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Motivation i) faiot

Higher energy density redox flow batteries are needed for grid
scale energy storage.

= Most flow batteries 25-100 Wh/L
= Li-ion battery 250-700 Wh/L
= Natural Gas 6,200 Wh/L
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Traditional Flow Battery Architecture ) .

= Energy stored in large tanks
= Power determined by electrochemical cell

= Easily scalable Catholyte

Membrane

= Safe —reactants are located far apart

Electrode

= Liquids limit design applications

= Flow rate

= Viscosity

= Cell design

Anolyte

= Maximum energy density

Lismall@sandia.gov 3



What Is Mediation? i) N

= Mediation uses soluble redox active species to oxidize and
reduce solid energy storing materials.

4 Low Energy High Cathode Charge Reaction
potential storing potential At electrode in cell:
mediator solid mediator Mediator = Mediator® + e-

' : In solution tanks:
! Mediator™ + Solid > Solid™ + Mediator

Current

Cathode Discharge Reaction
At electrode in cell:
Mediator® + e > Mediator
In solution tanks:

Mediator + Solid™ = Solid + Mediator™

Potential
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Mediation Applied to a Flow Battery ) .

= Power Output

= electrodes oxidize and reduce mediators at cell

= Energy Storage

= mediators oxidize and reduce energy storing solid

Cell recharges mediators
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The Mediation “Dream” i) N

= Energy density of Li-ion

= Scalability of redox flow battery

= energy and power decoupled

= Safety of redox flow battery
= anode and cathode far apart

= Rapid recharge by exchanging anode/cathode canisters

Swap canisters for
fast recharge

M
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National

Mediation Offers Enhanced Design Flexibility @ €.

= Wide range of solvents possible

= Optimize viscosity, temperature stability

= Solubility of energy storage material not concern

= Mediators can be low density, but high power
= 500 mM should be sufficient
= Large electrochemical libraries available
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Li FePO, Cathode )

Laboratories

= Fcto reduce FePO,

= Fc+ FePO, + Li* = Fc* + LiFePO,
FcBr, to oxidize LiFePO,

= FcBr,* + LiFePO, = FcBr, + FePO, + Li*
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Jia et al, Sci. Adv. 2015; 1:e1500886
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Li, TiO, Anode ) =

Laboratories

= Bis(pentamethylcyclopentadienyl)cobalt to reduce TiO,
= CoCp*,*+ 2TiO, + Li* = CoCp*,* + 2Li, :TiO,

= Cobaltocene to oxidize Li, ;TiO,
= CoCp," + 2Li,:TiO, = CoCp, + 2TiO, + Li*
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Go Li, TiO Co H
HsC CH3 X2 | ? 0.00 |-
1S >N
CHs |
1.67V 1.80V 210V | glassy ﬂasr?mieec;r:g‘i
1 M LITFSI
Potential vs. Li/Li* TEGDME, 25 °C
-0.02 1 1 | | 1 1

1.0 1.5 2.0 25 3.0 35 4.0 45
Potential (V versus Li/Li")
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Li TiO, - Li FePO, Mediated Flow Battery —([@&z.

= Prove feasibility of literature chemistry by using larger scale

= Electrolyte: 1->10mL
= Solids: 72 175mg
= Mediators 5->25mM Ch2ar191e\?t -
*= Currentdensity 0.09 2 >1 mA cm? © oo | '
| Cocpr, TIO, CoCp,  Fe LiFePd] FeB,

0.00 -

Current (mA)
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Jia et al, Sci. Adv. 2015; 1:e1500886
Pan et al, Chem. Mater., 2016, 28, 2052-2057
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Mediated RFB Performance i) N

= Successful scale-up to 10 mL, 0.5 mA cm™?
= >30% of maximum theoretical capacity (Li, sTiO,)

= Lower rates increase capacity
= TiO, particle size vs. accessible capacity
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Membrane Choice Limits Performance ) s

= Li-ion selective Nafion 212 — PVDF membrane is relatively
high resistance

= |dentify other membranes with lower resistance

= Stack membranes in Swagelok cell and record impedance
= SDAPP-PEG < Nafion 212-PVDF < Fumasep FAP-PK

300

Swagelok Cell . .
Increasing resistance

stainless steel cylinder d < |SDAPP-PEG
stainless steel spring L 200 v
stainless steel o x
==« current collectors & 1kHz *
== ~ Zx
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\membranes/separators €100t e ‘0-
! X
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N.S. Hudak, L.J. Small, H.D. Pratt, T.M. Anderson, J. Electrochem. Soc. 162 A2188 (2015). ReZ/ Q-cm2
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Conductive Membranes Enable i) feiwa
Higher Current

= Fumasep PK membrane enables 4x increase in current density
over Nafion 212-PVDF (0.5 vs. 2 mA cm2)

= More variable performance due to crossover
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Voltage Efficiency Is Concerning ) e,

= Chosen mediators used overpotentials up to 0.3V
= 1.30Vdischarge /2.11 V charge = 61% voltage efficiency

= High overpotentials = low voltage efficiency
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Influence of Cathode Mediator

= Minimize mediation overpotential

= Maximize mediator solubility

= How does redox potential influence mediation rate?
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S u m m a ry m l:t:]o:tories

= Mediated flow batteries are promising for modular, high
density energy storage

= Mediation potentials must be optimized to increase voltage
efficiency

= Path forward
= Charge storage solids with higher surface area for faster mediation

= Solvents optimized for mediator solubility and viscosity
= Scalability of RFB

= Optimize mediator : solids : electrode ratio

I —————
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