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Abstract

The lattice Boltzmann method (LBM) has experienced tremendous advances
and been well accepted as a popular method for simulating various fluid flow
problems in porous media. With the introduction of an effective relaxation
time and slip boundary conditions, the LBM has been successfully extended
to solve micro-gaseous transport phenomena. As a result, the LBM has the
potential to become an effective numerical method for gas flow in shale ma-
trix in slip flow and transition flow regimes. Additionally, it is very difficult
to experimentally determine the permeability of extremely low permeable
media like shale. In this paper an extensive review on a number of slip
boundary conditions and Knudsen layer treatments used in LB models for
micro-gaseous flow is carried out. Furthermore, potential applications of the
LBM in flow simulation in shale gas reservoirs on pore scale and represen-
tative elementary volume(REV) scale are evaluated and summarised. Our
review indicates that the LBM is capable of capturing gas flow in continuum
to slip flow regimes which cover significant proportion of the pores in shale
gas reservoirs and identifies opportunities for future research.

Keywords: shale, lattice Boltzmann method, micro-gaseous flow, slip flow

*Corresponding author at: School of Petroleum Engineering, University of New South
Wales, Sydney, NSW,Australia,2033
Email address: sheik.rahman@unsw.edu.au (Sheik S Rahman)

Preprint submitted to Elsevier November 29, 2015

© 2015. This manuscript version is made available under the Elsevier user license
http://www.el sevier.com/open-access/userlicense/1.0/



1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

1. Introduction

Shale gas reservoirs are thought to contain a significant proportion of
hydrocarbon, and successful exploitation of such resource plays an increas-
ingly important role in meeting world’s demand for natural gas. Shale gas
reservoirs are known to be fine grained sedimentary rocks which have com-
plex porous structures with pores and fractures ranging from nano- to meso-
scale[1][2], and in each level of pores and fractures different flow mechanisms
are involved[3]. An in-depth understanding of flow processes involve in com-
plex porous system in shale is essential for prediction of reservoir permeabil-
ity and estimating production potential of shale gas reservoirs. This can be
achieved by developing detailed descriptive transport simulators which are
capable of predicting flow dynamics in shale.

Knudsen number (Kn), which is the ratio of the gas mean free path to
the characteristic length of the media, is an important dimensionless param-
eter for gas transport in shale. Current studies conclude that gas trans-
port through shale matrix can best be characterized by Kn in slip flow
(0.001< Kn <0.1) and transition flow (0.1< Kn <10) regimes[4][5](see
Fig.1). Under these conditions, continuum hypothesis is broken down and
other rarefied gas transport mechanisms such as slip flow and Knudsen diffu-
sion start to dominate the flow. Additionally, as a source rock, the presence
of organic matter (kerogen) in shale matrix instigates other processes and
adds complexities to gas flow simulation. Gas transport in nano-pores inside
the kerogen involves adsorption/desorption as well as surface diffusion due
to strong molecular interactions between gas and kerogen.

A variety of experimental and mathematical studies shows that rarefi-
cation effects influence the shale permeability measurements by increasing
the apparent permeability values[6][7][8][9][10][11][12][13]. The effect of ad-
sorption gas and the following surface diffusion on the permeability of shale,
however, is not well understood and less widely explored. On one hand, stud-
ies confirmed that the multilayer adsorption can take place in organic pores
because of the capillary condensation phenomenon[14][15], which will lead to
a lower permeability in shale reservoirs[16]. On the other, it is confirmed that
surface diffusion can account for 25% of total flux at low pressure[17]. Wu
et al.[18]stated that when the pore size is less than 2 nm, the contribution of
surface diffusion to total mass transfer can be as much as 92.95%.
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Figure 1: Knudsen number relationship to pore diameter and mean reservoir pressure at
400 K. Vertical dash line represent a typical reservoir pressure condition of 37 MPa.(Figure
adapted from Javadapour et al.[3] and Sondergeld et al.[2] )

Generally, on the basis of pore size distribution, two possible mathemat-
ical approaches are proposed to describe the gas transport mechanism and
to calculate gas apparent permeability of organic shales. The first approach
is to modify the non-slip boundaries in continuum model by accounting for
slip boundary conditions. Beskok-Karniadaki[19] derived a unified Hagen-
Poiseuille-type formula to take into account all flow regimes. Later, Civan
and coworkers[20][21] and Florence et al.[22] proposed different forms of rar-
efaction coefficient for Beskok-Karniadaki model. By simply adding the mass
transfer of adsorbed gas into Beskok-Karniadaki model, the impact of the
adsorption and surface diffusion on gas apparent permeability is studied by
Xiong et al.[23]. The second approach is the superposition of various trans-
port mechanisms. Javadpour[3] combined slip flow and Knudsen diffusion
into gas flux equation and derived an equation for apparent permeability.
Freeman et al.[5] used dusty gas model to account for Knudsen diffusion in
shale gas reservoir. Singh et al.[24] combined viscous flow with Knudsen dif-
fusion in their non-empirical apparent permeability model(NAP), and then
validated with previous experimental data. Results have shown that the
NAP can be used for Kn less than unity. Wu et al.[25] further proposed two
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weighted factors for viscous flow and Knudsen diffusion, respectively. The
surface diffusion was also coupled in their apparent permeability model.

Most of the above mentioned analytical /semi-analytical studies are orig-
inally proposed based on simple geometries such as channels and tubes, and
are not suitable for more complex porous media, such as shales. Therefore,
the numerical methods of solving transport equations to obtain an estimate
for the permeability are attracting more attention. Especially after the cur-
rent well-established characterization techniques such as BIB-SEM, FESEM,
FIB-SEM and micro-CT enable us to identify a variety of pore structures in
shale matrix[1][26][27][28][29][30], the detailed rock images further promote
the use of image-based numerical simulation tools. Among them, the lattice
Boltzmann method (LBM), which is vastly different from traditional com-
putational fluid dynamics(CFD) methods, has proven to be an effective flow
simulation choice in porous media, as the geometry definition in LB model
is reduced to defining nodes as being either fluid or solid, which allows the
complex pore structure to be modelled with ease and allows for flexibility of
the parallelization.

Historically, the LBM was derived from lattice gas automata[31][32].
Later, it was shown that LB equation can also be directly derived by dis-
cretising the Boltzmann equation[33][34]. Shortly after its introduction, the
LBM became an attractive technique to study single/multi-phase flow|[35][36]
[37][38][39] and reactive transport[40][41] in porous media, covering ground-
water flow[42], fabric materials[43] and fuel cells[44][45] etc. Detailed pore
structure obtained by FIB-SEM and micro-CT have made the LBM a pop-
ular alternative to direct numerical solution of the Navier-Stokes equation
for flows in tight rocks[46][47][48][49]. Because of its kinetic nature, the
LBM is, however, far more than just a N-S solver on pore scale[50]. Ad-
vances in micro electrical mechanical system (MEMS) and nanotechnology
have spurred interest in the use of the LBM for simulation of microfluidics
and tremendous efforts have been made to advance the LBM since 2002.
One noteworthy advance is its extension to simulation of gaseous flows in
slip flow regime [51][52][53][54][55][56][57][58]. Advances of the LBM have
also allowed us to simulate fluid flow in single capillary in transition flow
regime[59][60][61][62][63]. In previous studies, most of the micro-gaseous flow
was based on single relaxation time (SRT) model[52][55][56][57][59][64][65][66].
Luo[67] argued that slip velocity predicted by SRT is merely an artefact
at the solid boundaries. For this reason, other LB models, such as multi-
ple relaxation times (MRT)[60][62], two relaxation times (TRT)[68][69] and

4
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Filter-matrix lattice Boltzmann (FMLB)[61] were proposed. Results of these
studies are in good agreement with that of the benchmark studies includ-
ing force-driven Poiseuille flow, pressure driven Poiseuille flow, and planar
Couette flow. For example, by incorporating the Bosanquet-type effective
viscosity and applying slip boundary conditions, Li et al.[62] successfully
used MRT models to simulate micro-channel gas flow at Kn of up to 3. This
also gives a similar result as that of MRT model with a Stops expression
of effective viscosity proposed by Guo et al[60]. Most Recently, Zhuo and
Zhong [61] developed a Filter-matrix Boltzmann model with Bosanquet-type
effective viscosity and produced reasonable results for micro-channel flow at
Kn of up to 10.

The rapid growth in unconventional gas, especially shale gas demands
a deeper understanding of the physics of fluid flow at the nanoscale to mi-
croscale. As a mesoscale method, the LB approach is an effective means
of dealing with flow problems whose scales are too small for the continuum
mechanics and too large for molecular methods. Although there have been
several excellent reports and reviews discussing the LBM for micro-gaseous
flow[70][71][72], the particular applications and strengths of LBM in simu-
lating gas flow in shale gas reservoir have not been well addressed. In this
review, we briefly introduce some ideas and equations fundamental to the
LBM. We also introduce the typical slip boundary conditions and Knudsen
layer treatments used in the LB algorithms for micro-gaseous flow, which
may be useful in shale gas flow simulation. Finally, we focus on recent de-
velopment in LB theory and applications for gas flow in shale, the feasibility
of these applications are also demonstrated.

2. Lattice Boltzmann method for isothermal micro-gaseous flow

In general, the lattice Boltzmann equation with a body force term can be
written as[73]:

Ji(x 4 c;dt, t + t) — fi(x,t) = Qi(fi) + otF, (1)

where c; indicates the finite number of discrete velocities of particles, f; is the
distribution function of particles with speed c;, €); is the collision term, F; is
the force term which is defined according to the collision operator, dx is the
uniform lattice spacing and dt is the time between two simulation iterations.
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The microscopic variables (density and velocity) are defined as:

p(X, t) = Zfi(xa t)7 (2>

p(x, u*(x,t) = Z fi(x,t)c; + %F (3)

The most popular velocity sets for two dimensions and three dimensions
are given in Fig.2(a) and Fig.2(b), respectively. When one considers appli-
cations to micro-gaseous flow, some multi-speed or higher-order LB models
such as D2Q21(Fig.2(c))[74] and D3Q39(Fig.2(d))[71][75] have also been de-
veloped to increase the order of accuracy in the discretization of velocity
phase space.
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Figure 2: Discrete velocity models; (a)D2Q9 model, (b) D3Q19model, (¢) D2Q21 model,
(d) D3Q39 model

2.1. Collision operators

The collision operators describe the collision behaviour of particles at
every lattice location, which represents the variation of distribution functions
caused by collision between particles. The requirements are that they should
be physically correct and efficiently computable. In the following, collision
operators commonly used in micro-gaseous flow are presented.
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2.1.1. Bhatnagar-Gross-Krook collision operator (BGK)
Bhatnagar, Gross and Krook [76] proposed an efficient simplification op-
erator to approximate the collision term as:

Q(f;) = —7'(fi — 1), (4)

where, 7 is the relaxation time and f;? is the Maxwell Boltzmann distribution
of c; for a given macroscopic fluid velocity u and density p. The Maxwell-
Boltzmann distribution describes the density distribution of a fluid in its
equilibrium state to which every fluid strives. The equilibrium distribution
[ in its discrete form can be expressed as:

FEr,0) = ol + HE 2 AR

Suga [71] summarized c;, the sound speed ¢, and the weight parameter
w; in accordance with each subfigure of Fig.2 (see Table 1).

Table 1: Parameters of the discrete velocity models for 2D /3D

Models | ¢?/c? ci/c w;
0,0) 4790 = 0)
D2Q9 | 1/3 (E1,0),(0,£1) 19 =1—-4)
(F1,£1) 1/36(i =5 —8)
(0,0) 91/324(i = 0)
(£1,0),(0,£1) 1/12(i =1 —4)
(E1,£1) 2/27(i =5 —8)
D2Q21) 2/3 (£2.0).(0.42) 773600 = 9 — 12)
(£2,£2) 1/432(i = 13 — 16)
(£3.,0),(0,£3) 1/1620(; = 17 — 20)
(0,0,0) 12/36(i = 0)
D3Q19| 1/3 (£1,0,0),(0,£1,0),(0,0,£1) 2/36(i = 1 — 6)
(£1,£1,0),(£L,0,£1),(0,£1,£1) | 1/36(i = 7 — 18)
(0,0,0) 1/12(i = 0)
(£1,0,0),(0,£1,0),(0,0,£1) /12 =1—6)
(£1,£1,£1) 1/27(i = 7 — 14)
D3Q39) 2/3 (£2,0,0),(0,£2,0),(0.0,22) | 2/135(i = 15 — 20)
(£2,£2,0),(£2,0,£2),(0,£2,£2) | 1/432(i = 21 — 32)
(£3.0,0),(0.£3,0),(0,0,£3) | 1/1620(i = 33 — 38)
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The forcing term, F; can be specified with respect to the relaxation pa-
rameter 7 and the body force F as[73]:
C,—u C;,-u

1
E = (1 — Z)U.)l[ Cg + A Ci] -F. (6)

Also in order to be valid, the LB equation requires the parameter to fulfil
the following relation:

1
o= p(r = 5t (7)

where, p is the dynamic viscosity of the fluid.

2.1.2. Multiple Relazation Times collision operator (MRT)

The MRT-LB model is the most general form within the theoretical frame-
work of the LB equation and kinetic theory. The MRT collision operator
relaxes the kinetic moments separately, which can be retrieved from the dis-
tribution functions. The MRT collision operator is defined as follows[77]:

Qf) = —(M'SM)(f — ). (8)

In D2Q9 model, f = (fo, f1, .-, f1, fs)? denotes the column vector of the
distribution functions, S is the non-negative relaxation matrix:

S :diag(prTea7—67Tj77_q77-ja7—qa7—877_8)_1a (9)

and M is an orthogonal transform matrix, which maps the distribution func-
tions onto the moment space, and defined as:

1 1 1 1 1 1 1 1 1
—4 -1 -1 -1 -1 2 2 2 2
4 -2 -2 =2 —21 1 1 1
0 1 0 -1 0 1 -1 —1 1
M=|0 -2 0 2 0 1 -1 —1 1 (10)
o 0 1 0 —-11 1 —1 —1
0 0 —2 0 2 1 1 -1 -1
0 1 -1 1 —-10 0 0 0
0 0 0 0 0 1 -1 1 1 |

The distribution function and equilibrium function can be projected onto
the moment space by using the transform matrix:

m = Mf = (p7 €, €7j$7 qgcajy> anpxxapxy)Ta (11)

8
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m = Mfeq = (p7 eeq’ eeqajﬂm q— xeqajw q;q7p;?c7 ;%)T (12)
= p(1, =2+ 3Jul?, 1 = 3Jul*, u, —v, u, —v, u* — v* uv)?,
all of these moments have a physically meaningful interpretation: p is the
density; e is the energy mode; € is related to the energy square; j, and j,
are the x and y components of the momentum; ¢, and ¢, correspond to the
x and y components of the energy flux, p,, and p,, and are related to the
diagonal and off-diagonal component of the stress tensor. v and v are x and
y components of velocity u.
The forcing terms, F; can also be mapped onto the moment space which
gives the vector F as:

F=(0,6u-F,—6u-F,F,,—-F,, F, —F, 2(uF —vF,), (uF +vF,))". (13)

MRT is able to overcome the deficiencies of the BGK collision operator
because it has more degrees of freedom, which can also be used to increase
the numerical stability of the method significantly[78].

2.1.3. Two relazation time collision operator (TRT)

The scheme for two relaxation time was developed by Ginzburg [79], for
which the collision operator is split into symmetric and anti-symmetric parts
as:

Q(fi) = =7 (fF = 1) — 7 (= ), (14)

where relaxation time, 7, related to shear viscosity, and relaxation time, 7,
related to energy fluxes. The symmetric and anti-symmetric components of
distribution function and equilibrium distribution function can be computed

. it fo o S
s i T I3 seq __ Ji i
a fl - fi aeq fieq _f{eq
PO N il (1)

The TRT model is comparable with SRT model in the simplicity of imple-
mentation and computational efficiency, but retains the advantages of MRT
model in terms of accuracy and stability[68][78].
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2.2. Capture gas-solid interfacial slip

In traditional fluid mechanics, the assumption of non-slip at a solid bound-
ary is used as the boundary condition. The non-slip assumption, however,
breaks down at micro- and nanoscales[80][81]. Generally, the interfacial slip
is generated by hydrophobicity in liquid flow and by Knudsen effect for gas
flow[82]. To capture the liquid-solid interfacial slip, the Shan-Chen inter-
particle potential model is usually used, where the solid-liquid interaction is
modelled via an explicit solid-liquid intermolecular potential to predict be-
haviours at the interface[82][83][84]. This approach appears to have a sound
physical basis. However, it may face with more restrictive constraints in ac-
tual practice[53] and no definitive results have been provided to demonstrate
its ability to capture gas slip in transition flow regime[85].

To capture the gas slip at the solid boundary, single phase LB model is
widely used, and the slip boundary condition is adopted to implicitly consider
the solid-fluid interaction. Tremendous efforts have been devoted to develop
accurate and efficient boundary schemes for the LBM. In the following section
we summarize typical boundary conditions that could be useful for micro-gas
simulations.

2.2.1. Bounce-back boundary condition(BB)

The half way bounce-back scheme [86] is typically utilized for its simplic-
ity and its second-order accuracy. This boundary condition assumes that a
particle which collides with the wall is reflected in opposite direction, which
means that its momentum is reversed. In the implementation, particles leav-
ing a boundary fluid node x bounce back from the boundary to the original
site in the reversed lattice velocity, this behaviour can be described by Eq.
17 as:

fP(x,t+0t) = fH(x,1), (17)

where f* denotes the opposing distribution function to f; leaving x after
collision at time ¢ such that ¢; = —¢;. The bounce-back boundary condition
was used by Nie et al.[87] to mimic the microscopic flow, however, lately it
has been shown that the boundary slip observed from Nie et al.[87] with a
pure bounce-back scheme is just a numerical artefact[33] and cannot reflect
the physical slip over the surface.

2.2.2. Specular reflection boundary condition(SR)
The specular reflection boundary condition is motivated by the obser-
vation of elastic collisions between a relatively light particle and a heavy

10



222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

239

240

boundary, the physical effect of such a collision is that the velocity compo-
nent, which is orthogonal to the boundary, is reversed. This is described by
the following equation for the D2Q9 model:

f(x) = fi(x), (18)

where, f7 and f7" are approaching and specular reflecting distribution func-
tions as shown in Fig.3. This boundary condition is applied by Lim et al.[8§]
to investigate pressure driven and shear driven micro-channel flows, however,
it was found that the mesh size has a significant effect on the numerical re-
sults in their work[88][89] and pure specular reflection may overestimates the
slip velocity[90].

L0 L L LSS

AN

Figure 3: Illustration of the reflection process (in the left image, the distributions before
the collision are highlighted. In the right image, the specular reflected distributions after
collision with the wall are shown)[91]

2.2.8. Mazwellian diffuse reflection boundary condition(MD)

The Maxwellian diffusive reflection boundary condition is derived from
the continuum kinetic theory for non-absorbing walls. The underlying idea of
this boundary condition is that impinging particles lose the memory of their
movement direction and are scattered back following a Maxwellian distribu-
tion in which the wall density, p,, and the wall velocity, u,, are known. The

fully diffusive boundary condition can be described by the following equation
92]:

2 (e <o | (€ — W) - 1| f(x)
dr _ (e —uw)n<0 k . fea s U 19
fz (X) Z(ck—uw)'n>0 ’(Ck - Uw) : n|f£q(pw> UU)) fl ’ (p B ) ( )

with (cx — uy) - n > 0. The condition (¢, — u,) - n < 0 enforces that
all incidental distributions are summed up and then redistributed over the

11
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outgoing distributions such that they obey the equilibrium distribution with
mass conservation. The process of the boundary treatment is illustrated in
Fig. 4.

J LSS LSS LS

AN

Figure 4: Illustration of the diffuse process(in the left image, the distributions before the
collision and in the right image, the diffusive distributions collided with the wall are shown.
The thickness of the arrows indicates the value of the distributions)[91]

This boundary condition has been implemented in LB model and the
the results show good agreement with the analytical solution of Boltzmann
equation for Kramer’s problem as the Kn tends to be zero[92], the similar
concepts are used to simulate micro-gaseous flow at higher Kn using D2Q9
LBM [52] and high-order LBM[93].Later Chai et al.[94] argued that the slip
velocity is orverpredicted when MD scheme is applied to Poiseuille flow in a
micro channel.

2.2.4. Combined form
The above mentioned three boundary conditions normally are not directly
applied in the LB method, some improved version of the boundary conditions
are proposed recently to mimic the macroscopic slip boundary condition by
introducing a combination coefficient to control the boundary slip, which
includes:
The combined specular with diffusive reflection boundary condition(MR)
[66][57][95][96]:
fi(x) = (1= o) 7 (x) + o f" (%) (20)
The combined bounce-back with specular reflection boundary condition
(BR)[54]:
Fi(%) = (1= 1) f27 () + 7 f(x). (21)
The combined bounce-back with diffusive reflection boundary condition
(MB)[58]:
Fi(5) = (1= ) f*(x) + xS (%), (22)

12
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Historically, there is no consensus on how to choose combination coef-
ficients [55][58][61][62][66][97]. Recent studies[58][60][98] indicate that the
analytic solution of LBM with bounce-back or combined boundary condi-
tions in Poiseuille flow is just a parabolic profile of N-S equation shifted by
a numerical slip, us, and when combined boundary conditions are applied,
by setting this numerical slip us to Maxwellian slip boundary condition, the
combination coefficients can be obtained[58][60]. A detailed analysis of three
kinds of combined form of boundary conditions are given by Zheng et al.[99]
in which they pointed out that if one chooses combination coefficient equal
to tangential momentum accommodation coefficient (TMAC)(TMAC=0.8 is
used in their case studies), the discrete effects of the boundary conditions will
induce large numerical errors. Specifically, MR overestimates the slip veloc-
ity, while BR and MB underestimate the slip velocity (see Fig.5), and the
three boundary conditions cause large errors in the slip velocity ( > 60% for
the BR scheme, > 20% for the MB scheme, and > 40% for the MR scheme)
within the slip regime (see Fig. 6). For micro-tube flow, the Maxwell-type
second order slip boundary can be expressed as:

ou 0%u
Ug = AlK’I’L a—y - AQKTL2 a_yQ y (23)

wall wall

where u, is the slip velocity, A; and Ay are the first order and second or-
der slip coefficients, respectively. In order to achieve the second order slip
boundary condition, if one chooses the combination coefficients as the follow-
ing forms (Eq.24 to Eq.26), the three kinds of combined forms are identical
in a parametric range, and the discrete effects caused by boundary conditions
can be eliminated(see RBR, RMB and RMR in Fig.5 and Fig.6).
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From the above description, LBM can be viewed as an alternative form

of slip N-S equation. However, it should be noted that, in Maxwell’s original

paper, the author used a phenomenological argument to derive slip boundary

conditions[100]. This is evident in the fact that the “momentum accommoda-

tion coefficients” for each particular gas/surface combination are required in

Maxwell-type slip boundary conditions. Typically, the accommodation coef-

ficients can only be inferred from experimental results, rather than directly

measured. As a result, the boundary slip observed from combined forms are

more phenomenological than physical compared to those from other methods

such as DSMC and Boltzmann equation [95] [101], and therefore this fails to

demonstrate the physical kinetic nature of the LBM, which has been claimed

a distinguishing feature of LBM than other CFD methods. To enable the

LBM with combined from boundary conditions to be a predictive tool, Sbra-

gaglia and Succi[53] suggested that a micro-scale simulation, such as MD

needs to be used to obtain the values of coefficients corresponding to a given

intermolecular potential, prior to the LB simulations at a larger scale which
is not accessible by micro-scale simulations.

2.2.5. Langmuir slip boundary (LSB)

Another slip boundary used in the LBM is based on Langmuir slip model.
The Langmuir slip model has been developed by Eu et al.[102] and Myong
[103]. The slip velocity can be expressed as:

us = aty, + (1 — a)uy, (27)

where, u, denotes the velocity adjacent to the wall, « is the fraction of surface
coved by adsorbed atoms at thermal equilibrium which varies with the type
of gas and the nature of wall material. For monatomic gases and diatomic
gases « can be expressed by:

O s = VBp
L+ 6p " T 1+

a|mon -

(28)
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with:
D, 1

KbT) - 4wKn’
where, k;, represents the Boltzmann constant, A is the mean area of a site, D,
is the potential adsorption parameter and 7" is the temperature. Compared to
Maxwell slip model, in which the slip coefficient is a free parameter from the
concept of diffusive reflection, the major advantage of Langmuir slip model is
to utilize a physical coefficient of heat and gas particle interaction potential,
w[103], Nevertheless, Langmuir slip model still has the same difficulty in
determining the value of the coefficient as the Maxwell slip model[104].

The LB model with Langmuir slip boundary condition was firstly used
to study gas bearing problems[105]. Later, Chen and Tian [106] implement
Langmuir slip boundary by non-equilibrium extrapolation scheme to study
gas flow in the micro-channel, with an approximation that the local gas
density at the wall equals to gas density at the nearby cell, the distribution
functions for wall boundary nodes can be expressed as:

fixe) = alfi*(p(xg), u(xp)) = i7" (p(x5), u(xp))] + f(p(x5), u(xs)),  (30)

where, x; is the boundary node and x; is the nearest node to the boundary
node.

(29)

2.3. Capture the Knudsen layer effect

For micro-gaseous flow simulation, Once Kn > 0.1, presence of Knud-
sen layer near the solid boundary cannot be ignored. Inside of the Knud-
sen layer, the intermolecular collisions become insufficient and the quasi
thermodynamic-equilibrium assumption, upon which the N-S equation de-
pends, does not hold. The standard LBM with a slip boundary condition
captures a few low-order moments of the solutions of the Boltzmann equation,
and is only accurate at the N-S level[107]. Thus, just like N-S equation, the
standard LBM fails to describe the gas motion within the Knudsen layer(See
Fig.7). To improve the capability of the LBM for high-Kn flows in the
transition flow regime, some lattice Boltzmann schemes have been proposed
recently.
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2.3.1. Effective viscosity/mean free path model

The dynamic viscosity p of a fluid plays a critical role in its dynamic
behaviour, and thus is an important consideration for fluid flow simulation.
The viscosity describes the internal friction between moving fluid layers and
the spanwise momentum conductivity. Furthermore, it determines the relax-
ation time 7 and 7, used in the BGK-LB model and MRT-LB model, respec-
tively. With an increase in Knudsen number, especially when the mean free
path becomes comparable with the characteristic length, the local mean free
path is significantly affected by the wall boundaries, which are much smaller
than that defined in unbounded systems[95][108]. Since the viscosity and the
mean free path are interrelated[109], by introducing an effective relaxation
time that corresponds to the effective mean free path or effective viscosity to
reflect the gas molecular/wall interactions, the LB models are able to capture
the effects of the Knudsen layer for high Knudsen numbers.

2.3.1.1. Relations of relaxation time with Kn. By introducing an empirical
parameter a, Nie et al.[87] built a linear relationship of Kn with relaxation
time 7. The problem of this model is that the artificial parameter, a needs
to be determined by comparing simulation results with that obtained from
experiments, and therefore it cannot be directly used in other situations[52].
To improve this, other attempts have been proposed in the literature, and
it has been confirmed that the relaxation time can be related to Kn by
multiplying a certain microscopic velocity. The choice of this velocity is
rather diverse in the literature(see Table 2), and most recently, Zhang et
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al.[110] and Guo et al.[57] argued that to satisfy a “consistent requirement”,
this certain microscopic velocity must be chosen as /7 RT/2, and 7 can be

364 given as:

365
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T = HKn/(6x+/7/6) +0.5. (31)

Table 2: Relationships of relaxation time with Kn

Nie et al. [87] T=HKn/a+ 0.5
Lim et al. [88] T=HKn/éx
Lee and Lin [51] T=HKn/jz+0.5
Niu et al. [52] 7= HKn/(c\/6/y7) ~ HKn
Tang et al. [66] = (HKn)/(6x/8/37) + 0.5
Zhang et al.[56] Guo et al.[57] | 7= HKn/(éx\/7/6) + 0.5

2.3.1.2. Wall function approach. One way to capture the Knudsen layer is
to modify the mean free path by implementing a “geometry dependent”
correction function to reflect the wall confinement as:

Ae = AJ(r, \), (32)

where, J(r,\) is the correction function which considers the effect of wall
surface on the mean free path A, and r is distance from the wall. Wall
function approach has been widely used to study micro-channel and micro-
tube flows[68][60][63], whist it is a phenomenological approach like that of
Maxwell’s slip model[111]. Despite the fact that by introducing an effective
wall function approach with a more complex collision operator, the LBM
can predict the flow behaviour up to the upper end of the transition flow
regime[68], the existing wall functions themselves are only accurate in a finite
range of Kn. The different correction functions for parallel walls situations
and their valid Kn are listed in Table 3.
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Table 3: Summarize of different correction functions

J

Stops [112]

(r/A = Deap(=r/A)

+((H —7)/A = Deap(=(H —71)/A)

—(r/A)Ei(r/X)

Zhang et al. [85]

—((H - T‘)/IA)ZEi((H —r)/N)]

1+0.7[exp(=Cr/N)+exp(—C(H—r)/N)]

Arlemark et al. [113]

exp (—%) + exp <—@>
AT eap (-2

H/2—r

7
"‘4 Zi:l exrp —W

+2 Z?:1 exp | — jo/j[z]

14

+2 Zle exp | — H/QZI]

Dongari et al. [108]

7
R
+4 Z?:l (1 + m)
—2
Y (1 + ﬁl
+9 EL (1 + Aco;[il] ) _
2

A general problem of wall functions is that it has been derived based on
the distance to the wall and therefore it is difficult to deal with complex
geometries and the Knudsen layer overlap effect[63]. To solve this problem,
an approximate Stop’s expression is proposed by Guo et al.[57] as:

2
J(Kn) = =arctan(vV2Kn=/*).
m

(33)

It can be seen that this correction function is not related to the distance
from the wall. In other words, with this formulation it is possible to tackle
the problem of Knudsen layer interference in more complex geometry by
computing the average of all effective mean free paths.
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2.3.1.3. Bosanquet-type effective viscosity approach. The larger the Knudsen
number, the closer the mean free path to the characteristic length H. In the
case A >> H, the effective mean free path equals H and the viscosity, o =
asopCH with as being a numerical constant. Michalis et al.[114] observed
that the effective viscosity can be approximated by the terms p and fie.
They conducted micro-flow simulations with the Direct Simulation Monte
Carlo(DSMC) method to investigate the rarefaction effects on the viscosity
in the transition regime. The calculated densities and velocity profiles were
used to compute the actual viscosity of the fluid. With these results Michalis
et al.[114] showed that the Bosanquet-type of approximation describes quite
satisfactorily the Kn-dependence of the viscosity over the entire transition
flow regime and it can be expressed as:

_ M
14+aKn’

where, a is the rarefaction factor and a = ap/a~. Because the Bosanquet-
type effective viscosity considers the overall rarefaction effect on gas viscosity
such as the approximate wall function approach proposed by Guo et al.[57],
it can be utilized in rarefied flow simulations in porous media. However,
the choice of a is still an open question. Beskok and Karniadakis[19] used
a = 2.2 together with their general slip boundary condition to simulate fluid
flow in channels. Later, Sun and Chan[115] used a = 2 in estimating effective
viscosity at different Knudsen number in channels with aspect ratio between
15 and 20. They found the results of effective viscosity is reasonable when
compared with that obtained from the DSMC method. Michalis et al.[114]
observed that the value of a depends on the Knudsen number and it varies
slightly over the majority of the transition flow regime. Recently, Kalarakis
et al.[116] suggested a = 3.4 based on a study in which authors estimated
permeability using LB method and then compared the results with that from
DSMC for porous media with porosity equal to 0.7 and 0.8.

" (34)

2.3.2. High-order lattice Boltzmann model

While the effective viscosity/mean free path model is one way of extend-
ing slip LB models into the non-equilibrium gas flow, developing high-order
LB models has also attracted significant recent interest. Since the LB equa-
tion is a discrete approximation to the continuous Boltzmann equation which
is capable of describing gas flow in a wide range of Knudsen number, some ef-
forts have been made to design higher-order LB models by increasing discrete
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velocities to achieve its approximation accuracy to the continuous Boltzmann
equation[93][107][117][118][119][120].

It has been shown that the high-order LB models can improve the predic-
tions for non-equilibrium flows and the simulation results are qualitatively
agree with previous studies[93][107][118], Ansumali et al.[117] presented ana-
lytical solutions of the discrete velocity Boltzmann equation for Couette flow
using the so-called D2Q9 and D2Q16 schemes and showed that the increase
of order in the GaussHermite quadrature results in a much more accurate
treatment of finite Kn flows. However, no systematic study on the quadrature
set higher than D2Q16 were discussed by them. Later, Kim et al.[74] com-
pared several high-order models including D2Q12, D2Q16, D2Q21, D2Q25
and D2Q36 models, and they concluded that the accuracy of the higher-order
LB models does not increase monotonically with the increase of the order of
Gauss-Hermite quadrature and cannot guarantee an improved accuracy for
microscale gas flow with the Kn up to O(1). This was further confirmed by
Meng and Zhang[121] with a study of D2Q16, D2Q25 D2Q36 D2Q49 and
D2Q64 LB models. Kim et al.[74] also reported that the Knudsen layer can
be observed with the minimum of D2Q16 discrete velocities even this partic-
ular higher-order LB model fails to reproduce the Knudsen minima correctly.
In fact, numerical studies suggest that a very high-order LB model is needed
to reproduce the Knudsen paradox phenomena[74][121]. In addition to the
inconsistencies at higher Kn, large computational costs hinder the applica-
tions of high-order LB models in the simulation of more complex flow. Meng
and zhang[122] compared the computational costs associated with D2Q25
and D2Q400 models for a quasi-steady standing-shear-wave problem, and
they found D2Q400 is more than 240 times slower than D2Q25 while the
difference of two simulation results is less than 3%. Recently, Suga and
coworkers|71][123][124] compared D2Q9/D3Q19 with D2Q21/D3q39 in the
simulation of fluid flow in micro-porous media with a porosity around 0.9
at Kn ranges from 0.04 to 0.24. They concluded that the flow field results
provided by D2Q9/D3Q19 are less accurate than D2Q21/D3Q39. However,
the deficiency is not significant in the complex flow fields, and MRT-LB mod-
els almost perfectly overlap with those of the high-order LB models, which
also means that a higher-order lattice may not be significantly important for
predicting general flow profiles in micro porous media.
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3. Simulation of fluid/gas flow in shale gas Reservoirs with the
LBM

Shale gas reservoirs are considered unique because of its complex petro-
physical properties and its inherent multiscale nature, with details at the mi-
croscale affecting the overall operation of macroscopic gas production. Gen-
erally, theoretical treatments of flow in porous shale are usually associated
with three different length scales: pore-(microscopic), representative elemen-
tary volume(REV)- and stimulated reservoir volume (SRV)-scales. The SRV-
scale is the largest scale, which includes tight matrix and multi-scale fracture
networks[125]. One of the critical issues in SRV-scale simulation of shale
gas reservoir is how to handle fracture flow and fracture/matrix interactions.
Compared to LBM, traditional CFD methods such as FEM[126][127][128]
and FDM[125][129] are currently primary simulation tools on SRV- scale
simulation in dealing with multiple low mechanism and rock deformation
despite the fact that they are still far behind the industry’s demand[125].
Pore scale is the smallest scale where the flow is studied on pore geometries.
Pore scale results can provide quantities such as permeability, porosity at var-
ious locations. With these results, some fundamental issues such as medium
variability can be quantitatively assessed and REV can be quantified. The
REV scale is larger than the pore scale but much smaller than the field scale,
within the range of an REV, the macroscopic variables (such as permeability
and porosity) do not change with the magnitude of the averaging volume.
As an image based simulation tool, the LBM has been developed to simulate
fluid /gas flow in porous shale on pore scale and REV scale.

3.1. Pore scale simulation

At the pore scale, the flow of fluid through the pores of shale reservoir
is directly simulated by the LBM. Initially, standard LBM is developed with
non-slip boundary conditions to study continuum flow in porous media. As
gas flow in shale is involved with different flow regimes, recently, some at-
tempts have been made to extend standard LBM to capture non-continuum
phenomenon.

3.1.1. Estimation of intrinsic permeability

Under the continuum assumption, standard LBM can be easily applied to
complex boundary geometries due to its kinetic nature and a simple bounce-
back rule for non-slip boundary condition. This particular feature makes
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the LBM superior to classical numerical techniques (e.g., finite differences
and finite elements) and other simplified network models for studying flow
in realistic porous media. Moreover, as the incompressible N-S equation can
be obtained in the nearly incompressible limit of the LB model, LBM is
widely used to estimate the intrinsic permeability of shale along with tomog-
raphy techniques[130][131] [132]. For example, Chen et al.[133] generated
3D FIB-SEM images of shale samples and estimated intrinsic permeability
and tortuosity with standard LBM. Later the same techniques were applied
but the computation was carried out using a pore-scale GPU-accelerated LB
simulator (GALBS) which increases the computing speed (1000 times faster
than the serial code and 10 times faster than the paralleled code run on a
standalone CPU)[134]. The relative permeability of shale was also studied
by Cantisano et al.[135] and Nagarajan et al.[136]. Nagarajan et al.[136]
calculated the gas-oil relative permeability of Liquid Rich Shale (LRS) with
the LBM and compared their results with laboratory studies. The authors
observed that standard LBM can give similar remaining oil saturation to that
of the experimental observations, however, significant difference exists in the
relative permeability curves.

3.1.2. Estimation of apparent permeability

When continuum hypothesis breaks down, the gas molecules tend to
“slip” on the solid surface, and the measured gas permeability through a
porous media is higher than that of intrinsic permeability due to gas slippage.
To estimate the gas apparent permeability(k,) of shale, several approaches
have been proposed from the literature.

3.1.2.1. Klinkenberg model based LBM. In Klinkenberg model, the apparent
permeability is calculated based on a linear correlation factor(f.) for correct-
ing the intrinsic permeability (ko):

ka = kOfca (35>
where, f, is a correction factor and is given by [137]:
br
fc:(l—i_g)a (36>

with a slip factor b, which depends on Kn. Later, it is confirmed that
Klinkenberg’s correlation is only first order accurate. Beskok and Karni-
adakis [19] proposed a second-order correlation by considering the different
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flow regimes from continuum flow to free molecular flow:

(37)

fo =1+ a(Kn)Kn] {H hn ]

1—bKn
where, slip coefficient b equals to —1 for slip flow, and «(Kn) is a rarefac-

tion coefficient which is given by Florence et al.[22] for a purely diffusive
(TMAC=1) situation as:

128
a(Kn) = 1572

Allan and Mavko[138] used the combination of Beskok and Karniadakis-
Florence’s correlation along with a 3D incompressible LB model to estimate
the k, for a shale image with a 167nm length in each dimension. In their
study, the intrinsic permeability ky was predicted by standard LBM. Further,
the adsorption gas was induced in their model as an immobile phase which
affects permeability in two manners: decreasing the gas permeability and
changing the TMAC. Moreover, they pointed out that a supercritical phase
transition may take place during the pressure depression and diffusive flow
mechanisms becomes a negligible mass transport mechanism when gas is in
a supercritical phase (see Fig. 8).

Allan and Mavko’s work appears to be the first to apply the LBM to
quantify the effect of slip and adsorption on micro-porous shale rock transport
properties. With an average Kn which is derived from flux weighted average
pore width, however, the realistic gas flow through the pore space cannot
be obtained. Also, the surface diffusion of adsorption gas is not considered
in their model, and no further discussions are provided on the influence of
adsorption gas on TMAC.

tan~ ' [4Kn"). (38)
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Figure 8: The difference between the total permeability and the continuum permeability
as a function of pore pressure. For comparison, two curves are presented corresponding
to a gaseous phase (dot-dashed curve), and to a fluid phase that undergoes a supercritical
transition (solid curve). The horizontal dotted line marks that the total permeability is
equal to the continuum permeability when adsorption layer is not considered.

3.1.2.2. Dusty gas model (DGM) based LBM. The dusty gas model is based
on the superposition of convection and molecular spatial diffusion(Knudsen
diffusion):

ko k
J = —p = Jd + Jk = —va“‘ _BDeffvpv (39)
I H p

where, J is the mass flux per unit area, J; is the viscous flow flux and J is
the Knudsen diffusion flux. D.ss is the effective Knudsen diffusivity. Based
on Eq.39, the apparent permeability can be calculated as:

Deffu)
pko
Very recently, a DGM based LB model was proposed by Chen et al.[139]

to calculate the apparent permeability of shale. In this model a MRT-LBM
for fluid flow and a SRT-LBM for mass transport were used to estimate
intrinsic permeability k¢ and effective Knudsen diffusivity D.¢y, respectively.
In order to account for the variation of local Knudsen diffusivity with local

ka = kO(l + (4())

25



553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

pore diameter, the relaxation time used in the LBM transport model was
modified based on:

d
Tg = d—p<7-p77’ef - 05) + 05, (41)
p?ref

where d), is local pore diameter, d, ,.s is a reference pore size which is chosen
as 25 nm in their simulation, and 7, ,.r is set as 1.0.

The DGM based LB model developed by Chen et al.[139] was adopted
to estimate the tortuosity and the gas apparent permeability of four recon-
structed shale samples form Sichuan Basin (China). Their simulation results
indicate that commonly used Bruggeman equation greatly underestimates
tortuosity of shale, and DGM based LB model can give a comparable results
of apparent permeability as that given by Beskok and Karniadakis-Civan’s
correction[140](see Fig.9).
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Figure 9: Correction factors predicted by the LBM and empirical correlations under dif-
ferent Knu

Later, the same techniques were applied by them to estimate the appar-
ent permeability of 250 reconstructed kerogen samples using a reconstructed
method called overlapping sphere method, with a porosity ranging from 0.1
to 0.55, and a mean diameter of 30, 45, and 60 nm[141]. The simulation
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results further confirm the high turtuosity of kerogen pores and Beskok
and Karniadakis-Civan’s correlation for calculating apparent permeability
of shale matrix.

To our best knowledge, Chen et al.’s work[139][141] is the first study of nu-
merically investigating the effective Knudsen diffusivity based on real porous
structures of shale with the LBM. The advantage of this method is ease
of implementation. In their DGM based LBM, gas adsorption and surface
diffusion are not considered, and the Knudsen diffusion term used in DGM
contains the assumption of fully diffusive boundary condition (TMAC=1)
which underestimates the mass flux in the transition regime[142].

3.1.2.3. Slip N-S model based LBM. Slip N-S model based LBM is the direct
simulation of gas flow through pore structure with the use of appropriate
slip boundary conditions and effective relaxation time(See section 2). A few
attempts have been made in the literature by applying slip LBM to shale
gas flow through kerogen pores. In these applications, additional physical
properties are added into slip boundary conditions and LB model to reflect
the adsorption gas and/or surface diffusion effect.

Fathi and Akkutlu [143] developed a LB-Langmuir isotherm model in
which LSB was used to capture the velocity slip. To consider the impact of
surface diffusion, wu,, in Eq.27 was calculated based on:

Uy = Ug

D, KC,.
~ Dipa pgug(l +KCO)?2 ]

where, C' is the free gas density, C,s is the maximum adsorption capacity,
Dy, is the tortuosity-corrected coefficient of molecular diffusion, D, is surface
diffusion coefficient, p, is the adsorbed-phase density, and K is the equilib-
rium partition (or distribution) coefficient. Interestingly, the pseudopotential
model proposed by Shan and Chen[144] was also employed in their LB model
to consider the non-ideal gas effect and the interactions between solid and
gas, however, it is argued that this treatment may lead to a double consider-
ation of the gas-solid interactions[145] as pseudopotential model and slip LB
are parallel in capturing gas slippage[82][83][84].

Based on BR and Langmuir isotherm model, Ren et al.[146] proposed a
different form of LB slip boundary condition, in which the surface diffusion
of adsorption gas is modelled as a moving wall. In their model, the transport
rate of adsorbed gas is independent of D, as mentioned in Eq.42 and can be

(42)
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expressed as:
Ps M qLpL apfree

spa‘/std (pL +pfree)2 Ox

where, M is the molecular weight of the gas, p, is the organic solid density,
Vsta 1s the gas volume per mole at standard temperature and pressure, qy,
pr and pyfree are Langmuir volume, Langmuir pressure, and free-gas pres-
sure, respectively. They demonstrated that their model can predict more
reasonable physical behaviour compared to that in Fathi and Akkutlu[143],
however, no validation is provided when considering the adsorption gas and
surface diffusion effect. The non-ideal gas effect was also studied by Ren et
al.[146](see Fig.10), and they demonstrated the necessity to use LB under
real gas conditions instead of the one under ideal gas conditions as large
difference exists between the simulation results for ideal and non-ideal gas.

Uy, = —D (43)

10°
25

Free-gas velocity in the x direction (m/s)

0 10 20 30 40 50
Distance from the lower wall (nm)

Figure 10: Comparison of free-gas velocity profiles in Kerogen pores using the LB under
ideal and non-ideal gas conditions

Slip N-S based LBM gets rid of the usage of empirical or semi-empirical
correlations, and it is believed that it can provide accurate simulation re-
sults comparable with experimental studies. The main advantage of this
method is that detailed local information of the flow (such as velocity field
and pressure field) can be obtained and the local information can be used to
study macroscopic relations. The slip N-S based LBM is, however, still in
its infancy, and its applications in shale are limited to single channel flow.
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Also current complex boundary treatments prevent its further application in
porous media[82][94].

3.2. REV scale simulation

Due to the huge computational cost, pore-scale LBM is impractical to
perform REV-scale simulations of porous shale. Therefore, several alternative
approaches are proposed to apply the LBM on REV scale[36][147][148][149].

To apply the LBM for REV scale flow simulation, Guo et al.[36] proposed
a generalized LB model, in which the forcing term(Eq.6) was related to the
porosity of porous media:

1 c;,—u ¢;-u
Fi=(1—-—)w i - F, 44
(1= gelP g + el (4)
with -
F=—"u— " "luju+tepG, (45)

u
ko Vko

where, F, is the geometry function and kg is the intrinsic permeability. Both
F. and kg need to be estimated based on the empirical relationships with
porosity, €.

Chen et al.[150] further extended this generalized LBM for slip flow by
considering Klinkenberg’s effect on REV scale, and this was achieved by the
usage of apparent permeability, k, instead of ky. Beskok and Karniadakis-
Civan’s correlation [20] was adopted to calculate k,:

1. AK
ko = ko |1+ 598 Kn} {1+ " } (46)

14 0.17Kn—04348 1+ Kn

where, kq is calculated based on Kozeny-Carman (KC) equation[151], and
the local characteristic pore radius for the calculation of Kn was estimated

by[152]:
r = 0.08886+/ %. (47)

Chen et al.[150] performed several analysis based on a heterogeneous shale
matrix with natural fractures, organic matter and inorganic minerals., Later
the same technique were used by them to quantify the permeability of re-
constructed shale matrix[153]. Their simulation results qualitatively and
quantitatively confirm the increase in permeability induced by Klinkenberg’s
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effect. Moreover, Chen et al’s study provides a framework of applying the
LBM on REV scale for further research, within this framework, other physi-
cal effects (such as adsorption and surface diffusion) can be easily integrated
by modifying the local apparent permeability.

4. Discussions and Conclusions

The LB method has gone through significant improvements over the years
and has become a viable and efficient substitute for N-S solver for many
flow problems. Because of the underlying kinetic nature, LB equation has
attracted a huge interest in its extension to mimic micro-gaseous flows. In
this paper we presented a general review of the LBM with an emphasis on
boundary conditions, treatments for relaxation time and application of the
LBM in isothermal fluid/gas flow simulation in shale gas reservoir.

It has been found that the LBM is an effective method for simulating
micro gas flow in continuum to slip flow regime. For example, through the
Chapman-Enskog expansion, lattice Boltzmann equation can be proved to
recover the macroscopic continuity and momentum (N-S) equations. In slip
flow regime, the Knudsen layer takes a small portion of the channel height,
which can be neglected by extrapolating the bulk gas flow towards the wall.
In this case, with the implementation of proper relaxation time and com-
bination coefficients for various boundaries such as BB, SR or MD, the LB
equation can give similar results to that of N-S equation with slip boundary
conditions for pressure driven/force driven micro-channel flow and micro-
Couette flow.

In transition flow regime, the Knudsen layer effect is significant, and the
N-S equation with first-order slip boundary breaks down. Second-order or
high-order slip boundary conditions are needed, and the change of the local
mean free path/Knudsen number inside of the Knudsen layer has to be con-
sidered. The validation with MD or DSMC simulation results indicates that
the LBM can be extended to simulate gas flow in transition flow regimes
with high-order velocity sites and/or using wall function approach or ap-
proximated viscosity approach. However, because current effective viscosity
models are only accurate with a moderate range of Knudsen number and the
degree of freedom in the momentum space is very limited, difficulties still
exist in studying non-equilibrium gas flow with high Knudsen numbers using
LBM.
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Several LB approaches are proposed to study gas transport in shale gas
reservoir both on pore scale and REV scale. Pore scale simulation is an
effective way to improve the understanding of different flow mechanisms.
Application of the LBM to study shale gas transport on pore scale depends
very much on its ability to capture micro-gaseous flow and the transport of
adsorption gas. Slip N-S based LBM has the potential to provide accurate
simulation results comparable with experimental studies with small Knudsen
number. Existing slip N-S based LB models are premature to accurately
estimate micro-flow properties in porous shale, and Klinkenberg model or
DGM based LBM provide an alternative way to simulate gas flow on pore
scale. The development of REV scale based LBM enable us to simulate gas
flow on a larger scale, however, the simulation study should be complemented
by laboratory studies on core samples. Increase in efficiency of these methods
for simulation of micro-gaseous flow have the potential for applications in
evaluating shale gas reservoirs.

The LBM still has a number of limitations in studying micro-gaseous
flow, such as capturing the gas-solid interactions and non-ideal gas effect.
Compared to other methods such as MD and DSMC, most of the previous
applications of the LBM are more phenomenological than physical. For gas
flow in shale gas reservoir, studies based on experiments, MD and DSMC are
recommended to be carried out before using the LBM.
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