complicated, but the initial results are promising

 Generality: declarative backend specification facilitates mapping to different 
technologies, development of “common components” across backend 
implementations
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Future Work

 Focus of DARMA team next year
 Interoperability with node-level libraries

 Hardening/Tuning

 Productivity tools (timers, performance profilers, debugging aides)

 Development of MPI backend

 Bigger picture/longer term efforts
 Best practices and standards-based runtime solutions
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