SAND2017- 10960P

DARMA: A C++ Portability Layer for

Asynchronous Many-Task Runtimes

Dr. Robert L. Clay

Oct 2, 2017

RIKEN K-Computer Center
Kobe, Japan

@ENERGY VISA

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

The DARMA Development Team) doem

= Janine C. Bennett (PI)
= Robert L. Clay (PM)

= David Hollman

= Hemanth Kolla

* Jonathan Lifflander

"= Aram H. Markosyan
= Francesco Rizzi

= Nicole Slattengren

" Jeremiah J. Wilke

Sandia
Laboratories

MOTIVATION

Extreme-scale HPC system architectures introduce a) e,
number of complexities

(Low Capacity, High Bandwidth)

= Performance Heterogeneity

Accelerators 3D Stacked (High Capacit,

Low Bandwidth)

Thermal throttling

Thin Cores / Accelerators

General system noise
= Responses to transient failures

= Energy Constraints

= Decreased system reliability

Integrated NIC
for Off-Chip
Communication

= Deep memory hierarchies

COMPUTER

ARCHITECTURE

LABORATORY
DESIGN SPACE EXPLORATION

Image courtesy of www.cal-design.org o

Current imperative programming models and runtime systems
require mitigation of challenges largely at application-
developer level

What is the alternative?

Imperative Declarative

Get a piece of bread Make me a sandwich
If likes mustard
Add mustard
If not vegetarian
Add meat
Add cheese
Add veggies
Put more bread on top
Cut in half

Imperative vs declarative programming in a nutshell

Sandia
What is the alternative? Pl et

Imperative Declarative
Get a piece of bread Make me a sandwich
TF 14~ mitat+rarA
Programmer uses explicit
statements to control program Programmer expresses logic
state and prescribe order of without prescribing control-flow
operations

Put more bread on top
Cut in half

Imperative vs declarative programming in a nutshell

A declarative style of programming enables mitigation e
of challenges at the runtime-level

= Application developer
specification of desired
result

= Not a “magic bullet”:
complexity must still be
managed

= Separation of concerns:
complexity management at
runtime-level

(Low Capacity, High Bandwidth)

)
(High Capacity,
Low Bandwidth)

3D Stacked

Memory
)

Thin Cores / Accelerators

Integrated NIC
for Off-Chip
Communication

COMPUTER
ARCHITECTURE

Image courtesy of www.cal-design.org 0 LABORATORY

EXASCALE DESIGN SPACE EXPLORATION

What is it about AMT models that enables a declarative

) e,
programming approach?
= Directed acyclic graph (DAG) encodes data-
task dependencies data-task graph
\subset
= Enables a runtime system to reason about \ J
= Task and data parallelism v 1 . /
= Qverlapping communication and computation

reads%) Y
= Dynamic load balancing N

= \When and where to execute work and move data

Common misconception: AMT seeks to replace MPI

= MPIis a transport layer
= AMT runtimes can and do use MPI as their transport layer

Rather: AMT research focus is on developing abstractions to
= Facilitate expression and management of asynchrony
= Express and manage task parallelism (in addition to data-
parallelism)

= Capture semantic information that enables runtime-
management of data movement and control-flow execution in
complex memory and execution spaces

= Active research area

= Habanero-UPC++, HPX, Legion, OCR, PaRSEC, SCIOTO, STAPL, Uintah,
Charm++, StarPU, ...

Sandia
2015 study to assess leading AMT runtimes led to DARMA) el

Aim: inform Sandia’s technical roadmap for next generation codes

SANDIA REPORT

= Broad survey of many AMT runtime systems

SAND2015-8312

= Deep dive on Charm++, Legion, Uintah

ASC ATDM Level 2 Milestone #5325:
Asynchronous Many-Task Runtime System
Analysis and Assessment for Next

= Programmability: Does this runtime enable Generation Platforms

efficient expression of ATDM workloads? e S
Matt Bettencourt, Steve Bova, Ken Franko, Paul Lin (Applications),

Ryan Grant, Si Hammond, Stephen Olivier (Performance Analysis)
Sandia National Laboratories

" Performance: How performant is this

University of linois, Urbana Champaign

Alex Aiken, Mike Bauer, Wonchan Lee, Elliott Slaughter, Sean Treichler (Legion)

runtime for our workloads on current

Martin Berzins, Todd Harman, Alan Humphrey, John Schmidt, Dan Sunderland (Uintah)
University of Utah

platforms and how well suited is this runtime A p—

Los Alamos National Laboratory

Martin Schulz, Abhinav Bhatele, David Boehme, Peer-Timo Bremer, Todd Gamblin (Tools)

to address future architecture challenges? Lo e et o

= Mutability: What is the ease of adopting this o

runtime and modifying it to suit our code
nee d S ? @ Sandia National Laboratories

ry managed and operated by Sandia Gorparation,
of Lockheed Martin Corporation, for the US. Departmen of Energy's
National Muclear Security Administration under contract DE-ACO4-84ALB5000,

Approved for public release; further dissemination unlimited.

Sandia
2015 study to assess leading AMT runtimes led to DARMA) el

Aim: inform Sandia’s technical roadmap for next generation codes

= Conclusions ——

SANDIA REPORT

= AMT systems show great promise —
= Gapsinrequirements for Sandia
ASC ATDM Level 2 Milestone #5325:

Printed September 2015
app lications Asynchronous Many-Task Runtime System
Analysis and Assessment for Next

= No common user-level APls Generation Platforms

Janine Bennett (Pl), Robert Clay (PM), Gavin Baker, Marc Gamell, David Hollman, Samuel Knight,
Hemanth Kolla, Gregory Sjaardema, Nicole Slattengren, Keita Teranishi, Jeremiah Wilke

.
= Need for best practices and standards OrAeA sy Hast ke Sy Rosoae

Matt Bettencourt, Steve Bova, Ken Franko, Paul Lin (Applications),
Ryan Grant, Si Hammond, Stephen Olivier (Performance Analysis)
Sandia National Laboratories

Laxmikant Kale, Nikhil Jain, Eric Mikida (Charm++)
University of linois, Urbana Champaign

Alex Aiken, Mike Bauer, Wonchan Lee, Elliott Slaughter, Sean Treichler (Legion)

= Survey recommendations led to DARMA =

Martin Berzins, Todd Harman, Alan Humphrey, John Schmidt, Dan Sunderland (Uintah)
University of Utah

= C++ abstraction layer for AMT runtimes e st s oo

Los Alamos National Laboratory

Martin Schulz, Abhinav Bhatele, David Boehme, Peer-Timo Bremer, Todd Gamblin (Tools)

| Requ“r'ements driven by Sandia Lawronce Liermors Natonal Laboratory

. . Albuquerque, 455
applications s T —
awholly own the LS. Departmert of Energy's

ly of Lockheed Martin Corporation, for the U
National Muclear Security Administration under contract DE-ACO4-84ALB5000,

= Asingle user-level API ey A
= Support multiple AMT runtimes to begin () sencia Netional taboratores

identification of best practices
11

WHAT IS DARMA?

12

% What is DARMA? i) e _

DARMA is a C++ abstraction layer for asynchronous many-task
(AMT) runtimes.

It provides a set of abstractions to facilitate the expression of
tasking that map to a variety of underlying AMT runtime system
technologies.

Sandia is using DARMA to inform its technical roadmap for next
generation codes.

DARMA provides a unified API to application Jode,
developers to specify tasks o

Common AP Front End API
across runtimes (Application User)

Translation Layer

Common API Back End API

(Specification for Runtime)

across runtimes

Application code is translated into a series of backend @m
API calls to an AMT runtime

Common AP Front End API
across runtimes (Application User)

Translation Layer

Common API Back End API

(Specification for Runtime)

across runtimes

Not all runtimes provide
the same functionality

Application code is translated into a series of backend () i
o Laboratories
API calls to an AMT runtime

Common AP Front End API
across runtimes (Application User)

Translation Layer

Common API Back End API

(Specification for Runtime)

across runtimes

Challenge: design a back
end API that maps to a
variety of runtimes

Considerations when developing a backend API that) e,
maps to a variety of runtimes

= AMT runtimes often operate with a directed acyclic graph (DAG)

= Captures relationships between application data and inter-dependent tasks

= DAGs can be annotated to capture additional information

= Tasks’ read/write usage of data

data-task graph

\ \/ \‘subset

= Task needs a subset of data

Considerations when developing a backend API that) e,
maps to a variety of runtimes

AMT runtimes often operate with a directed acyclic graph (DAG)

= Captures relationships between application data and inter-dependent tasks

DAGs can be annotated to capture additional information

= Tasks’ read/write usage of data

data-task graph

= Task needs a subset of data

Additional information enables runtime

NSUbSG’[
to reason more completely about \ ¢
= \When and where to execute a task \f J,
= Whether to load balance v
/

= Existing runtimes leverage DAGs with reads& b G
varying degrees of annotation N

18

By design DARMA captures a declarative specification () i,
of the application that does not prescribe control-flow o

Common API Front End API
across runtimes (Application User)

Translation Layer

Common API Back End API
across runtimes L (Specification for Runtime)

Runtime calls into DARMA to extract
data-task dependencies

T~

Runtime controls construction
and execution of the DAG

7| Netora

DARMA'’s Backend Runtime System Responsibilities

= Manage data dependencies between tasks (data inputs and outputs)

= Exploit data usage (write/read/etc.) and sequencing information from the
frontend to schedule tasks without data conflicts

= Make scheduling decisions based on current state to copy, move, or stall data
accesses to optimize performance and memory usage

= Determine and track placement of data, tasks, and task collections across distinct
memory spaces

= Distributed reference counting of data to determine task readiness and schedule
appropriately

= Manage location of task collection elements to efficiently transfer data for
publishes (send) and fetches (receive) between elements

= Coordinate data movement utilizing the underlying communication transport layer

= Use frontend interface to serialize/de-serialize arbitrarily typed objects to move
C++ object across memory spaces

= Implement collective operations (currently only reduce and all-reduce)

20

Sandia
m National
Laboratories

DARMA'’s Backend Runtime System Responsibilities

Manage data dependencies between tasks (data inputs and outputs)

= Exploit data usage (write/read/etc.) and sequencing information from the
frontend to schedule tasks without data conflicts

= Make scheduling decisions based on current state to copy, move, or stall data
accesses to optimize performance and memory usage

Determine and track placement of data, tasks, and task collections across distinct
memory spaces

= Distributed reference counting of data to determine task readiness and schedule
appropriately

= Manage location of task collection elements to efficiently transfer data for
publishes (send) and fetches (receive) between elements

Coordinate data movement utilizing the underlying communication transport layer

= Use frontend interface to serialize/de-serialize arbitrarily typed objects to move
C++ object across memory spaces

Implement collective operations (currently only reduce and all-reduce)

A runtime’s level of native support for these capabilities is a "
contributing factor to the thickness of the “glue code” T

Currently there are three back ends in various stages of () i,
development

Common API Front End API
across runtimes (Application User)

Translation Layer

Common API Back End API

(Specification for Runtime)

across runtimes

focus of development prototype

milestone tool

22
-

Strategy and implementation details for backend) e,
mappings are included in a recent tech report

SANDIA REPORT

= Details for current backends: swomrom.

Printed September 2017

= Charm++ - ASC ATDM Level 2 Milestone #6015:

. O N d th d Asynchronous Many-Task Software Stack
niNoae (rea S) Demonstration
u Janine C. Bennett, Matthew T. Bettencourt, Robert L. Clay,
H P X 3 Harold C. Edwards, Micheal W. Glass, David S. Hollman,
Hemanth Kolla, Jonathan J. Lifflander, David J. Littlewood,
Aram H. Markosyan, Stan G. Moore, Stephen L. Olivier,
J. Antonio Perez, Eric T. Phipps, Francesco Rizzi,
|| H P X 5 Nicole L. Slattengren, Daniel Sunderland, Jeremiah J. Wilke

= Strategy for other backends:

= REALM
= Legion (Discussion of differences and
similarities in programming model) () sancia National Laboratories
WP S

DARMA-Charm++ Overview i)

Manage data dependencies between tasks (data inputs and outputs)

= Not a direct mapping: implements local and distributed schedulers in Charm++
user-space to schedule and track DARMA data

= Determine and track placement of data, tasks, and task collections across distinct
memory spaces

= Not a direct mapping: utilizes Charm++’s groups, nodegroups, and chare arrays
to manage DARMA tasks and data.

= Carefully passes DARMA task collections to Charm++ chare arrays to utilize LB
effectively

= Coordinate data movement utilizing the underlying communication transport layer

= Close mapping: Uses Charm++’s native, platform-specific network layers (ugni,
ibverbs, tcp/ip, mpi) to transfer data

= Close mapping: Performs serialization/de-serialization by passing data to
Charm++’s extensive PUP (Pack/UnPack) interface

= Implement collective operations (currently only reduce and all-reduce)

= Not a direct mapping: Charm++ has a native reduce but not an all-reduce. Since
Charm++ has vastly different collective semantics, reduce and all-reduce are re-

implemented, but re-use Charm++ topological spanning trees "

DARMA front end abstractions for data and tasks are () i,
co-designed with Sandia application scientists o

Common API Front End API
across runtimes (Application User)

Translation Layer

Common API Back End API

(Specification for Runtime)

across runtimes

—

Provide abstractions to simplify
capturing of data-task dependencies

DARMA comprises abstractions for data and tasks)

= Asynchronous smart pointers wrap user data and
track meta-data used to build and annotate the DAG
" darma: :AccessHandle<T>

" darma: :AccessHandleCollection<T>

= Tasks are annotated via several interfaces
| darma::create_work

" darma::create concurrent work

26

DARMA'’s abstractions provide the application A
developer with productivity and performance benefits

= Automatically capture dependencies and data effects through
C++ metaprogramming
= Visible code is just variables and functions, no tasks
= Creating DAG directly in user code is tedious and error-prone

= Each data block/variable tracked by logical identifier in
runtime

= Enables automatic migration of data structures (data movement)
= Enables automatic load balancing

" create concurrent work boundaries are natural
locations for load balancing

DARMA'’s abstractions provide the application) e,
developer with productivity and performance benefits

= Parallel algorithms are written to a data decomposition, not
execution units (process, rank, thread)
= Tunable granularity

= QOverdecomposition (communication overlap, load-balancing
flexibility)

= Communication pattern automatically determined from data
effects
= Broadcast data if shared and read-only access

= Streaming communication pattern (not yet implemented) if
commutative access

= Shared-memory optimizations for tasks/data in same process

28
-

A recent report captures a detailed assessment of the () s,
overall DARMA approach

= Uses proxy applications and I

benchmarks representative of SANDIA REPORT

SAND2017-9980
Unlimited Release

Sandia applications

= Performance assessment on Asyrchronous Many.Task Software Stack

Trinity Supercomputer Pemonsiration

Janine C. Bennett, Matthew T. Bettencourt, Robert L. Clay,
Harold C. Edwards, Micheal W. Glass, David S. Hollman,
Hemanth Kolla, Jonathan J. Lifflander, David J. Littlewood,

= Feedback from application e Pt o

Nicole L. Slattengren, Daniel Sunderland, Jeremiah J. Wilke

Preparod
Sandia National Laboratories
uuuuuuuuuuu

Nation i

deo 87185 and Livermore, Callfarnia 94550

a mutimission laboratary managod and operated by National Technology and
.. a wholly owned subsidiary of Honeywell International, inc., for the
Departmor ional Nuclear Security Administratin under contract DE-NAOOO352S
n unlimited.

= Assessment of sesm——
= interoperability challenges
= generality of backend API

() sandia National Laboratoies

APPLICATION DRIVERS

30

Proxy and benchmark overview) o

= Three benchmarks
= Written by DARMA developers

= Purpose: highlight benefits/limitations of the programming model and runtime

= Jacobi: memory-bound computation, latency-bound communication to expose
overheads

= Molecular dynamics: compute-bound with more bandwidth-intensive
communication to complement Jacobi
= Simulated Imbalance: assess load balancing capabilities

= Three proxy applications
= Written by application developers

= Purpose: co-development of APIs, acquire subjective feedback, requirements
= PIC: Direct collaboration with EMPIRE application team
— SimplePIC, MiniPIC
= UQ: Embedded analysis is a capability used by both applications

31

EMPIRE: ElectroMagnetic Plasma In Radiation) =,
Environments

= SNL is developing a new code base for plasma simulations

= Component based approach using the Trilinos framework

= The PIC component of Empire is the basis for our proxy app work
= Two sets on unknowns, mesh data and particles

= Domain decomposition on the fields and the particles can be out of
balance

= Calculations are localized so colocation is important
= Work can be created in one location and migrate to a different location

= Potential solution — overdecomposition

= Qverdecomposition breaks the problem up into more units than you have
computational cores

= | oad balance at a middle level of work

= Qverlap computation and communication

32
-

SimplePIC Proxy Overview) e

= PIC method allows the statistical representation of general
distribution functions in phase space

= |t uses the fundamental equations retaining the full nonlinear
effects

= SimplePIC includes only particle move kernel
= Domain Decomposition: 2-level 3D structured grid
= PP, P,grid of boxes (patches), n,.n n, grid within each box

= Computational costs:

" O(N,articie) cOMputation (memory bound), O(N
communication,

<patch, ¢/ patch

particle vol)

= Proxy goal: serve as test ground for PIC algorithm design and
development on DARMA

33

SimplePIC Proxy Algorithm

 Decompose problem into patches and assign them to processing units
* For every patch initialize the swarm (particles on that patch)

* For each time step do (iteration)

* For each particle in the swarm do
* Advance particle until it reaches the patch interface or time expires

 If time is not expired do Z

* Put particle in the migrants (a buffer, corresponding to that patch interface) g

* Remove particle from swarm @ 2

// AN -

* Compute the total number of migrants in the entire domain BN Z
\ -

. . . . o ‘ : =

* While total number of migrants > 0 do (micro-iterations) f Z
. . R) %

* For every patch interface exchange the migrants Z

-

* For each interface do ~

* For each particle in migrants do 7
* Advance particle until it reaches the patch interface or time expires
* |f time expired add particle to swarm, otherwise put in migrants

* Compute the total number of migrants

34

MAPPING TO TRINITY

35

Trinity/Advanced Technology Systems (ATS)-1 is the =)
performance analysis target

Haswell: enables support for KNL: enables emerging architecture,
current applications workflow, runtime system research
Compute (Intel Haswell) Compute (Intel Xeon Phi)
9436 Nodes - 1.15 PiB memory 9984 Nodes— 0.91 PiB DDR + 0.15 PiB MCDRAM
11.1 PF/s theoretical peak 30.4 PF/s theoretical peak (26.1 PF/s actual peak)
41.5 PF/s Total Performance and 2.07 PiB of Total DDR Memory
Lustre Routers Burst Buffer
SatewayNodes 222 nodes 576 nodes
A
Cray XC30 \
3.7 PB Raw
\ GigE 3.3 TB/s BW
— 40 GigE
- FDRIB

40 GigE Network

*On Intel Xeon Phi, heavy use of
AVX (vector) instructions will
reduce operating frequency by
~15%, thus “actual peak” is lower

. than theoretical peak computed
78 PB Usable, 1.45 TB/sec — 2 Filesystems using nominal processor

(Image courtesy of ACES) 36

GigE Network

Performance analysis results are captured for both =)
Haswell and KNL architectures

Haswell should have better serial KNL should do better on highly-
performance, and perform better on parallel, numerically intensive
system tasks (e.g., communication) code

2x16 Xa
1x4 bmi t,mm ‘;ﬁm RAM

T T

128 GB, 2133 -
3

A j 36 Tiles
Haswell QPl J Haswell = connected by
16 Core \— 16 Core : H 2D Mesh
588GF) QP ~ 588GF Interconnect

%,\, Southbridge
Chip

(Images courtesy of 37

Balanced and Unbalanced SimplePIC Studies) faor

= Balanced use case assesses overheads with respect to MPI-only
implementation
= Every computational cell has N randomly placed particles (5 - 30), with
random velocities (|v| = const).
= |mbalanced use case assesses benefits of overdecomposition
and load balancing

= |nitially place 80% of particles into the 20% of the domain creating load
imbalance in the system.

= The computational experiment was designed such that the system will
reach to a fully balanced state in 500 iterations and come to the initial
state in 1000 iterations.

= |n all studies we kept CFL number to a value of 0.96, which
translates into at most 2 micro-iterations per time step.

38
-

KNL architecture provides many possibilities for on- =)
node parallelism

= Empirical exploration of cpu-binding and affinity tradeoffs
= Increasing number of communication threads/node

= Fewer threads available for computation

= Communication is driven forward more quickly

= |ncreasing number of hyperthreads/core
= More threads actively computing
= Potential cache conflicts
= Weakened serial performance per thread

= CPU binding options

= Binding tasks to physical cores only or to specific hyperthreads

39

Sandia
National
Laboratories

th

A CPU binding and affinity study determined proper

settings on KNL for SimplePIC

A variety of settings were

tested for MPI and DARMA.

(o)
S n
T ©
MM @©
¢ 9
S
U S
m,om.__
c >
s L C
2 =5
n T |
= > 3
1
e o
.Ihh
oo s
o= =2

DARMA: 13 processes per

node, each with

16 compute threads (4

T
N
m

T
o
m

(

T
Te}
o

s)

o Te}
o —

Swl] |[eM |ej0l

10 A

o
<
©
(g0]
(O]
S
-
)
[
7 2
)
UV o
o ©
O C
)
2 E
)
Q &
(@)
€ 8
O i
[)

8=4d0 ‘€9 X T ‘VINdvad

T X 26 ‘speatyi=puiq ndd ‘|di
T X 9 ‘speaiyi=puiq ndd ‘|d
¥=440 ‘€9 X T 'YIN4VvAQ

T X g§ ‘duou=pulg ndd ‘|dW

T X ZG ‘s1oypos=puiq ndd ‘|diA
8=4d0 ‘1€ X ¢ 'YWdvda
8=4d0 ‘v X €T 'VINdvdQ
¥=4d0 ‘v X €T ‘VINdVaA

T X ZG ‘sa10d=pulq ndd ‘|dIN

T X 9 ‘duou=pulq ndd ‘|di

T X $9 ‘s19ypos=puiq ndd ‘|diA
¥=4d0 ‘1€ X T 'VINdva
8=4d0 ‘ST X ¥ 'VYINdvd

T X ZG “uea=puiq ndd ‘|di
¥=4d0 ‘ST X ¥ ‘'ViNdvda

T X 9 ‘saJod=puiq ndd ‘|dIn

T X £9 “ued=puiq ndd ‘|dn
¥=4d0 ‘91 X €T 'YINYvd
Z=4A0 9T X €T ‘VINdvd
T=4A0 ‘91 X €T ‘VINdvd

T X 96 ‘speatyy=pulq ndd ‘idin

DYNAMIC LOAD BALANCING

41

Strong scaling of balanced SimplePIC

Sandia
National
up to 131K cores/2K nodes (KNL) .
Mutrino (KNL, 4K cores) Trinity (KNL, 131K cores)
. 1.4B particles 138B particles
143M cells %0 4.6B cells
— _. 60
2 20 o
& 10 - £ Y
J —E DARMA RS N,
o L R NG
o] wen .
5I12 10I24 20I48 - 4(;'96 32I768 65;336 131I072
of Cores # of Cores

= DARMA overhead with respect to MPI is -5-24%. = DARMA scales super-linearly up to 131K

= On 2K cores, grain size is too small and, hence, cores.
degraded scaling.

= MPI scaling degradation is likely due to MPI only
launch on KNL.

42
-

Strong scaling of balanced SimplePIC s

National
up to 32K cores/2K nodes (Haswell) L
Mutrino (Haswell, 2K cores) Trinity (Haswell, 32K cores)
100 A
%0 4.2B particles 136B particles
60 141M cells % 4.5B cells
B 40 @ 60
S 20 g 40
10 A
25;6 5i2 10I24 20I48 81I92 16::384 32I768
of Cores # of Cores
= DARMA overhead with respect to MPI is 12- = DARMA scales consistently good on up to
19%. 32K cores.
= On 2K cores, grain size is too small and, = Slight overheads can be explained by the
hence, DARMA does not have perfect linear small problem size on higher core counts.

scaling.
= MPI scales ideally on up to 2K cores.

43
-

Total Wall Time (s)

200

100 -

80

DARMA Strong scaling of imbalanced SimplePIC
up to 131K cores/2K nodes (KNL)

Mutrino (KNL, 2K cores)

1.8B particles
55M cells
ODF =38

——&— HierarchicallLB

—&— HybridLB

—&— No Load Balancer

2048 4096

of Cores

1024

For lower core counts, load balancing
provides around 50% speedup.

For higher core counts, at least at this

overdecomposition level, speed up due to a

load balancer is 20%.
These trends are similar for Haswell.

Total Wall Time (s)

200

100 -

80

th

Trinity (KNL, 131K cores)

40B particles
3.4B cells
ODF =4

—$— HybridlB
—$— No Load Balancer
= Ideal

65536 131072

of Cores

32768

= Similar trends are present on Trinity at
these higher scales.

44

DARMA Time Profile Graph of Balanced SimplePICon () ik,

2k Cores/64 nodes (Haswell) for 3 Iterations

|

N
e |
|

Processors

s
" - =
=3 =i

0.000s 0.274s 0.548s 0.822s 1.096s 1.369s 1.643s 1917s 2.191s

Processors

0.000s 0.277s 0.554s 0.832s 1.109s 1.386s 1.664s 1.941s 2.218s

. Application Data transfer
work (tasks) (send/recv)

X-axis is time and
y-axis are
different cores

Most of the time
is spent executing
application tasks

There is a small
amount of idle

time (white) at

the end of each
iteration

45

SimplePIC on 2k Cores/64 nodes (Haswell) for 3 Iterations

Percentage Utilization

Percentage Utilization

100
90
80
70
60
50
40
30
20
10

0

0.000s 0.274s 0.548s 0.822s 1.096s

100
90
80
70
60
50
40
30
20
10

0

0.000s 0.277s 0.554s 0.832s

DARMA Percentage Utilization Graph of Balanced) e,

Fon

=3

Application
work (tasks)

1.109s 1.386s

1.369s 1.643s 1.917s 2.191s

1.664s 1.941s 2.218s

Data transfer
(send/recv)

X-axis is time and y-axis is the
proportional aggregate of work
type spent across the worker
cores

With an overdecomposition
factor of 8 (ODF=8) the data
transfer time is slightly increased

The idle time at the end of the
iteration is slightly reduced with
ODF=8 because the system is
able to overlap communication
with computation

46

DARMA Time Profile Graph of Balanced SimplePICon () ik,
2k Cores/64 nodes (Haswell) for last 2 micro iterations

= Processor utilization for 2 micro
iterations

= Note the scale: this is 25
milliseconds

Percentage Utilization

= QOverdecomposition increases
the execution time because data
transfer is increased (note the
increase in green and blue area)

2.159s 2.162s 2.165s 2.168s 2.171s 2.174s 2.178s 2.181s 2.184s
100 =

90
80 —
70
60 —
3 =
40
30 —

= More particles must cross the
boundaries with smaller boxes

= Qverall processor utilization is
increased because there is more
overlap with communication

Percentage Utilization

2.161s 2.168s 2.175s 2.182s 2.190s 2.197s 2.204s 2.211s 2.218s

. Application . Data transfer
work (tasks) (send/recv) 47

DARMA Projection views of imbalanced SimplePIC

100
20
80
70
60
50
40
30
20

Percentage Utilization

10
0
0.000s

100 =

90 —
80 —
70 —
60 =

Percentage Utilization

0.000s

100 iters

38.950s

47.406s

77.900s

I aF aF aF o aF a9 YL ar a2 o ar)
'L 200 iters ¢

94.813s

on 2K cores (Haswell)

116.850s 155.800s 194.750s 233.700s 272.650s 311.600s

* 100 iters
Wty
e
j | R

200 iters

i

142.219s 189.625s 237.031s 284.438s 331.844s

379.250s

th

Significant improvement
in load imbalance with
more frequent calls to
load balancer.

The overhead (cost) of
load balancer is
essentially constant.

Over 50% CPU utilization
increase after the first
load balancer call (in both
cases).

48

7| Netora

Conclusions on SimplePIC Performance Study

= Balanced SimplePIC study stressed DARMA overheads with
respect to MPI. In the worst cases we are off by 25%.

= Balanced SimplePIC also showed excellent scalability on 131K
cores (2K KNL nodes).

= |mbalanced SimplePIC demonstrated the benefits of
overdecomposition and load balancing on 131k cores (2K KNL
nodes), while maintaining strong scalability.

7| Netora

Lessons learned on productivity for SimplePIC proxy

= “Manual (dynamic) overdecompositon and load balancing in
MPI can be very tedious and error prone task even for
structured PIC. For unstructured case, the situation is very
complex.”

= “Data decomposition in DARMA provides intuitive
mechanisms for work load balancing, while runtime handles
scheduling.”

= "DARMA abstractions are fairly intuitive and provide a
productive environment for code design and development.”

Quotes from application developer 50

Summary of quotes on productivity from our A
application developers

= “DARMA provides an intuitive means to reason about your
problem in an AMT way.”

= “Deferred semantics is a significant help for those who are
used to imperative programming only.”

= “Moving toward an AMT runtime is best achieved by
conceptualizing the application software as a set of tasks with
well-defined dependencies”

= “Future work should include focus on documentation and
productivity tools (timers, performance profilers, debuggers)”

Different load balancers have cost, scaling, and) e,

optimality tradeoffs

Heap-based,
Centralized GreedyLB considers all tasks
for redistribution

Provides high quality
distribution

Heap-based,
Centralized RefinelB considers only tasks
above threshold

Fast for centralized
load balancer

Distributed, .. Gossip-based, Extremely fast, fully
D LB e s .
gossip-based Bl probabilistic transfer decentralized
Distributed, . . Tree-based, Fast, typically provides
H hicallB |
tree-based lerarchica hierarchical transfer high quality

Creates subgroups
HybridLB of processors and
applies centralized

Can reuse centralized
LB schemes

Distributed,
group-based

Not scalable, expensive
in memory and space

Not scalable, quality
might be low

Quality may be low

Greedy algorithm may
not be aggressive

May be expensive and
slow with large groups

52

Synthetic imbalance on Haswell (up to 64 nodes/2K) i
cores) shows overheads, scalabilities of each balancer

Synthetic Imbalance Strong Scaling on Haswell
15360 Total Work Units

600 1
——4— DARMA, No LB
400 1 —$— MPI, No LB
—$— DARMA, HierarchicalLB
—&— DARMA, HybridLB
- —&— DARMA, GreedylLB
2 —&— DARMA, RefinelB
_qé 200 —&— DARMA, Ideal Balance
[MPI, Ideal Balance
E = |deal
o
|_
100 A
80 1
60 1
40 1
256 512 1024 2048
of Cores

« Only Greedy, Hybrid load balancers competitive with optimal balance baseline

« All load balancers relatively scalable up to 64 nodes, different quality solutions
though 53

Synthetic imbalance on KNL (up to 64 nodes/2K cores)) i

shows overheads, scalabilities of each balancer

Synthetic Imbalance Strong Scaling on KNL
106496 Total Work Units

1000 A
800 1
600 1 —§— DARMA, No LB
—$— MPI, No LB
Y 400, —&— DARMA, HierarchicallLB
GE) —$— DARMA, HybridLB
= ——&— DARMA, GreedylLB
T —$— DARMA, RefinelB
o —&— DARMA, Ideal Balance
200 1 MPI, Ideal Balance
= |deal
100 ~
80 1

512 1024 2048
of Cores

« Only Greedy, Hybrid load balancers competitive with optimal balance baseline
« All load balancers relatively scalable up to 64 nodes, different quality solutions
« All load balancers better than worst-case baseline with no load balancing

54

Large runs on Trinity (up to 2K nodes) highlight A

scalability differences between load balancers (KNL)

Synthetic Imbalance Strong Scaling on KNL (Trinity)
1703936 Total Work Units

600 1

400 1

——$— DARMA, No LB
—$— MPI, No LB
—&— DARMA, DistributedLB
—&— DARMA, HierarchicallLB
——$— DARMA, HybridLB
—$— DARMA, Ideal Balance
——$— MPI, Ideal Balance

= |deal

200 1

Total Time (s)

100 A
80 1

60 1

40 1

16384 32768 65536
of Cores

» Refine load balancers skipped, could not finish in 30 minute time cutoff
« All load balancers still relatively scalable, Hierarchical has best scalability but
worse quality of load balance

* Only hybrid load balancer gets near optimal balance with low load balance
overheads 55

Load balancers redistribute work, shrink idle time) e,
between iterations

nnnnnnnnnnnnnnnnnn

white is idle time for each
thread

 EXxecution shows certain
- ggéagg threads idling while large
g s i g tasks finish

g * Red is active computation,
=

nnnnnnnnnnnnnnnnnn

* First iteration imbalanced, but
idle time shrinks as load
balancer finds nearly optimal
solution on second iteration

56
-

Some load balancers improve results, but solution is) e,
not optimal

<<<<<<<<<<<<<<<<<<

* Red is active computation,
white is idle time for each
thread

» Execution shows certain
threads idling while large
tasks finish

Hierarchical load balancer

* First iteration imbalanced, but
idle time shrinks as load
balancer finds nearly optimal
solution on second iteration

Hybrid load balancer 57

Lessons learned on productivity for e
synthetic imbalance benchmark

= Even for very basic linear imbalance problem, there is no
direct mapping to a scalable MPI collective, routine to derive
optimal task distribution

= MPI_Gather-Sort-MPI_Scatter could be easily implemented
for balancing, but is not scalable

= Ad hoc implementation of app-specific load balancers would
be tedious and error-prone

= Load balancing handled transparently in DARMA-Charm++
application, although some tuning may be required to select
best load balancer for each application

= Hybrid balancer seems a good universal starting choice

58
-

CONCLUSIONS & FUTURE WORK

59

. |i|-| Sandia
Conclusions e

= Productivity:

= Easier to express communication overlap: no Isend/wait pairs, communication progress not
explicit in application code

= Easier to express tunable granularity: data decomposition can mismatch execution resources
(overdecomposition) without changing application code

= Easier to enable load balancing: migratable data and work chunks can be transparently
rebalanced without explicit bookkeeping and rebalancing in application code

= Performance:
= Experiments up to 2K nodes show that DARMA is scalable (weak and strong)
= Load balancing shows major performance gains with minimal effort from app developer
= Deferred execution and sequential task model have overheads (~10% over MPI)
= Expect DARMA performance to improve as we tune the implementation
= |nteroperability: It’s complicated, but the initial results are promising

= Generality: declarative backend specification facilitates mapping to different
technologies, development of “common components” across backend
implementations

60

Future Work th ?:;.?';m

= Focus of DARMA team next year
= |nteroperability with node-level libraries
= Hardening/Tuning
= Productivity tools (timers, performance profilers, debugging aides)
= Development of MPI backend

= Bigger picture/longer term efforts

= Best practices and standards-based runtime solutions

33 g0

ER

