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Motivation
▪ Nanostructured materials are of 

general interest to the nuclear 
materials community for improving 
radiation tolerance
▪ High densities of features and interfaces 

serve as sinks for point defects resulting 
from radiation damage

▪ Cu-Nb serves as an idealized system 
for studying these systems
▪ Cu (fcc) & Nb (bcc) are immiscible, 

allowing for study of ideal interfaces 
without potentially complex 
intermediate phases or chemical effects

▪ Most work to date has been 
performed on nanolayered Cu-Nb
▪ Nanodispersed or nanograined Cu-Nb

geometries are more relevant to real 
systems (ODS, UFG) 2
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Previous studies of radiation tolerance in Cu-Nb

▪ Many studies of radiation damage and He 
implantation in Cu-Nb nanolaminates

▪ Usually produced by accumulated roll-bonding 
(bulk) or alternating deposition (thin films)

▪ Have demonstrated He bubble growth is arrested 
by these interfaces

▪ Averback group @ UIUC has had success 
preparing nanodispersed Cu-Nb specimens via 
HPT and has shown phase separation under 
irradiation, but little is reported on the resulting 
radiation tolerance
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As-deposited Cu-10Nb after HPT (SEM)



Experimental Goals

▪ Generate nanodispersed Cu-Nb thin films with varied 
compositions

▪ Characterize and optimize microstructures for a given condition

▪ Irradiate films with heavy ions and characterize damage 
microstructures

▪ Implant films with He and characterize resulting bubble 
microstructures
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Experimental

▪ Cu-Nb thin films with various atomic ratios have been created 
through magnetron sputtering at RT
▪ Either single crystal NaCl or Si3N4 window grid substrates

▪ As-deposited films were either vacuum annealed or irradiated at 
temperature to encourage recrystallization
▪ 500 °C anneal, or 3 MeV Cu++ to 1 dpa @ 350 or 500 °C

5



Ion Irradiation Calculation
▪ SRIM was used to calculate damage 

in specimens
▪ 1.61E15 ions/cm2 per dpa

▪ Specimen temperature was 
maintained using LabView-controlled 
button heater
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As-deposited Microstructures

▪ Microstructures 
appear porous

▪ Increasing 
crystallinity with 
increasing Cu 
content
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PED of As-Deposited Cu-10Nb
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Annealed Microstructures (1hr, 500 °C)

▪ Annealing results 
in Cu islands on a 
mostly amorphous 
Nb substrate

▪ Size of islands 
varies dramatically 
with composition

▪ Porosity is 
prevalent on Nb
“substrates”
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PED of Annealed Microstructures

▪ PED of annealed specimen confirms that dark contrast is a Cu phase.

▪ Most patterns corresponding to Nb phase actually appear 
amorphous.
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Irradiated Microstructures (1 dpa, 350 °C)

▪ Irradiation at a 
lower temperature 
yields similar 
structures to higher 
temperature anneal
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Irradiated Microstructures (1 dpa, 500 °C)

▪ Irradiation at a 
higher temperature 
results in more 
uniformly sized Cu 
islands (90/10 
exception)

▪ Still not enough to 
recrystallize Nb
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Discussion

▪ Due to drastically different melting temperatures and thin-
film geometries, Cu appears to be “wetting” to the surface 
and organizing into individual precipitates/crystals

▪ Nb substrate remains immobile and amorphous, but contains 
nanometer-sized pores
▪ Smaller than those seen using de-alloying, may still be of use to study 

nanofeatured materials for radiation tolerance

▪ This effect not previously observed in nanolayered materials –
may be due to higher stresses in co-deposited films

▪ Open to other hypotheses…
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In-Situ Anneal
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▪ 50/50 Cu/Nb on Si3N4 grid

▪ Ramp rate of 30 °C/min (14 mins)

▪ Held at 450 °C for 10 mins

▪ Smaller Cu phase precipitates observed 
to start growth at ~120 °C

▪ Handful of precipitates begin to 
coarsen at ~200 °C

▪ Small grains begin to recrystallize with 
continued annealing at 450 °C



Next Steps

▪ Further in-situ annealing & irradiation may help elucidate 
mechanism of microstructural evolution

▪ Pursue bulk sample preparation via cryo-ball milling
▪ May be able to avoid surface wetting effect by using bulk materials

▪ He bubble distribution following implantation still of interest

▪ Eventual neutron irradiations in ACRR planned
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Summary & Conclusions

▪ Microstructural optimization of various co-deposited Cu/Nb films was 
attempted using annealing and irradiation treatments (up to 500 °C)

▪ Cu was observed to wet and coalesce on the film surface while Nb
remained immobile became porous

▪ Observed behavior, previously unobserved in nanolayered materials, is 
likely due to high stresses inherent in co-deposited materials

▪ Future efforts are pursuing cryo-ball milling to avoid these surface effects
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Thank you for your attention.
Questions?
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As-Deposited Microstructures

▪ Deposited on silicon nitride TEM windows

▪ Cu/Nb contents listed
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Irradiated Microstructures (1 dpa, 500 °C)

▪ Deposited on silicon nitride TEM windows

▪ Cu/Nb contents listed
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