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The continuous quantum phase transition and the nature of quantum critical point (QCP) in a modified Kondo

lattice model with Ising anisotropic exchange interactions is studied within the density-matrix renormalization

group algorithm. We investigate the effect of quantum fluctuations on critical Kondo destruction QCP, by

probing static and dynamic properties of the magnetic order and the Kondo effect. In particular, we identify that

local Kondo physics itself becomes critical at the magnetic phase transition point, providing unbiased evidences

for local quantum criticality between two insulators without resorting to the change of Fermi surface.

Introduction.— Quantum criticality describes the collective

fluctuations of matter undergoing a continuous phase transi-

tion at zero temperature [1]. As the quantum criticality is cen-

tral to a broad understanding of strongly correlated quantum

matter, how to properly describe the physics around quantum

critical points (QCPs) is a subject of intensive research [2].

The intermetallic heavy-fermion compounds [3–5] serve as

ideal candidates for the study of quantum phase transition and

criticality, by exhibiting unusual properties like heavy-Fermi

liquid, magnetic ordering, as well as unconventional super-

conductivity [6]. Recently, a continuous suppression of anti-

ferromagnetic transition temperature has been discovered in a

sizable number of (nearly) stoichiometric heavy fermion sys-

tems [2]. For QCPs relevant to the heavy-fermion systems,

two major theoretical scenarios have been proposed: One is

the spin-density-wave QCP [7, 8] and the other one is crit-

ical Kondo destruction QCP [9–11]. For spin-density-wave

QCP, conduction electrons acquire peculiar dynamics through

an essentially perturbative coupling to the slow critical modes

of magnetic background. While in the latter case, the lo-

cal Kondo physics itself becomes critical at the magnetic or-

dering transition, and the QCP is driven by the competition

between local dynamics and the long-ranged magnetic fluc-

tuations. Despite considerable efforts, debate continues on

the nature of QCP, and several issues remain elusive in the

heavy-fermion systems. First, it is generally believed that

the spin fluctuations in three dimension leads to a Doniach’s

QCP [12, 13] with dynamical spin susceptibility satisfying

usual Fermi-liquid form, while two-dimensional spin fluctu-

ations tend to favor local QCP with spatially-extended critical

degrees of freedom coexisting at the critical point [9]. An

important question is what kind of QCP the magnetic transi-

tion in one dimension could follow. Second, a key assump-

tion to distinguish different scenarios usually resorts to the

shrink of Fermi surface from large to small when across a

local QCP [6]. Although the argument of Fermi surface in

metallic phase is natural [14–18], the QCP connecting two

insulators without Fermi surface is hardly explored, raising

the question of whether the change of Fermi surface is in-

trinsic to the local QCP scenario. Numerically, the extended

dynamical mean-field theory (EDMFT) [9, 19–24] and large-

N [25, 26] approaches have been used to determine the nature

of QCP in heavy-fermion systems. In these approaches, the

spatial and temporal quantum fluctuations are either partially

or completely neglected, which is valid in high dimension.

Therefore, an unbiased and accurate numerical method to cap-

ture the full quantum fluctuations of local moments and itin-

erant electrons, which become particularly important in low-

dimensional systems, is highly desired to clarify the nature of

QCP.

The aim of this paper is to address the aforementioned prob-

lems, and provide compelling numerical evidences for locally

critical phase transition in a microscopic Kondo lattice model

(KLM) in one dimension. Based on the density-matrix renor-

malization group (DMRG) calculations, we are able to access

the low-lying energy excitations, static and dynamical cor-

relations of local moments as well as the charge degree of

freedom. We first identify a continuous phase transition be-

tween Kondo insulator and antiferromagnetic (AFM) phases,

signaled by the closing neutral gap and various magnetic or-

der parameters such as magnetization. We then demonstrate

the evolution of local susceptibility across the magnetic phase

transition. The singular behavior indicates the Kondo screen-

ing being critical at the transition point, serving as the hall-

mark of local quantum criticality. Importantly, we carefully

clarify that the conduction electrons form spin density wave,

upon the emergence of the AFM order from the local mo-

ments. These results provide first compelling evidence of lo-

cal QCP between two insulators without change of Fermi sur-

faces.

Model and Method.— We consider a modified Kondo lat-

tice model (KLM) in one dimension with an additional Ising-

type interaction between the local spins (Fig. 1), where each

unit cell contains a localized spin and an extended conduction-

band electron state:

H = t
∑

〈ij〉,σ

c†iσcjσ + JK
∑

i

Si · si + Jz
∑

〈ij〉

Sz
i S

z
j . (1)

Here c†iσ(ciσ) denotes the creation operator of a conduc-

tion electron with spin σ =↑, ↓ at site i. The Si is lo-

calized moment with S = 1
2 . Each localized moment in-

teracts via an exchange coupling JK with the conduction

electron, where the conduction electron density is defined as

si =
1
2

∑
σ,σ′ c

†
iα~σαβciβ . The quantity Jz describes the Ising-
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type magnetic exchange interaction between the low moments

[38]. We note that the magnetic exchange interaction is usu-

ally generated by the Kondo interaction via the Ruderman-

Kittel-Kasuya-Yosida (RKKY) effect. Here we have treated it

as an independent parameter for two reasons. First, it helps

the purpose of specifying the global phase diagram. Sec-

ond, in one dimension, the Heisenberg-type RKKY inter-

action always preserves the spin-rotational invariance while

the Ising interaction could stabilize AFM order [27]. There-

fore, the KLM with Ising-type exchange interaction has the

advantage of ameliorating the double counting issue arising

from an explicit inclusion of the intrinsic RKKY-based ex-

change interaction, the latter requiring a treatment of conduc-

tion electrons with care [28]. Experimentally, the easy-axis

anisotropy widely exists in a number of heavy-fermion sys-

tems [29]. Physically, two important mechanisms compete

with each other [12, 13]: An isolated local moment would

be screened by the spins of conduction electrons through the

Kondo screening, while the magnetic exchange interaction

tends to induce a long-ranged magnetic ordering. In the ab-

sence of Ising-type interaction, the ground state of KLM (at

half filling) is spin singlet and the spin gap always exists for

any finite exchange JK , supported by both semiclassical anal-

ysis [30] and finite-size numerical calculations [31–34]. In

the regime where Ising-type exchange interaction dominate,

the AFM phase is expected. Therefore, we expect a magnetic

phase transition from the non-magnetic phase to the AFM

phase driven by the Ising exchange interaction.

In this work, we study the KLM as described by Eq. (1) us-

ing the exact diagonalization (ED) and density-matrix renor-

malization group (DMRG) method [35]. In DMRG calcula-

tions, we use the finite system algorithm with open boundary

conditions for system size up to L = 72. We use two different

U(1) quantum numbers in the DMRG set up. One is the total

electron numbers Ne = n↑ + n↓ including number of spin-↑
n↑ and spin-↓ n↓ electrons, the other one is the z-component

. . ....

... ...

t

JK

Jz

FIG. 1: (Top) One-dimensional Kondo lattice model with an Ising-

type interaction between nearest neighbor localized spins. Red dots

and blue squares represent the conduction electrons and localized

spins, respectively. (Bottom) The global phase diagram as a function

of Jz and JK , by setting t = 0.25 (Bandwidth of conduction electron

is 4t = 1). The phase transition is determined to be continuous (see

main text).

of pseudo-spin Iz = (n↑ − n↓)/2 + Sz where Sz is the z-

component of the total local moments. To study the Kondo

insulator we restrict ourselves to half filling where the total

number of conduction electrons Ne equals number of sites L,

or the average occupancy is one (half filling). The dynam-

ical response functions are computed within the scheme of

dynamical DMRG [36, 37]. By keeping up to 640 states, the

truncation error is controlled below < 10−9 for static prop-

erties and < 10−6 for dynamical susceptibility calculations,

respectively.

Numerical results.— We first present numerical evidences

of Ising anisotropy driven phase transition, based on the low-

lying energy spectrum from ED calculation. As shown in

Fig 2(a), there exists a doublet ground state manifold in large

Jz regime, relating to the AFM ground states in the Ising-

limit; while the single ground state in the small Jz regime

corresponds to the ground state enclosing spin singlet between

a localized spin and one conduction electron state on each lat-

tice site. In particular, upon decreasing Jz , one energy level is

continuously gapped out from the ground state manifold, sig-

nalling a second-order type phase transition. Here, ED energy

spectrum presents the unambiguous evidence of a continu-

ous phase transition from AFM ordered phase to nonmagnetic

Kondo insulator phase by tuning down the Ising exchange in-

teraction Jz , whose nature will be addressed by DMRG cal-

culations on the system of large sizes as below.

Further evidences of continuous phase transition can be ob-

tained by DMRG calculations for larger system sizes. Here we

define two different energy gaps. First, the energy difference

between the ground state and lowest excited state with the

same quantum numbers Ne, Iz: ∆N = E1(N
e = L, Iz =

0)−E0(N
e = L, Iz = 0), is defined as the neutral gap. Sec-

ond, charge gap is obtained by the energy difference between

ground state and lowest excited state with different electron

number ∆C = E0(N
e = L+2, Iz = 0)−E0(N

e = L, Iz =
0). The evolution of energy gaps as a function of Jz is shown

in Fig. 2(b). By tuning up Jz , the neutral gap starts to mono-

tonically decreases to zero. In the whole process, the charge

gap is always open. The neutral gap continuously goes to zero,

supporting a second-order phase transition driven by the Ising

anisotropy from the Kondo insulator to an Ising AFM insulat-
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FIG. 2: (a) Energy spectrum evolution as a function of Jz , obtained

on L = 8 periodic chain by ED calculations. (b) Energy gaps (∆N ,

∆C defined in main text) as a function of Jz , obtained on L = 36
open chain by DMRG calculations. Here we set JK = 1.0.
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FIG. 3: (a) Log-linear plot of neutral gap ∆N near the critical point

Jc
z ≈ 1.825, by setting JK = 1.0. Various system sizes are labeled

by different symbols. (b) Neutral gap ∆N as a function of JK , by

setting Jz = Jc
z = 1.825. Inset: Log-linear plot of ∆N and expo-

nential fitting.

ing phase.

It is worth to mention that, the neutral gap shows expo-

nential behavior by approaching the critical point, while away

from the critical point the neutral gap is linearly dependent on

Jz . As shown in Fig. 3(a), when Jz approaches the critical

point, the neutral gap is found to behave as exponentially de-

cayed, for all system sizes. Similarly, by tuning JK , the neu-

tral gap respectively shows exponential dependence and linear

dependence near the critical point and away from the critical

point. The exponential dependence of energy scale near the

critical point is a signature of the Kondo physics becoming

critical.

The phase transition can be described by several local or-

der parameters, as shown in Fig. 4. First, the magnetic or-

der parameter mAF = 1
L

∑
i |〈S

z
i 〉| develops continuously

as Jz exceeds the critical point Jc
z . Importantly, we observe

the charge degree of freedom shows the very similar behav-

ior with local moments. Within the numerical uncertainty,

the spin density wave pattern (∆nSDW = 1
L

∑
i |〈s

z
i 〉|) al-

ways occur simultaneously with nonzero magnetizationmAF .

This excludes the possibility of spin density wave driven

phase transition. In addition, magnetic phase transition can

also be probed by lattice static susceptibility at magnetic

wave vector. The lattice static susceptibility is defined as
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0.6  m
AF

 n
SDW

Jz

1E-4

1E-3

0.01

0.1

 (Q= , )

 

FIG. 4: Antiferromagnetic order parameter mAF = 1

L

∑
i
|〈Sz

i 〉|
(black triangular) and spin density wave order parameter ∆nSDW =
1

L

∑
i
|〈szi 〉| (black diamond), and inverse static spin susceptibility

1/χ(Q = π, ω = 0) (red cross) as a function of Jz . Blue dashed

line marks the transition point Jc
z ≈ 1.825.

χ(Q,ω) = −i
∫
dteiωt〈[Sz

−Q(t), S
z
Q(0)]〉, where Sz

Q =
1
L

∑
n sin(

πn
L+1 )S

z
n with n being the site index. As shown

in Fig. 4, the inverse lattice static susceptibility at magnetic

wave vector, χ−1(Q = π, ω = 0) reaches a minimum at the

transition point determined by mAF and ∆nSDW . The or-

der parameters, including lattice static susceptibility, magne-

tization, and charge density imbalance, point to a continuous

phase transition between Kondo insulator and the AFM in-

sulator, and determine the magnetic critical point unambigu-

ously.

To uncover the nature of this phase transition, we further

investigate the local dynamical response function. For this

purpose, we introduce the local spin susceptibility, which is

defined as:

χloc(ω) = 〈0|∆Sz
j

1

ω − (E0 −H) + iη
∆Sz

j |0〉 (2)

and ∆Sz
j = Sz

j − 〈Sz
j 〉 (we choose site j in the center of the

chain). Figure 5 shows the local spin susceptibility around the

quantum critical point. In the Kondo singlet phase Jz < Jc
z ,

the peak of ℑχloc(ω) stands away from the zero frequency.

This peak position as a measure of the gapped spin excitations

has a one-to-one correspondence to the value of the neutral

gap as shown in Fig. 2(b). As Jz increases, the dominate peak

moves towards the low frequency, and reach zero frequency

around Jz ≈ Jc
z . Near the critical point Jc

z , ℑχloc(ω = 0) be-

comes steeper, which leads to a peak structure developing at

ℜχloc(ω = 0). The Jz value at which ℜχloc(ω = 0) reaches

the maximum defines the critical point Jc
z . Since the singular

behavior ℜχloc(ω) around zero-frequency is key to the na-

ture of QCP, we inspect the ℜχ(ω) in detail in Fig. 6. We

show the semi-logarithmic plot of ℜχloc(ω) with a focus on

low-frequency regime. It is found that, for the Kondo insula-

tor phase Jz < Jc
z , ℜχloc(ω → 0) saturates to a finite value

in the low-frequency limit (Fig. 6(b)), however, around the

critical point Jz ≈ Jc
z , ℜχloc(ω → 0) shows distinct behav-

ior. To demonstrate the singular behavior of ℜχloc(ω = 0),
we investigate the ℜχloc(ω = 0) dependence on η, which is

imaginary part in dynamical response function Eq. (2). To the

best fit, we determine that the inverse of ℜχloc(ω = 0) has a
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FIG. 5: Frequency dependence of the local spin susceptibility at var-

ious values of Jz around the magnetic transition: (Left panel) Imag-

inary part and (Right panel) Real part. Here we choose JK = 1.0.
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FIG. 6: Semi-log plot of the real part of the local spin susceptibility

around the magnetic transition: (a) Jz > Jc
z and (b) Jz < Jc

z . (c)

Inverse of the real part of the local spin susceptibility ℜχ−1(ω = 0)
versus η. Red line shows the polynomial function fitting: ℜχ−1(ω =
0) = Aη2+Bη+C, with nonzero A, B and C = −0.0013±0.002.

polynomial dependence on η (Fig. 6(c)). In the intrinsic limit

(η → 0), we determine that ℜχ−1
loc(ω = 0) is scaled to zero

within the fitting accuracy, thus ℜχloc(ω = 0) becomes sin-

gular. Physically, the divergence of local susceptibility signals

the Kondo screening being critical, which is the hallmark of

local quantum criticality [6, 9]. Here we emphasize that, com-

pared with previous studies [22–24], the advantage of current

scheme is that we can target the behavior at zero frequency

ℜχloc(ω = 0) directly, instead of relying on extracting the

scaling behavior first in the low frequency. An additional sup-

port for critical local physics is provided by a logarithmically

scaling form [9]: ℜχloc(ω) ∼ α ln |ω|−1 within energy win-

dow T ∗
K < ω < T 0

K , where the effective Kondo scale T ∗
K

vanishes logarithmically slowly as approaching critical point

Jz → Jc
z . In Fig. 6(a), we show such kind of scaling behavior

indeed emerges in the vicinity of zero frequency (gray dashed

line).

One more advantage of our method is to treat the spin and

charge degrees of freedom on an equal footing. Here we

show the electron spectrum density, ρσ(ω) = 1
L

∑
i ρiσ(ω),

around the phase transition in Fig. 7(a), where ρiσ(ω) =

− 1
π
ℑ〈0|ciσ

1
ω−(E0−Ĥ)+iη

c†iσ|0〉. In the Kondo insulator phase

(Jz = 1.65 < Jc
z ), the electron density is uniformly dis-

tributed in real space, and the spectrum density is gapped

-1.0 -0.5 0.0 0.5 1.0
0
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4
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0.00
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FIG. 7: (a) Local electron spectrum density as a function of ω for

Jz = 1.65 (blue) and Jz = 1.95 (red). Solid and dotted line rep-

resents spin-down and spin-up component, respectively. (b) In the

Ising AFM phase, the JK dependence of magnetization mAF and

charge polarization ∆nSDW .

with equal weight below and above the Fermi energy. In the

AFM phase (Jz = 1.95 > Jc
z ), the spin-density wave pat-

tern is formed in real space, which results in an imbalance

of the spectral weight of the spin-resolved spectral density in

the lower and upper gap edges. In particular, the gap around

the Fermi energy in the spectrum density remains open as Jz
crosses the critical point, consistent with the charge gap evo-

lution in Fig. 2(b). This result is in striking contrast to the

expectation from the Gutzwiller variational wavefunction or

other auxiliary mean-field methods [39–41] even for the one-

dimensional systems that the quasiparticle gap in the conduc-

tion electron sector should be closed at the critical point. In

addition, we find that, in the Ising AFM phase the magnitude

of spin polarization ∆nSDW strongly depends on JK , while

the local moment magnetization mAF is almost unchanged.

These facts indicate that the spin-density wave in the conduc-

tion electron sector is “slave” to the local spin AFM order,

partially supporting the local critical picture.

Conclusion.— We have presented a thorough numerical

study of a continuous phase transition between the Kondo in-

sulator and the antiferromagnetic phases in a modified Kondo

lattice model, which is of great present interest in connection

with heavy-fermion quantum criticality. Around the magnetic

phase transition point, the magnetic order parameter vanishes

continuously and the static susceptibility at the magnetic or-

dering wave vector diverges. A concomitant divergence of

the static local susceptibility signals that the Kondo physics

also becomes critical at the quantum critical point. These re-

sults provide a “proof-of-the-principle” example that the lo-

cal quantum criticality [9] can also occur for the transition

between two insulating phases, where the Fermi surface be-

comes irrelevant. It indicates that the local quantum criticality

is a paradigm for novel phase transitions, which deserves to be

explored in other areas of physics (e.g., the interplay between

strong correlation and topology in heavy fermion systems).
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