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The continuous quantum phase transition and the nature of quantum critical point (QCP) in a modified Kondo
lattice model with Ising anisotropic exchange interactions is studied within the density-matrix renormalization
group algorithm. We investigate the effect of quantum fluctuations on critical Kondo destruction QCP, by
probing static and dynamic properties of the magnetic order and the Kondo effect. In particular, we identify that
local Kondo physics itself becomes critical at the magnetic phase transition point, providing unbiased evidences
for local quantum criticality between two insulators without resorting to the change of Fermi surface.

Introduction.— Quantum criticality describes the collective
fluctuations of matter undergoing a continuous phase transi-
tion at zero temperature [1]. As the quantum criticality is cen-
tral to a broad understanding of strongly correlated quantum
matter, how to properly describe the physics around quantum
critical points (QCPs) is a subject of intensive research [2].
The intermetallic heavy-fermion compounds [3-5] serve as
ideal candidates for the study of quantum phase transition and
criticality, by exhibiting unusual properties like heavy-Fermi
liquid, magnetic ordering, as well as unconventional super-
conductivity [6]. Recently, a continuous suppression of anti-
ferromagnetic transition temperature has been discovered in a
sizable number of (nearly) stoichiometric heavy fermion sys-
tems [2]. For QCPs relevant to the heavy-fermion systems,
two major theoretical scenarios have been proposed: One is
the spin-density-wave QCP [7, 8] and the other one is crit-
ical Kondo destruction QCP [9-11]. For spin-density-wave
QCP, conduction electrons acquire peculiar dynamics through
an essentially perturbative coupling to the slow critical modes
of magnetic background. While in the latter case, the lo-
cal Kondo physics itself becomes critical at the magnetic or-
dering transition, and the QCP is driven by the competition
between local dynamics and the long-ranged magnetic fluc-
tuations. Despite considerable efforts, debate continues on
the nature of QCP, and several issues remain elusive in the
heavy-fermion systems. First, it is generally believed that
the spin fluctuations in three dimension leads to a Doniach’s
QCP [12, 13] with dynamical spin susceptibility satisfying
usual Fermi-liquid form, while two-dimensional spin fluctu-
ations tend to favor local QCP with spatially-extended critical
degrees of freedom coexisting at the critical point [9]. An
important question is what kind of QCP the magnetic transi-
tion in one dimension could follow. Second, a key assump-
tion to distinguish different scenarios usually resorts to the
shrink of Fermi surface from large to small when across a
local QCP [6]. Although the argument of Fermi surface in
metallic phase is natural [14-18], the QCP connecting two
insulators without Fermi surface is hardly explored, raising
the question of whether the change of Fermi surface is in-
trinsic to the local QCP scenario. Numerically, the extended
dynamical mean-field theory (EDMFT) [9, 19-24] and large-
N [25, 26] approaches have been used to determine the nature

of QCP in heavy-fermion systems. In these approaches, the
spatial and temporal quantum fluctuations are either partially
or completely neglected, which is valid in high dimension.
Therefore, an unbiased and accurate numerical method to cap-
ture the full quantum fluctuations of local moments and itin-
erant electrons, which become particularly important in low-
dimensional systems, is highly desired to clarify the nature of
QCP.

The aim of this paper is to address the aforementioned prob-
lems, and provide compelling numerical evidences for locally
critical phase transition in a microscopic Kondo lattice model
(KLM) in one dimension. Based on the density-matrix renor-
malization group (DMRG) calculations, we are able to access
the low-lying energy excitations, static and dynamical cor-
relations of local moments as well as the charge degree of
freedom. We first identify a continuous phase transition be-
tween Kondo insulator and antiferromagnetic (AFM) phases,
signaled by the closing neutral gap and various magnetic or-
der parameters such as magnetization. We then demonstrate
the evolution of local susceptibility across the magnetic phase
transition. The singular behavior indicates the Kondo screen-
ing being critical at the transition point, serving as the hall-
mark of local quantum criticality. Importantly, we carefully
clarify that the conduction electrons form spin density wave,
upon the emergence of the AFM order from the local mo-
ments. These results provide first compelling evidence of lo-
cal QCP between two insulators without change of Fermi sur-
faces.

Model and Method.— We consider a modified Kondo lat-
tice model (KLM) in one dimension with an additional Ising-
type interaction between the local spins (Fig. 1), where each
unit cell contains a localized spin and an extended conduction-
band electron state:

H=tY cejo+Jcy Sisi+ .Y SiS7. (1)

(ig),0 i (ig)

Here czg(cw) denotes the creation operator of a conduc-
tion electron with spin ¢ =1,/ at site . The S; is lo-
calized moment with S = % Each localized moment in-
teracts via an exchange coupling Jx with the conduction
electron, where the conduction electron density is defined as

S; = % ZU_’U, cjoﬁ'agcw. The quantity J, describes the Ising-
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type magnetic exchange interaction between the low moments
[38]. We note that the magnetic exchange interaction is usu-
ally generated by the Kondo interaction via the Ruderman-
Kittel-Kasuya-Yosida (RKKY) effect. Here we have treated it
as an independent parameter for two reasons. First, it helps
the purpose of specifying the global phase diagram. Sec-
ond, in one dimension, the Heisenberg-type RKKY inter-
action always preserves the spin-rotational invariance while
the Ising interaction could stabilize AFM order [27]. There-
fore, the KLM with Ising-type exchange interaction has the
advantage of ameliorating the double counting issue arising
from an explicit inclusion of the intrinsic RKKY-based ex-
change interaction, the latter requiring a treatment of conduc-
tion electrons with care [28]. Experimentally, the easy-axis
anisotropy widely exists in a number of heavy-fermion sys-
tems [29]. Physically, two important mechanisms compete
with each other [12, 13]: An isolated local moment would
be screened by the spins of conduction electrons through the
Kondo screening, while the magnetic exchange interaction
tends to induce a long-ranged magnetic ordering. In the ab-
sence of Ising-type interaction, the ground state of KLM (at
half filling) is spin singlet and the spin gap always exists for
any finite exchange Jg, supported by both semiclassical anal-
ysis [30] and finite-size numerical calculations [31-34]. In
the regime where Ising-type exchange interaction dominate,
the AFM phase is expected. Therefore, we expect a magnetic
phase transition from the non-magnetic phase to the AFM
phase driven by the Ising exchange interaction.

In this work, we study the KLM as described by Eq. (1) us-
ing the exact diagonalization (ED) and density-matrix renor-
malization group (DMRG) method [35]. In DMRG calcula-
tions, we use the finite system algorithm with open boundary
conditions for system size up to L = 72. We use two different
U (1) quantum numbers in the DMRG set up. One is the total
electron numbers N = n4 + ny including number of spin-1
ny and spin-| n electrons, the other one is the z-component
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FIG. 1: (Top) One-dimensional Kondo lattice model with an Ising-
type interaction between nearest neighbor localized spins. Red dots
and blue squares represent the conduction electrons and localized
spins, respectively. (Bottom) The global phase diagram as a function
of J, and Jk, by setting ¢ = 0.25 (Bandwidth of conduction electron
is 4t = 1). The phase transition is determined to be continuous (see
main text).

of pseudo-spin I* = (n+ — ny)/2 + S* where S* is the z-
component of the total local moments. To study the Kondo
insulator we restrict ourselves to half filling where the total
number of conduction electrons /N ¢ equals number of sites L,
or the average occupancy is one (half filling). The dynam-
ical response functions are computed within the scheme of
dynamical DMRG [36, 37]. By keeping up to 640 states, the
truncation error is controlled below < 1079 for static prop-
erties and < 107° for dynamical susceptibility calculations,
respectively.

Numerical results.— We first present numerical evidences
of Ising anisotropy driven phase transition, based on the low-
lying energy spectrum from ED calculation. As shown in
Fig 2(a), there exists a doublet ground state manifold in large
J, regime, relating to the AFM ground states in the Ising-
limit; while the single ground state in the small J, regime
corresponds to the ground state enclosing spin singlet between
a localized spin and one conduction electron state on each lat-
tice site. In particular, upon decreasing .J.,, one energy level is
continuously gapped out from the ground state manifold, sig-
nalling a second-order type phase transition. Here, ED energy
spectrum presents the unambiguous evidence of a continu-
ous phase transition from AFM ordered phase to nonmagnetic
Kondo insulator phase by tuning down the Ising exchange in-
teraction J,, whose nature will be addressed by DMRG cal-
culations on the system of large sizes as below.

Further evidences of continuous phase transition can be ob-
tained by DMRG calculations for larger system sizes. Here we
define two different energy gaps. First, the energy difference
between the ground state and lowest excited state with the
same quantum numbers N¢ [*: Ay = Ej(N¢ = L, I* =
0) — Eg(N¢ = L, I? = 0), is defined as the neutral gap. Sec-
ond, charge gap is obtained by the energy difference between
ground state and lowest excited state with different electron
number A¢ = Eg(N¢=L+2,1* =0)—Ey(N¢=L,I* =
0). The evolution of energy gaps as a function of J, is shown
in Fig. 2(b). By tuning up J., the neutral gap starts to mono-
tonically decreases to zero. In the whole process, the charge
gap is always open. The neutral gap continuously goes to zero,
supporting a second-order phase transition driven by the Ising
anisotropy from the Kondo insulator to an Ising AFM insulat-
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FIG. 2: (a) Energy spectrum evolution as a function of J., obtained
on L = 8 periodic chain by ED calculations. (b) Energy gaps (Ax,
Ac¢ defined in main text) as a function of .J., obtained on L = 36
open chain by DMRG calculations. Here we set Jx = 1.0.
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FIG. 3: (a) Log-linear plot of neutral gap A x near the critical point
JS &~ 1.825, by setting Jx = 1.0. Various system sizes are labeled
by different symbols. (b) Neutral gap Ax as a function of Jg, by
setting J. = J¢ = 1.825. Inset: Log-linear plot of A and expo-
nential fitting.

ing phase.

It is worth to mention that, the neutral gap shows expo-
nential behavior by approaching the critical point, while away
from the critical point the neutral gap is linearly dependent on
J.. As shown in Fig. 3(a), when J, approaches the critical
point, the neutral gap is found to behave as exponentially de-
cayed, for all system sizes. Similarly, by tuning Jx, the neu-
tral gap respectively shows exponential dependence and linear
dependence near the critical point and away from the critical
point. The exponential dependence of energy scale near the
critical point is a signature of the Kondo physics becoming
critical.

The phase transition can be described by several local or-
der parameters, as shown in Fig. 4. First, the magnetic or-
der parameter map = 1., |(S7)| develops continuously
as J, exceeds the critical point J¢. Importantly, we observe
the charge degree of freedom shows the very similar behav-
ior with local moments. Within the numerical uncertainty,
the spin density wave pattern (Angpw = 1>, |(s?)]) al-
ways occur simultaneously with nonzero magnetization m 4 .
This excludes the possibility of spin density wave driven
phase transition. In addition, magnetic phase transition can
also be probed by lattice static susceptibility at magnetic
wave vector. The lattice static susceptibility is defined as
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FIG. 4: Antiferromagnetic order parameter mar = + y_.[(S7)]

(black triangular) and spin density wave order parameter Angpw =
T Z | 7)| (black diamond), and inverse static spin susceptibility
1/x(Q = m,w = 0) (red cross) as a function of J.. Blue dashed
line marks the transition point JS ~ 1.825.

(Q, w) = —i [dte™([S7 (1), S5(0)]), where Sz =
I Ly, sin(£ H)SZ with n be1ng the site index. As shown
in Fig. 4, the inverse lattice static susceptibility at magnetic
wave vector, Y 1 (Q = 7, w = 0) reaches a minimum at the
transition point determined by m 4 and Angpy . The or-
der parameters, including lattice static susceptibility, magne-
tization, and charge density imbalance, point to a continuous
phase transition between Kondo insulator and the AFM in-
sulator, and determine the magnetic critical point unambigu-
ously.

To uncover the nature of this phase transition, we further
investigate the local dynamical response function. For this
purpose, we introduce the local spin susceptibility, which is
defined as:

1
Jw—(Ey—H) +in

Xioc(w) = (0]ASF ASF10) ()
and AS? = S — (S7) (we choose site j in the center of the
chain). Figure 5 shows the local spin susceptibility around the
quantum critical point. In the Kondo singlet phase J, < Jg,
the peak of Sxjoc(w) stands away from the zero frequency.
This peak position as a measure of the gapped spin excitations
has a one-to-one correspondence to the value of the neutral
gap as shown in Fig. 2(b). As J, increases, the dominate peak
moves towards the low frequency, and reach zero frequency
around .J, ~ J¢. Near the critical point J¢, Sxoc(w = 0) be-
comes steeper, which leads to a peak structure developing at
RXioc(w = 0). The J. value at which Rx,.(w = 0) reaches
the maximum defines the critical point J¢. Since the singular
behavior Rx;,.(w) around zero-frequency is key to the na-
ture of QCP, we inspect the Ry (w) in detail in Fig. 6. We
show the semi-logarithmic plot of $x;0c(w) with a focus on
low-frequency regime. It is found that, for the Kondo insula-
tor phase J, < JS, Rxioc(w — 0) saturates to a finite value
in the low-frequency limit (Fig. 6(b)), however, around the
critical point J, &~ J¢, Ryjoc(w — 0) shows distinct behav-
ior. To demonstrate the singular behavior of Rxjec(w = 0),
we investigate the Rx;o.(w = 0) dependence on 7, which is
imaginary part in dynamical response function Eq. (2). To the
best fit, we determine that the inverse of Ry;,.(w = 0) has a

Rey(o)

FIG. 5: Frequency dependence of the local spin susceptibility at var-
ious values of J, around the magnetic transition: (Left panel) Imag-
inary part and (Right panel) Real part. Here we choose Jx = 1.0.
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FIG. 6: Semi-log plot of the real part of the local spin susceptibility
around the magnetic transition: (a) J., > J5 and (b) J. < J7. (¢)
Inverse of the real part of the local spin susceptibility ®x ™' (w = 0)
versus 7). Red line shows the polynomial function fitting: Ry ™" (w =
0) = An*+ Bn+C, withnonzero A, B and C' = —0.001340.002.

polynomial dependence on 7 (Fig. 6(c)). In the intrinsic limit
(n — 0), we determine that Rx;,}(w = 0) is scaled to zero
within the fitting accuracy, thus Rx;o.(w = 0) becomes sin-
gular. Physically, the divergence of local susceptibility signals
the Kondo screening being critical, which is the hallmark of
local quantum criticality [6, 9]. Here we emphasize that, com-
pared with previous studies [22-24], the advantage of current
scheme is that we can target the behavior at zero frequency
Rxioc(w = 0) directly, instead of relying on extracting the
scaling behavior first in the low frequency. An additional sup-
port for critical local physics is provided by a logarithmically
scaling form [9]: RXioc(w) ~ aln|w|~t within energy win-
dow T} < w < Tf, where the effective Kondo scale T}
vanishes logarithmically slowly as approaching critical point
J, — JZ. In Fig. 6(a), we show such kind of scaling behavior
indeed emerges in the vicinity of zero frequency (gray dashed
line).

One more advantage of our method is to treat the spin and
charge degrees of freedom on an equal footing. Here we
show the electron spectrum density, po (W) = T >, pio (W),
around the phase transition in Fig. 7(a), where p;,(w) =
—13(0/cin mczg |0). In the Kondo insulator phase
(J, = 1.65 < J9), the electron density is uniformly dis-
tributed in real space, and the spectrum density is gapped
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FIG. 7: (a) Local electron spectrum density as a function of w for
J. = 1.65 (blue) and J. = 1.95 (red). Solid and dotted line rep-
resents spin-down and spin-up component, respectively. (b) In the
Ising AFM phase, the Jx dependence of magnetization mar and
charge polarization Anspw .

with equal weight below and above the Fermi energy. In the
AFM phase (J, = 1.95 > JY), the spin-density wave pat-
tern is formed in real space, which results in an imbalance
of the spectral weight of the spin-resolved spectral density in
the lower and upper gap edges. In particular, the gap around
the Fermi energy in the spectrum density remains open as .J,,
crosses the critical point, consistent with the charge gap evo-
lution in Fig. 2(b). This result is in striking contrast to the
expectation from the Gutzwiller variational wavefunction or
other auxiliary mean-field methods [39—41] even for the one-
dimensional systems that the quasiparticle gap in the conduc-
tion electron sector should be closed at the critical point. In
addition, we find that, in the Ising AFM phase the magnitude
of spin polarization Angpyy strongly depends on Jx, while
the local moment magnetization m 4 is almost unchanged.
These facts indicate that the spin-density wave in the conduc-
tion electron sector is “slave” to the local spin AFM order,
partially supporting the local critical picture.

Conclusion.— We have presented a thorough numerical
study of a continuous phase transition between the Kondo in-
sulator and the antiferromagnetic phases in a modified Kondo
lattice model, which is of great present interest in connection
with heavy-fermion quantum criticality. Around the magnetic
phase transition point, the magnetic order parameter vanishes
continuously and the static susceptibility at the magnetic or-
dering wave vector diverges. A concomitant divergence of
the static local susceptibility signals that the Kondo physics
also becomes critical at the quantum critical point. These re-
sults provide a “proof-of-the-principle” example that the lo-
cal quantum criticality [9] can also occur for the transition
between two insulating phases, where the Fermi surface be-
comes irrelevant. It indicates that the local quantum criticality
is a paradigm for novel phase transitions, which deserves to be
explored in other areas of physics (e.g., the interplay between
strong correlation and topology in heavy fermion systems).
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