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Abstract
A physics-based finite strain crystal plasticity constitutive model for body-
centered-cubic (BCC) single crystals is developed to capture the strong tem-
perature, rate and orientation dependence of mechanical behavior. The key
features of the model include twinning-anti-twinning asymmetry of shear-
ing resistance, a yield criterion that incorporates atomistics-informed non-
Schmid effects, and a flow rule formulated based on the theory of thermally
activated motion of screw dislocations via nucleation of double kinks. The im-
plementation of the constitutive model in a finite-element program is briefly
discussed. The material constants in the model are determined by calibrat-
ing the model against literature-based experimental data on single-crystal
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Molybdenum subjected to uniaxial compression and uniaxial tension. Ex-
periments of uniaxial compression on a single crystal specimen with a hole
were performed for validation of the calibrated model for BCC Molybde-
num. Measurements of deformations in the vicinity of the hole were used to
assess the ability of the model in predicting localized deformation patterns
around the hole. The model is able to effectively describe the anisotropic
and temperature-dependent stress-strain response of a molybdenum crystal
up to a homologous temperature of 0.3.
Keywords: BCC Crystal plasticity, Thermal activation, Non-Schmid
effects, Molybdenum single crystal, Finite elements

1. Introduction

The body-centered cubic (BCC) transition metals have a complex de-
formation behavior, a large part of which can be attributed to their lattice
crystallography. Among these characteristic behaviors are the strong temper-
ature, rate and orientation dependence of yield stress as well as asymmetry
with respect to tension and compression. It is known that the room tem-
perature plasticity of BCC metals is controlled, to a large extent, by the
motion of screw dislocations (Taylor (1992)). The connection between the
details of core structure and mobility of screw dislocations in BCC metals
has been extensively studied using atomistic simulations, e.g. Ito and Vitek
(2001). In this work, the major results from these atomistic calculations are
systematically transferred to the macroscopic level while formulating a finite
strain continuum crystal plasticity model for BCC single crystals.

Both atomistic and ab-initio simulations (Vitek, 1976; Woodward and
Rao, 2001) showed that a screw dislocation in BCC metals has a complex
non-planar atomic core structure. Consequently, the flow stress increases
rapidly with decreasing temperature and increasing strain rate. Further,
such a core structure is also responsible for breakdown of the Schmid law
which leads to complex dependence of yield stress on orientation of loading.

The non-planar cores of screw dislocations gives them lower mobility than
dislocations of edge character. The low mobility of screw dislocations is
therefore expected to control the plastic flow in BCC metals. The motion
of screw dislocations occurs through the nucleation and the propagation of
double-kinks along their lines (Kocks et al., 1975; Tang et al., 1998). The
double-kink mechanism is a thermally activated process, which explains the
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strong temperature dependence of the flow stress observed in BCC metals. In
the model presented in this paper, thermally activated dislocation mobility
theory is adopted to describe the shearing rate on slip systems.

Atomistic molecular dynamics simulations (Ito and Vitek, 2001; Vitek
et al., 2004a,b) have shown that the response of the screw dislocation core to
an externally applied stress state is very complex. The critical resolved shear
stress (CRSS) is affected not only by the usual (Schmid) resolved shear stress
on the dislocation, but also by non-driving stress components. Consequences
of the latter are referred to as non-Schmid effects. In particular, Ito and Vitek
(2001) have shown that the shear stresses both parallel and perpendicular to
the Burgers vector that act not only in the slip plane but in all three {110}
and {112} planes of the ⟨111⟩ zone can either increase or decrease the degree
of core spreading on non-slip planes. This in turn, increases or decreases
the CRSS on the slip plane. Such atomic-scale phenomena are expected to
significantly affect the plastic behavior of BCC crystals and in particular
lead to a strong orientation-dependence of CRSS and tension-compression
asymmetry. In this paper, a yield criterion that incorporates atomistics-
informed non-Schmid effects is adopted.

The identification of the active slip plane and slip mechanism is much
more complicated in BCC metals than in FCC metals. In BCC metals, the
deformation occurs by crystallographic planes sliding parallel to the ⟨111⟩
axis (which is the direction of closest atomic packing) but unlike in FCC ma-
terials, the slip plane is not well-defined. Taylor and Elam (1926) proposed
the concept of pencil glide, which implied that any plane of the zone defined
by the operating ⟨111⟩ slip direction might act as slip plane. However, later
research (Hollang et al., 1997; Seeger, 2001, 2004; Seeger and Wasserbach,
2002) concluded that {110}, {112} and {123} families of planes primarily
participate in the slip process during deformation of BCC metals. This indi-
cates that the operating slip plane is not necessarily those with the densest
packing, and must be determined experimentally as functions of crystal ori-
entation, temperature, purity, etc. (Seeger, 2001, 2004) and (Seeger and
Wasserbach, 2002) noted that at low-temperature (< 75K) slip takes place
predominantly on {110} planes, but not necessarily at higher temperatures.
They further argued that purer materials do not show {123} slip and that
substitutional impurities had presumably been responsible for the slip on
{123} planes reported earlier. In summary, for high-purity BCC metals it
suffices to take into account {110} and {112} slip planes. In this work, atten-
tion is focused on deformation behavior of BCC metals at room temperature
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and above (up to homologous temperature ≤ 0.3). Therefore, we develop a
model for BCC metals that deform by {110} and {112} slip.

In spite of the fact that several investigations were dedicated to study
the response of BCC polycrystals using crystal plasticity based models, no
explicit efforts were made to simulate the response of BCC single crystals ac-
curately. (Liao et al., 1998) and (Lee et al., 1999) extended the crystal plas-
ticity framework developed for FCC material, which is based on power-law
descriptions (Peirce et al., 1983) for shearing rates, to model BCC materials.
Although power-law relations offer simple approximations of the viscoplas-
tic response, they cannot capture the temperature and rate dependence of
critical resolved shear stress observed in BCC crystals. Kothari and Anand
(1998); Xie et al. (2004), and Ganapathysubramanian and Zabaras (2005)
used a kinetic equation for the shearing rates on slip systems based on the
thermally activated theory of plastic flow. However, their formulation does
not consider non-Schmid behaviors responsible for the strong orientation-
dependence of CRSS and tension-compression asymmetry. This paper seeks
to develop a rigorous continuum crystal plasticity constitutive model for
BCC metals that captures correctly thermally activated plastic flow, the
breakdown of the Schmid law and the twinning-anti-twinning asymmetry of
shearing resistance.

Yalcinkaya et al. (2008) performed material point calculations for differ-
ent BCC crystals subjected to uniaxial tension loading and determined their
material properties using a least-square optimization procedure. Their ma-
terial point implementation is based on the predefined uniaxial deformation
gradient, as opposed to finite element implementation in which the defor-
mation gradient is determined from the applied boundary conditions. Since,
the predefined uniaxial deformation gradient may not be representative of the
experimental loading (e.g. Poisson strains may not be captured correctly), a
finite element implementation is used in this work to study response of BCC
crystals and determine the material properties.

The objective of this paper is to develop a physics based finite strain
continuum crystal plasticity constitutive model for BCC single crystals that
captures the strong temperature, rate- and orientation-dependence of yield
stress as well as the twinning-anti-twinning asymmetry of shearing resistance.
To this end, the flow rule is derived from the theory of thermally activated
motion of screw dislocations via nucleation of double kinks. A yield criterion
that incorporates atomistically informed non-Schmid effects is used in the
model (section 2). A second objective of the work is to implement the above

4



constitutive model in a finite element framework. This task is accomplished
in section 3 by employing the rate tangent modulus scheme and finite ele-
ment formulation for incremental static equilibrium. The last objective of
this work is to provide a systematic two step procedure for determining the
required material properties with minimal compromise of their physical in-
terpretation. To this end, the constitutive model presented in this paper
is applied to a molybdenum single crystal in section 4 and its behavior at
different orientations and temperatures is simulated.

2. Finite deformation theory of crystal plasticity

The general framework of finite strain single crystal plasticity theory,
discussed in detail by (Asaro, 1983), is adopted in this work to model the
constitutive behavior of BCC crystals.

2.1. Kinematics
The deformation gradient F is assumed to decompose multiplicatively,

such that,
F = F ∗F p, (1)

where F p is the deformation gradient solely due to plastic shearing on crys-
tallographic slip systems and F ∗ is the deformation gradient which arises
from the elastic stretching and rotation of the crystal lattice (see, Figure
1). The deformation in Equation (1) can be envisioned as accomplished in
two stages: the material first moves through the undeformed crystal lattice
via dislocation motion, according to F p and then the lattice itself, with the
material embedded on it, undergoes elastic deformation and rotations giving
rise to F ∗. In order to link the macroscopic plastic deformation gradient
F p to dislocation movement, n slip systems α = 1, 2, ...n, defined by pairs
(s(α),m(α)) are introduced as shown in Figure 1. For the αth slip system,
the unit vector normal to the slip plane in the undeformed configuration is
defined by mα and the unit vector along the slip direction by sα. When the
deformation gradient F ∗ is applied, the crystalline lattice rotates and these
vectors transform to m∗(α) and s∗(α) respectively, in the current configuration
(see, Figure 1), according to:

s∗(α) = F ∗s(α),

m∗(α) = F ∗−T

m(α).
(2)
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The form of m∗(α) is chosen such that in the current configuration

s∗(α) · m∗(α) = s(α) · m(α) = 0. (3)

The spatial velocity gradient is written as

l = Ḟ F−1 = Ḟ ∗F ∗−1

+ F ∗Ḟ pF p−1

F ∗−1 , l∗ + lp. (4)

The evolution equation for F p (flow rule) is written as (Asaro, 1983):

Lp = Ḟ pF p−1

=
n∑

α=1

γ̇α(s(α) ⊗m(α)), (5)

where γ̇α is the plastic slip rate on slip system α and n is the total number
of slip systems. The summation here is due to multiple slip. Thus, it follows
from the form of the flow rule that the plastic part of the deformation is
volume preserving since

trace(lp) =
n∑

α=1

γ̇αtrace(s∗(α) ⊗m∗(α)) =
n∑

α=1

γ̇α(s∗(α) ·m∗(α)) = 0 (6)

Hence, the plastic part of the spatial velocity gradient becomes

lp = Dp +Ωp = F ∗Ḟ pF p−1

F ∗−1

=
n∑

α=1

γ̇α(s∗(α) ⊗m∗(α)), (7)

where the symmetric and skew-symmetric parts of lp (i.e., plastic parts of
rate of deformation and spin) are written as

Dp =
n∑

α=1

γ̇α

(
1

2

(
s∗(α) ⊗m∗(α) +m∗(α) ⊗ s∗(α)

))
,

n∑
α=1

γ̇αµ(α), (8)

Ωp =
n∑

α=1

γ̇α

(
1

2

(
s∗(α) ⊗m∗(α) −m∗(α) ⊗ s∗(α)

))
,

n∑
α=1

γ̇αω(α). (9)
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2.2. Constitutive law
2.2.1. Elastic constitutive relation

Assuming that the elastic properties of the lattice are unaffected by slip,
the elastic constitutive relation is specified by

∇
τ ∗ = L : D∗. (10)

Here, L is the fourth-order tensor of elastic moduli, D∗ is the symmetric
part of l∗ (i.e., elastic part of rate of deformation) and

∇
τ ∗ is the Jaumann

rate of Kirchhoff stress based on lattice rotations which is given by,

∇
τ ∗ = τ̇ −Ω∗τ + τΩ∗. (11)

where τ̇ is the material time derivative of Kirchhoff stress and Ω∗ is the
antiosymmetric part of l∗ . One should note that

∇
τ ∗ is the rate of change of

Kirchhoff stress as seen by an observer who rotates with the lattice according
to Ω∗. The stress rate as seen by an observer rotating according to Ω is the
Jaumann rate of Kirchhoff stress based on material spin, given by,

∇
τ = τ̇ −Ωτ + τΩ. (12)

The difference between the two rates of Kirchhoff stress is given, by virtue
of eq(9) as :

∇
τ ∗ − ∇

τ =
n∑

α=1

γ̇α(ωατ − τωα) ,
n∑

α=1

γ̇αβα. (13)

The right hand side of above equation vanishes when there is no relative
motion of the material and lattice. On combining eq(8), eq(10) and eq(13),
one obtains

∇
τ = L : D −

n∑
α=1

γ̇α(L : µ(α) + βα) , L : D −
n∑

α=1

γ̇αRα, (14)

where D is symmetric part of l.
The resolved shear stress (also called Schmid stress), τα, is typically as-

sumed to be the driving force for plastic slip γα on system α. It is a projection
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of Kirchhoff stress (τ ) on the slip plane in the slip direction and is defined
as

τα = τ : (s∗(α) ⊗m∗(α)) = τ : µ(α). (15)

2.2.2. Plastic slip rate
In order to complete the description of the constitutive law, the shear

slip rates, γ̇α, need to be specified in terms of those quantities which affect
the dislocation motion. The motion of dislocations is driven by an applied
resolved shear stress (τα) and is hindered by short-range barriers (e.g. lattice
resistance or Peierls stress), which can be overcome by thermal activation as
described subsequently, and long range forces (say, other dislocations). The
latter may produce barriers too large for thermal activation to be significant.
Thus, flow stress consists of two contributions. One is the thermal component
(τ◦) and the other is an athermal component (gα). It has been established
that in BCC metals, at low homologous temperatures, the primary barriers
to the motion of the screw dislocations are lattice-related Peierls barriers.
Therefore, in the present work, a theory of thermally activated motion of
screw dislocations via nucleation of double kinks is adopted to derive the
expression for plastic slip rate on active slip systems.

We assume that a segment of initially straight screw dislocation overcomes
the Peierls barriers by nucleating a well-separated pair of kinks and making
a discrete jump as shown in Figure 2. For example, in pure molybdenum at
room temperature the velocity of edge dislocations has been estimated to be
40 times that of screw dislocations (Lawley and Gaigher, 1964)). As a result,
kinks migrate along the dislocation line and this leads to the effective glide
of the screw dislocation in the direction of the kink formation. The effective
glide velocity of screw dislocations is thus primarily controlled by the kink
pair nucleation rate. The kink pair nucleation being a thermally activated
process, its rate follows an Arrhenius law and is given by

νk = νko exp

(
−∆Gk

κT

)
(16)

where νko, κ and T are the attempt frequency, Boltzmann constant and ab-
solute temperature, respectively. ∆Gk is the activation enthalpy (also called
the activation barrier) for nucleating a double kink under an applied resolved
shear stress. At finite temperatures, the Peierls barrier is overcome partly
with the aid of thermal fluctuations and partly by the work done by the
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applied Schmid stress (τα) during the activation process. The activation
barrier (∆Gk) is the fraction of the Peierls barrier that remains after sub-
tracting the work done by the Schmid stress when shifting the dislocation up
on the barrier.

The corresponding average dislocation velocity is estimated as

νd = λνk = λνko exp

(
−∆Gk

κT

)
. (17)

Here, λ is the distance between the barriers (in BCC metals of the same order
as the Burgers vector). The relation between the slip rate and the average ve-
locity is given by the Orowan relation, γ̇α = bρmνd, where ρm and b represent
the mobile dislocation density and Burgers vector, respectively. Substituting
the expression for average dislocation velocity (17) into Orowan’s relation,
the expression for slip rate becomes

γ̇α =

{
0 if ταeff ≤ 0,

γ̇◦ exp
(
−∆Gk

κT

)
if ταeff > 0,

(18)

where, γ̇◦ = bρmλνko is a reference strain rate (≥ 106s−1 for BCC metals).
The effective resolved shear stress, ταeff , is deduced from the Schmid stress,
τα, by subtracting athermal component (gα) of the total slip resistance.

ταeff = |τα| − gα (19)

It is redefined subsequently in this subsection to accommodate the non-
Schmid behavior discussed in the introduction.

The stress dependence of γ̇α arises from the stress dependence of ∆Gk.
A common approach to the definition of the dependence of the activation
energy ∆Gk on the stress is to use an empirical function first proposed by
Kocks et al. (1975):

∆Gk = ∆Gk◦

[
1−

(
ταeff
τ◦

)p ]q
, (20)

where, p and q are adjustable parameters and lie in the range 0 ≤ p ≤ 1 and
1 ≤ q ≤ 2. ∆Gk◦ is the total activation enthalpy necessary to overcome the
lattice resistance without the help of external forces. τ◦ is the resolved yield
stress at 0 K, i.e., the resolved shear stress required to overcome the lattice
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resistance when no thermal energy is available.
As discussed in the introduction, it is well known that for BCC crystals a

yield criterion based on Schmid law is unsuitable due to the non-planar core
of screw dislocations. Using atomic-scale information, Bassani et al. (2001);
Vitek et al. (2004a,b) and Groger et al. (2008) formulated a yield criteria
for BCC crystals that includes the effects of the non-Schmid components of
stress tensor. Following their framework, a generalized resolved shear stress,
τ ∗α, is defined in this work as a linear combination of the Schmid stress (τα)
and other non-glide components of the stress tensor:

τ ∗α = τα + a1τ
α
1 + a2τ

α
2 + a3τ

α
3 + a4τ

α
4 + a5τ

α
5 , (21)

where, τα1−5 are the non-glide stresses (Asaro and Rice, 1977) affecting the
slip on system α by modifying the core of screw dislocations and a1−5 are
material parameters that determine the relative importance of the different
non-glide stresses. The set of the non-glide stresses τα1−5 introduced in the
above equations are defined as

τα1 = τ : (s∗(α) ⊗ n
∗(α)
1 ) = τ : µα

1 ,

τα2 = τ : (s∗(α) ⊗ n
∗(α)
2 ) = τ : µα

2 ,

τα3 = τ : ((s∗(α) ×m∗(α))⊗m∗(α)) = τ : µα
3 , (22)

τα4 = τ : ((n
∗(α)
1 × s∗(α))⊗ n

∗(α)
1 ) = τ : µα

4 ,

τα5 = τ : ((n
∗(α)
2 × s∗(α))⊗ n

∗(α)
2 ) = τ : µα

5 .

Here, τ is the Kirchhoff stress and n
∗(α)
1 = F ∗−T

n
(α)
1 and n

∗(α)
2 = F ∗−T

n
(α)
2

are normals to non-glide planes for slip system α in the current configuration.
The corresponding lattice vectors, n(α)

1 and n
(α)
2 , in reference configuration

are listed in Table 1 for systems involving slip on {110}. Note, τα, τα1 and
τα2 are parallel to the Burgers vector and τα3 , τα4 and τα5 are perpendicular to
the Burgers vector.

We now redefine the effective resolved shear stress ταeff by modifying its
definition in Equations 18 to be

ταeff = |τ ∗α| − gα = |τα + a1τ
α
1 + a2τ

α
2 + a3τ

α
3 + a4τ

α
4 + a5τ

α
5 | − gα (23)

The macroscopically observed {112} slip can be understood as a conse-
quence of dislocations moving in a zig-zag fashion by elementary steps on the
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two most highly stressed {110} planes of the same ⟨111⟩ zone. Such pairs of
{110} slip systems (denoted as α1 and α2) for each {112} slip are provided in
Table 2. Therefore, non-glide shear stresses (τα1−5) affecting the slip on {112}
systems are related to those non-glide shear stresses which affect the slip on
their conjugate pair of {110} slip systems. For example, slip on (1̄21)[1̄1̄1]
(α = 21 in Table 2) corresponds to equal slip on systems (1̄10)[1̄1̄1] and
(01̄1̄)[1̄1̄1] (α = 9 and 7 in Table 1), and thus, the set of non-glide shear
stresses for this slip system are obtained as τ 211−5 = (τ 91−5 − τ 71−5)/

√
3. The

negative sign in the expression accounts for the slip direction of the second
system in the pair.

2.2.3. Athermal slip resistance and hardening model
Since gα represents the flow stress for slip system α, its evolution governs

the hardening of the crystal. The rate of change of gα is postulated as (Peirce
et al., 1983)

ġα =
n∑

β=1

hαβ|γ̇β|, (24)

hαβ = hαqαβ No sum, (25)

hα = hα/s + (hα/o − hα/s) sech2

(
hα/o − hα/s

gα/s − gα/o
γα

)
, and (26)

γt =
∑
α

| γα|. (27)

Here, hαβ are the latent hardening moduli which govern the interaction be-
tween various slip systems, and γ̇β is the slip rate on the system β. The
hα/◦ and hα/s are an initial and saturation hardening rate, and gα/◦ and gα/s
are an initial and saturation yield stress, respectively, corresponding to the
αth slip system. The γt is the sum of the plastic shear strains in all the
slip systems. Note that, Equation (26) uses shear strain on individual slip
systems, γα (Bassani and Wu, 1991). The qαβ in Equation (25) is the ampli-
tude factor and govern the latent hardening behavior of crystal. (Lee et al.,
1999) considered the types of possible dislocation junctions for the 24 slip
systems in BCC crystals and provided the qαβ matrix (24 × 24) which is
adopted in this work. This matrix is reproduced in Table 3 for the sake of
completeness, keeping in mind the different slip system numbering used in
this work. In this table, the letters O, N , C, G, W and S stand for self hard-
ening, no junction, coplanar junction, glissile, weak sessile and strong sessile
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junctions, respectively. The values of the above latent hardening coefficients
are provided in Table 4.

2.3. Implementation of constitutive model
2.4. Rate-tangent formulation

The rate-tangent modulus scheme for implementing the above constitu-
tive equations in a finite element code, discussed in detail by (Peirce et al.,
1983), is presented in this section. First, an estimate is made of the change in
shear rate, γ̇α, during the current time increment and then an elastic-plastic
forward gradient modulus is derived relating the increments of stress to those
of strain.

Recall that the plastic slip rate is given by the Equations 18 and 20. The
increment in plastic slip on a slip system α during the current time increment
is defined as

∆γα = γα(t+∆t)− γα(t). (28)
A linear interpolation within the time increment is employed so that :

∆γα = [(1− θ)γ̇α(t) + θγ̇α(t+∆t)]∆t. (29)

The parameter θ can range from 0 to 1, with θ = 0 corresponding to the sim-
ple forward Euler time integration scheme, while, θ = 1 represents backward
integration. In the present work, θ is taken to be 0.5. Now a Taylor series
(only first order terms) is used to approximate γ̇α(t+∆t) so that

γ̇α(t+∆t) = γ̇α(t) +
∂γ̇α

∂ταeff


t

∆ταeff +
∂γ̇α

∂T


t

∆T . (30)

Here, a subscript after a vertical bar is used to denote the time at which the
corresponding term is evaluated. From Equations 18 and 20, one can write

∂γ̇α

∂ταeff


t

= Aα

(
γ̇α(t)

τ◦

)
(31)

where,

Aα =

(
∆Gk◦

κT

)
(pq)

[
1−

(
ταeff
τ◦

)p ]q−1(ταeff
τ◦

)p−1

(32)
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and,
∂γ̇α

∂T


t

=

(
∆Gk◦

κT

)(
γ̇α(t)

T

)
. (33)

Relations for ∆ταeff are derived form Equation (23) as

∆ταeff = |∆τα + a1∆τα1 + a2∆τα2 + a3∆τα3 + a4∆τα4 + a5∆τα5 | −∆gα (34)

With the help of Equation (2), the derivative of Equation (15) can be written
as

˙τα = s∗(α) · (
∇
τ ∗ + D∗τ − τD∗)m∗(α). (35)

By using Equations (8)-(10) one obtains,

∆τα = (L : µα + βα) : D∗∆t (36)

Similarly, from Equation (22) one can derive

∆τα1 = (L : µα
1 + βα) : D∗∆t

∆τα2 = (L : µα
2 + βα) : D∗∆t

∆τα3 = (L : µα
3 + βα) : D∗∆t (37)

∆τα4 = (L : µα
4 + βα) : D∗∆t

∆τα5 = (L : µα
5 + βα) : D∗∆t

where µα
1−5 follows from Equation (22). From Equation (24) one can write,

∆gα =
n∑

β=1

hαβ|∆γβ| . (38)

Substitution of Equations (36)-(38) into Equation (34) leads to

∆ταeff = |(Rα
eff : D∗∆t)| −

n∑
β=1

hαβ|∆γβ|

=

Rα
eff :

(
D∆t−

n∑
β=1

∆γβµβ

)−
n∑

β=1

hαβ|∆γβ| (39)
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where

Rα
eff =

[
L : (µα + a1µ

α
1 + a2µ

α
2 + a3µ

α
3 + a4µ

α
4 + a5µ

α
5 ) +

(1 + a1 + a2 + a3 + a4 + a5)β
α
]
. (40)

On substituting Equations (31), (33) and (39) in Equation (30) and sim-
plifying, one obtains:

∆γα = ḟα∆t+ Fα : ∆ϵ+ Ṫα∆t (41)

where,

ḟα =
n∑

β=1

Mαβγ̇β(t),

Fα =
n∑

β=1

MαβQ
β, (42)

∆ϵ = D∆t.

Mαβ = N−1
αβ ,

Nαβ = δαβ +
θAαγ̇α(t)∆t

τ◦

[
Rα

eff : µβ + hαβ

]
,

Qα =
θAαγ̇α(t)∆t

τ◦
Rα

eff ,

and
Ṫα = θ

(
∆Gk◦

κT

)(
∆T

T

)
γ̇α(t) (43)

Finally, Equation (41) allows the constitutive law Equation (14) to be written
as

∇
τ = C : D − χ̇. (44)

Here, C is the elastic-plastic rate tangent modulus given by

C = L−
n∑

α=1

Rα ⊗ Fα, (45)
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and
χ̇ ,

n∑
α=1

Rα(ḟα + Ṫα). (46)

2.5. Stress update procedure
A summary of the stress update procedure is presented here. Given the

following at an integration point within an element : F e
n, F p

n, ∆ϵ = D∆t,
τ n, gαn , F n+1 and time increment △t = tn+1 − tn, the update proceeds as
follows.

1. Compute lattice vectors in deformed configuration
s∗(α) = F e

ns
(α),

m∗(α) = F e−T

n m(α),

n
∗(α)
1 = F e−T

n n
(α)
1 ,

n
∗(α)
2 = F e−T

n n
(α)
2 ,

2. Compute
µ(α) = 1

2
(s∗(α) ⊗m∗(α) +m∗(α) ⊗ s∗(α)),

ω(α) = 1
2
(s∗(α) ⊗m∗(α) −m∗(α) ⊗ s∗(α)),

βα = ω(α)τ n − τ nω
(α) ,

Rα = L : µ(α) + βα ,
Schmid stress : τ (α) = τ n : µα.

3. Compute
µα

1 = (s∗(α) ⊗ n
∗(α)
1 )

µα
2 = (s∗(α) ⊗ n

∗(α)
2 )

µα
3 = ((s∗(α) ×m∗(α))⊗m∗(α))

µα
4 = ((n

∗(α)
1 × s∗(α))⊗ n

∗(α)
1 )

µα
5 = ((n

∗(α)
2 × s∗(α))⊗ n

∗(α)
2 )

Rα
eff from Equation (40)

Non-Schmid stresses : τ
(α)
1−5 = τ n : µα

1−5

4. Compute
ταeff = |τα + a1τ

α
1 + a2τ

α
2 + a3τ

α
3 + a4τ

α
4 + a5τ

α
5 | − gα

5. Check effective resolved shear stress :
If ταeff ≤ 0, then perform an elastic step. Otherwise, perform plastic
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steps 6-8

6. Compute ∆Gα
k from Equation (20) and then γ̇α from Equation (18).

Also, compute ḟα,Fα,Qα, Ṫα, and Nαβ from eq(42). Invert Nαβ.
Hence compute ∆γα

n+1 from Equation (41).

7. Update F p
n+1; F e

n+1; τ n+1 and slip resistance gαn+1 as follows:
Lp =

∑n
α=1 γ̇

α(s∗(α) ⊗m∗(α)),
F p

n+1 = F p
n +Lp ∗ F p

n,
F e

n+1 = F n+1 ∗ F p−1

n+1,
τ n+1 = τ n + (L : ∆ϵ−

∑n
α=1R

α∆γα
n+1) and

gαn+1 = gαn +
∑n

β=1 h
n
αβ|γ̇

β
n+1| .

8. Compute the elastic-plastic rate tangent modulus:
C = L−

∑n
α=1 R

α ⊗ Fα.

χ̇ =
∑n

α=1 R
α(ḟα + Ṫα).

3. Finite element formulation for incremental static equilibrium

In the present work, an updated Lagrangian procedure is employed, which
is quite convenient from the point of view of computer implementation. To
this end, a reference configuration is chosen, which coincides instantaneously
with the current configuration. The variational principle written in terms of
the Kirchoff stress and its Jaumann rate referred to the current configuration
is given by (refer McMeeking and Rice, 1975):∫

Vt

[
∇
τ ij − (τikDkj +Dikτkj)

]
δDijdV +

∫
Vt

τijvk,jδvk,idV

=

∫
Vt

ḃjδvjdV +

∫
ST

ṪjδvjdA, (47)

where all integrations are performed over the current volume Vt and the
boundary segment ST in the equilibrium configuration corresponding to time
t. In the above equation, Dij = (∂vi/∂xj + ∂vj/∂xi)/2, denotes the rate of
deformation tensor and vk,i = lki = ∂vk/∂xi is the spatial gradient of particle
velocity vector. Further, ḃj and Ṫj represent nominal body force and surface
traction rates based on the current volume and surface area. It will be
assumed here that ḃ and Ṫ are fully prescribed.
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The sum of the second and third terms in the first integral in the left
hand side of Equation (47) can be expressed as follows:

τikDkj +Dikτkj = L̂ijklDkl, (48)

where the tensor L̂ijkl is given by,

L̂ijkl =
1

2
(τikδlj + τilδkj + τkjδil + τljδik). (49)

Note that the tensor L̂ijkl satisfies all the major and minor symmetries. Using
Equations (44), (48) and (49) into variational principle (47), one obtains:∫

Vt

δDijCijklDkldV −
∫
Vt

δDijL̂ijklDkldV +

∫
Vt

τijvk,jδvk,idV

=

∫
Vt

χ̇ijδDijdV +

∫
Vt

ḃjδvjdV +

∫
ST

ṪjδvjdA (50)

At this point, the finite element approximation is introduced as {v} =
[N ]{U̇}, where [N ] is the matrix of shape functions and {U̇} is the vector
of nodal point velocities. Then spacial gradient of velocity can be expressed
in terms of the nodal point velocities as {D} = [B]{U̇}, where [B] is the
spatial gradient of the shape function matrix. The finite element equations
for rate equilibrium can be derived from Equation (50) following the usual
finite element procedure (see Bathe, 1996) as:

[K]e{U̇} = {Ḟχ}+ {Ḟb}+ {Ḟt}. (51)

The element stiffness matrix [K]e is comprised of three parts as:

[K]e = [K(1)]e − [K(2)]e + [K(3)]e. (52)

Here,
[K(1)]e =

∫
V e
t

[B]T [C][B]dV e (53)

is the tangent stiffness matrix arising from material nonlinearity. The matrix
[C] contains the terms of the elastic-plastic constitutive tensor Cijkl (see,
Equation (45)). Since Cijkl satisfy major symmetry, the matrix [C] and
hence [K(1)]e are symmetric.
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The second and third matrices in the right hand side of Equation (52)
comprise the initial stress stiffness. The matrix [K(2)]e is given by,

[K(2)]e =

∫
V e
t

[B]T [L̂][B]dV e, (54)

where the matrix [L̂] contains the terms of L̂ijkl. It can be shown that the
terms of the stiffness matrix [K(3)]e are given by:

K
(3)
iajb =

∫
V e
t

Ba
l τlkB

b
kδijdV

e, (55)

where (i, j) ∈ [1, 3] and (a, b) ∈ [1, ne] with ne = number of nodes per element.
The element force rate vectors {Ḟχ}, {Ḟb} and {Ḟt} are defined as follows:

{Ḟχ}e =
∫
V e
t

[B]T{χ̇}dV e, (56)

{Ḟb}e =
∫
V e
t

[N ]T{ḃ}dV e (57)

and
{Ḟt}e =

∫
Se
T

[N ]T{Ṫ}dV e. (58)

Here, {Ḟχ} is the nodal rate vector force due to the χ̇ term in the variational
principle (50), and {Ḟb}, {Ḟt} are nodal force rate vectors due body force and
surface tractions, respectively. These are represented here as column vectors.

The above finite element formulation has been implemented in the com-
mercial finite element code ABAQUS (Simulia, 2009) by writing a user ele-
ment sub-routine (UEL) for eight-noded isoparametric hexahedral elements.
The finite element formulation is modified to treat the nearly incompressible
deformation using B̄-formulation (Moran et al., 1990).

4. Material parameters for molybdenum crystal

As a representative of BCC transition metals, molybdenum is a suitable
candidate to apply the constitutive model presented in this paper. The ma-
terial constants in the model are determined by calibrating the model against
existing experimental data on Mo single crystal. A systematic two-step pro-
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cedure is provided for determination of these material constants without
compromising their physical interpretation. In the first step, the material
properties of this BCC crystal which govern the temperature dependence of
yield stress are determined. Then the remaining properties are determined
in the second step to capture the orientation dependence of yielding and
hardening behavior.

The three stiffness parameters (C11, C12 and C44) that characterize the
anisotropic elasticity tensor of Mo crystals are provided by (Bolef and Klerk,
1998), as a function of temperature. However, in order to simplify the analy-
sis and interpretation of results, the temperature dependence of the stiffness
parameters is ignored in this work. Note that the temperature dependence of
the elastic moduli of molybdenum is negligibly small compared with the steep
increase of the flow stress with decreasing temperature. The three stiffness
parameters of Mo are given in Table 5.

Recall the expression for the plastic slip rate given by Equation (18). Ex-
perimental observations suggest that for BCC metals, the activation enthalpy
∆Gk is proportional to the temperature over a wide range at a given strain
rate. In other words, ∆Gk/κT ≈ C, where, C is a constant, and is about
23–27 for BCC transition metals. Experimentally, C is found to be about 24
for tantalum (Argon and Maloof, 1977) and about 25 for tungsten (Brunner
and Glebovsky, 2000) and molybdenum (Hollang et al., 1997). Therefore,
assuming ∆Gk/κT = 25 and with the help of Equations (20) and (23) one
can write

τ ∗α = gαo + τ◦

[
1−

(
25κT

∆Gk◦

) 1
q

] 1
p

. (59)

Equation (59) defines the generalized resolved stress τ ∗α as a function of
temperature and can be used to fit the experimentally observed dependence
of critical resolved shear stress (CRSS) on temperature. It is emphasized
that gα0 is the athermal part of the critical resolved shear stress due to long
range barriers and is assumed to be constant over the entire temperature
range. Effectively this is the resistance offered by crystals to the plastic
deformation at high temperatures when thermal activation annuls the short
range barriers, like lattice resistance. In contrast, τ◦ is usually interpreted
as the critical resolved shear stress required to initiate the plastic flow when
the temperature approaches absolute zero and thermal activation plays no
significant role.

The critical resolved shear stress for Mo single crystal as a function of
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temperature was compiled by (Kaufmann et al., 1984), and is reproduced
in Figure 3. From Figure 3, we use following estimates: gα0 = 2 MPa and
τ◦ = 665 MPa. Using these values, the remaining parameters in Equation
(59) are determined by fitting the experimental data as shown in Figure 3.
The fitting procedure yields ∆Gk◦ = 0.16568E-18 J (or 1.03 eV), p = 0.5
and q = 1.25 (see Table 6). These properties are assumed to be identical
for all the slip systems. A similar procedure was used by Tang et al. (1998)
previously in the case of tantalum, which experiences a similar thermally
activated motion of screw dislocations.

In the remaining set of material properties, the quantities a1–a5 in Equa-
tion (21) are initially assumed to be identical for all the slip systems, whereas,
the quantities h◦, hs, g◦ and gs in the hardening Equation (26) are taken to be
different for different groups of slip systems, based on whether slip occurs in
twin sense or anti-twin sense. These material parameters are determined by
calibrating the model against existing experimental results on pure molybde-
num single crystals. The experimental stress-strain curves shown in Figure 4
and Figure 5 are taken from Irwin et al. (1974) and Kaufmann et al. (1984),
and are reproduced in Figure 4. These experimental stress-strain curves were
obtained from uniaxial tension tests carried out at 293 K, with a strain rate
of 6.0E-5 s−1 and for three different orientations, namely [010], [111] and
[101], along the tensile loading axis. It can be seen from Figure 4 that the
orientation of the crystal strongly influences its yielding and hardening be-
havior. The rate of strain hardening is relatively high at initial stages of
deformation but saturates rapidly as deformation progresses. (Irwin et al.,
1974) report results for loading in tension and loading in compression along
aforementioned orientations. We use experimental data from (Irwin et al.,
1974) to calibrate the orientation dependence of stress-strain response. In
addition, (Guiu and Pratt, 1966) reported experimental results on the tem-
perature dependence of stress-strain response in tension along [101], and we
will use this data to validate temperature dependence from our simulated
results for molybdenum.

The simulations were performed using the finite element formulation dis-
cussed in Sec. 3, and using a single hexahedral element with loading and
temperature conditions similar to those used in the above experiments. All
the remaining material parameters in the model are then determined by la-
borious optimization to get tensile stress-strain curves from the simulations
that are representative of those observed in the experiments for different
crystal orientations (see Figure 4). The complete list of material parameters
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hence determined using this two-step procedure for molybdenum crystals is
provided in Tables 7 and 8.

It is imperative to check if the material properties determined so far can
indeed predict the yielding and hardening behavior of molybdenum crystals
at different temperatures. To this end, a direct comparison of experimental
observations with 3D finite element predictions of the resolved shear stress
versus strain response at various temperatures (with [110] as the tensile axis)
are presented in Figure 5. The experimental results are taken from Kaufmann
et al. (1984), Kopetskii and Pashkovskii (1974), Guiu and Pratt (1966) and
Irwin et al. (1974). The specific temperatures considered are 293 K, 353
K, 423 K and 573 K. Figure 5 shows that the finite element simulation
predictions are in reasonable agreement with the experimental observation.

Now, to understand the dependence of flow stress on rate of deformation,
recall again Equations (18) and (20) for the plastic slip rate. One can write
from these equations:

ταeff
τ◦

=

{
1−

[
ln

(
γ̇α
◦

γ̇α

)
κT

∆Gk◦

] 1
q

} 1
p

. (60)

This expression is plotted in Figure 6, after substituting the material proper-
ties of Mo determined earlier. Figure 6 exemplifies the dependence of the
effective resolved stress (ταeff/τ◦) on temperature for various strain rates
(γ̇α/γ̇α

◦ ). It can be observed that as the temperature increases, the ταeff
required to initiate the plastic flow decreases and approaches zero at the crit-
ical temperature when thermal activation is sufficient to overcome the lattice
friction. This critical temperature increases with increasing rate of deforma-
tion. Therefore, the model suggests (as is to be expected with a thermally
activated approach) that the effect of increasing strain rate is analogous to
decreasing the temperature and vice-versa. Note that at very high strain
rates (γ̇α > 106s−1), plasticity may be controlled by viscous drag experi-
enced by rapidly moving dislocations. Such effects are not considered in this
work.

5. Evaluation of the model: Compression of a single crystal with a
through-hole

An assessment was made of the ability of the calibrated model to pre-
dict localized heterogeneous deformation in a specimen with a hole. First,
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the calibration of material parameters (in the earlier section) was performed
using a single finite element, and was based solely on the comparison of
stress-strain data assuming conditions of homogeneous deformation. Follow-
ing this, within the simulation framework, solutions were obtained for non-
uniform stress field resulting from heterogeneities in the specimen or complex
boundary conditions. Corroboration of computed deformation fields with ex-
perimental measures of the deformations can then provide an assessment of
the calibrated model.

For this evaluation, we consider the non-uniform deformation resulting
from the macroscopic compression of a Mo single crystal containing a cylin-
drical hole. Such an experiment can provide controlled heterogeneous defor-
mation field in the vicinity of the hole. In the case of an isotropic linear elastic
material, the solution of the resulting deformation field is well-known from
elasticity. However, in the case of a single crystal specimen undergoing large
deformation, simulations incorporating the calibrated model are required to
predict the heterogeneous nature of plastic deformation.

Single-crystal Mo with 99.999% (3N) purity obtained from the Metal
Crystals (U.K.) was used for the experiment. The crystallographic orienta-
tion was confirmed using back reflection Laue diffraction. Mis-orientations
of less than 1◦ were observed, which are within acceptable limits. Figure 7
is a schematic showing the specimen geometry, orientation and loading con-
ditions. A rectangular specimen (8 mm x 4 mm x 2.5 mm in dimension) was
machined, and, a cylindrical hole with a diameter of 0.4 mm was made at the
center of the plate using electro discharge machining (EDM). Electron back
scattered diffraction (EBSD) performed on the as-machined sample indicated
that no significant lattice rotations were induced due to machining. The two
sides of the sample were polished using standard metallographic polishing
methods to a surface roughness of 0.5 µm. Samples for EBSD were prepared
by a two step procedure. First, they were polished using colloidal silica with
50 nm particles for about 120 min, followed by polishing with distilled water
for 5 min.

Uniaxial compression experiments were carried out using an MTS servo
hydraulic machine under displacement controlled mode and at a nominal
strain rate of 10−3 s−1. The specimen was compressed along the [001] axis of
the single crystal. The two ends of the specimen that were in contact with the
platen were lubricated to minimize friction during compression. The macro-
scopic compressive stress-strain curve of a specimen deformed to a maximum
strain of 0.06 is calculated from the instrumented load-displacement data
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and initial dimensions of the specimen.
Post-deformation characterization of the specimen was carried out using

optical imaging, scanning electron microscopy (SEM) and a laser profilome-
ter. For the SEM imaging, the (110) surface (in the plane of the hole) was
polished to aid visualization of strain-localized bands. Measurements from
the laser profilometer assist in quantitative comparison of out-of-plane dis-
placements around the hole. Microscopic characterization was also performed
using Electron Backscattered Diffraction (EBSD). The EBSD images indi-
cate that there are no significant lattice rotations as a result of EDM and the
inverse pole figure (IPF) map further confirms the (110) orientation of the
crystal. The SEM images indicate that the initial shape of the hole is rela-
tively cylindrical, although there are small machining artifacts, particularly
at the periphery of the hole.

5.1. Comparison of predictions with experimental measurements
Simulations of Mo undergoing compression are performed by applying

finite-displacement boundary condition (positive Y-face, which is also crys-
tallographic plane (001) in Figure 7) under a constant nominal strain rate.
Finite element computed reaction forces at the nodes of positive (001) face
are used to calculate nominal stress σyy.

The macroscopic stress-strain curve obtained from crystal plasticity sim-
ulations for this specimen geometry is plotted in Figure 8 for comparison
with results from the experiment. The two curves are in excellent agreement
after 2% strain. The experimentally obtained behavior is much more com-
pliant during early stages of deformation, due to the combined influences of
machine compliance, measurement resolution and imperfect specimen geom-
etry. At 2% strain, for the sample dimensions used in the present study, the
resolution of the linear variable displacement transducer (LVDT) sensor was
insufficient making the displacement and thus average strain measurement
not accurate during small deformations. The experiments are thus not able
to provide an accurate specimen stiffness at small strains. The onset of local
yield is also not captured by the simulations, perhaps also because of dif-
ferences in purity between the crystal at hand and those used to obtain the
calibration data.

The overall dimensions of deformed specimens were quantitatively com-
pared. From the simulation, for 6.00% engineering strain along Y (loading
direction), the lateral expansion along X direction was 3.96%. From the ex-
periment, for 5.37% engineering strain along Y direction, the lateral expan-
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sion along X direction was 2.61%. Re-examining the experimental method,
the friction at the compression platens may alter (due to lateral constraint)
overall deformation of the specimen and thus shape of the hole after de-
formation. On the other hand, the boundary condition in the simulations
is frictionless at the top and bottom surfaces of the specimen, resulting in
over-prediction of lateral expansion.

Figure 9 shows post-deformation images (at a macroscopic strain of 0.06)
of the cylindrical hole obtained from experiments (top left insert) and simu-
lations (bottom insert) respectively. Both the images indicate that the shape
of the cylindrical hole changes into an elliptical cylinder. Slight differences
in the length of the major and minor axes are observed between the experi-
ments and simulations: the disagreement in measured lengths of major and
minor axis from simulations, compared to experiments, is -16.5% and +9.0%,
respectively. These differences could be due to the finite roughness of the
cylindrical hole and scratches at the surface associated with machining, which
are excluded from simulations. The regions (bands) that are visibly darker
(compared to lighter grayscale material surrounding the hole) are predicted
to have high out-of-place deformation, likely due to localized slip. Four such
contiguous bands were visible, emanating from the elliptical hole. Each of
these bands is (in theory) composed of slip traces. These slip traces make
400 to 430 with respect to the major axis of the elliptical hole on either side.

To further examine the strain localization near the hole, the sample was
polished to observe the through-thickness character of these slip traces. Pol-
ishing may remove some traces from the sample, but was essential to obtain
a flat surface for imaging. Figure 9 (top left insert) confirms the slip traces
near the hole were not just on the specimen surface but also inside the spec-
imen. These slip traces are indeed representative of localized deformation
near the elliptical hole.

Figure 10 presents the laser profilometer images of the deformed sam-
ple providing the out plane displacements (represented by the color codes)
around the elliptical hole as a result of deformation. It is observed that
along the edges of the major axis of the ellipse, there is more out of plane
displacement compared to the minor axis. The depth profiles (representing
the relative height of the out of plane displacement with respect to the refer-
ence surface) are measured using a line scan and are presented in Figure 10.
After deformation, the cylindrical hole became an elliptical hole, with minor
and major axis measuring 0.314 mm × 0.428 mm from the experiment, and
0.262 mm × 0.466 mm from the simulation. While the simulation captures
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the shape trends, some quantitative differences between experiment and sim-
ulation remain (as has been the case with most crystal plasticity models that
examine heterogeneous plastic deformations).

In summary, this work addresses temperature, rate and orientation de-
pendence of yield stress, including the dependence on non-Schmid effect, for
crystal plasticity of BCC metals. The model was calibrated based on uniaxial
experiments and was then used to satisfactorily predict localized deformation
and flow stress response of molybdenum specimen with a hole.

6. Conclusions

A physics-based finite strain crystal plasticity constitutive model for body-
centered-cubic (BCC) single crystals is developed to describe the strong
temperature, rate and orientation dependence of the yield stress as well as
twinning-anti-twinning asymmetry of shearing resistance. The flow rule is
formulated based on the theory of thermally activated motion of screw dis-
locations via nucleation of double kinks. A yield criterion that incorporates
atomistics-informed non-Schmid effects is used in the model. The material
constants in the model are calibrated against existing experimental data on
single-crystals of Molybdenum. The model can effectively describe the re-
sponse of molybdenum single crystal up to homologous temperature of the
order 0.3. Flow stress from simulations results on compression of a single
crystal specimen with a hole had good agreement with experiment. In ad-
dition, the simulated localized deformation around the hole had qualitative
agreement with experimentally characterized deformations.
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α m(α) s(α) n1 n2

1 111 011̄ 1̄10 101̄
2 111 1̄01 01̄1 1̄10
3 111 11̄0 101̄ 01̄1
4 1̄11 1̄01̄ 1̄1̄0 011̄
5 1̄11 01̄1 101 1̄1̄0
6 1̄11 110 011̄ 101
7 1̄1̄1 01̄1̄ 11̄0 1̄01̄
8 1̄1̄1 101 011 11̄0
9 1̄1̄1 1̄10 1̄01̄ 011
10 11̄1 101̄ 110 01̄1̄
11 11̄1 011 1̄01 110
12 11̄1 1̄1̄0 01̄1̄ 1̄01

Table 1: {110} family of slip systems in BCC crystals and their corresponding non-glide
planes. Note that the crystallographic vectors m(α), s(α), n1 and n2 have to be normalized
before their use.
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α m(α) s(α) α1 α2

13 111 112̄ 1 2
14 111 2̄11 2 3
15 111 12̄1 3 1
16 1̄11 1̄12̄ 4 5
17 1̄11 1̄2̄1 5 6
18 1̄11 211 6 4
19 1̄1̄1 1̄1̄2̄ 7 8
20 1̄1̄1 21̄1 8 9
21 1̄1̄1 1̄21 9 7
22 11̄1 11̄2̄ 10 11
23 11̄1 121 11 12
24 11̄1 2̄1̄1 12 10

Table 2: {112} family of slip systems in BCC crystals and their corresponding conjugate
pair (α1 and α2) of {110} systems given in table 1. Note that the crystallographic vectors
m(α), s(α), n1 and n2 have to be normalized before their use.
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α/β 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 O N N G C G S W G G S W N N N G G G S S S S S S
2 N O N S G W W S G C G G N N N S S S S S S G G G
3 N N O W G S G G C G W S N N N S S S G G G S S S
4 G S W O N N G C G S W G S S S N N N G G G S S S
5 C G G N O N S G W W S G G G G N N N S S S S S S
6 G W S N N O W G S G G C S S S N N N S S S G G G
7 S W G G S W O N N G C G S S S S S S N N N G G G
8 W S G C G G N O N S G W S S S G G G N N N S S S
9 G G C G W S N N O W G S G G G S S S N N N S S S
1 G C G S W G G S W O N N G G G G S S S S S N N N
1 S G W W S G C G G N O N S S S G S S G G G N N N
2 W G S G G C G W S N N O S S S G G G S S S N N N
3 N N N S G S S S G G S S O N N S W S W S S S S W
4 N N N S G S S S G G S S N O N S S W S S W W S S
5 N N N S G S S S G G S S N N O W S S S W S S S S
6 G S S N N N S G S G G G S S W O N N S W S N N N
7 G S S N N N S G S S S G W S S N O N S S W S S W
8 G S S N N N S G S S S G S W S N N O S S S S W S
9 S S G G S S N N N S G S W S S S S S O N N S S S
1 S S G G S S N N N S G S S S W W S S N O N S S W
1 S S G G S S N N N S G S S W S S W S N N O W S S
2 S G S S S G G S S N N N S W S N S S S S W O N N
3 S G S S S G G S S N N N S S S N S W S S S N O N
4 S G S S S G G S S N N N W S S N W S S W S N N O

Table 3: Latent hardening (amplitude factor) matrix qαβ (Lee et al., 1999).
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N C G W S
1 1 1 1.4 1.4

Table 4: Latent hardening coefficients (Lee et al., 1999).

C11 (MPa) C12 (MPa) C44 (MPa)
469.0E3 167.6E3 106.8E3

Table 5: Elastic moduli of molybdenum single crystal (Bolef and Klerk, 1998).

∆Gk◦ Activation enthalpy for kink pair nucleation 0.16568E-18 J
p and q Parameters which define thermal barrier shape 0.5 and 1.25

τ◦ Resolved yield stress at 0 K 665 MPa
g◦ Initial athermal slip resistance (CRSS) 2 MPa

Table 6: Material properties of molybdenum single crystal.

a1 a2 a3 a4 a5
0.24 0.35 0.35 0.24 0.35

Table 7: Coefficients of non-Schmid stresses for molybdenum single crystal.

⟨111⟩{110} ⟨111⟩{112} AT ⟨111⟩{112} TW
gα◦ (MPa) 2.0 2.0 2.0
gαs (MPa) 20.0 15.0 15.0
hα
◦ (MPa) 1500 2000 2000

hα
s (MPa) 15.0 40.0 40.0

Table 8: Material properties of molybdenum single crystal. AT and TW represents anti-
twinning and twinning sense, respectively.
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Figure 1: Basic geometric assumption of macroscopic single crystal plasticity.
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Figure 3: The critical resolved shear stress for Mo single crystal as a function of temper-
ature (Kaufmann et al., 1984).
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Figure 4: The experimental and simulated stress versus strain curves obtained from uni-
axial tension test carried out at 293 K, with a strain rate of 6.0E-5 s−1 and for orientations
such that [010], [111] and [101] are along tensile axis. Experimental data is from (Irwin
et al., 1974) and (Kopetskii and Pashkovskii, 1974)
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Figure 5: The resolved shear stress versus strain curves obtained from uniaxial tension test
carried out at different temperatures, with a strain rate of 6.0E-5 s−1 and for orientations
such that [101] is along tensile axis.

37



0 0.01 0.02 0.03 0.04 0.05
0

0.2

0.4

0.6

0.8

1

Tκ/ ∆ Gko

τ
e
ff
/
τ

o

γ/γ = 10
−10.

ο

.

γ/γ = 10
−2.

ο

.

10
−8

        10
− 4

10
− 6

Figure 6: The temperature dependence of effective resolved shear stress for various strain
rates. Note the typical order of γ̇◦ ≈ 106s−1 and τ◦ = 665 MPa (Kaufmann et al., 1984)

.
5

 ±
 0

.1
  

8.5 ± 0.1 

0.4 ± 0.05 

2.5 ± 0.05   

4.25 ± 0.1  

2
.5

 ±
 0

.0
5

  

Through hole 

!""#

!""#

!""#$%

!##"$%

!""#$%z 
x 

y 

!""#$%&'()%*()#%(#&&#

Figure 7: Schematic of Molybdenum single crystal orientation, specimen geometry and
locading conditions used in uniaxial compression experiment
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Figure 8: Comparison of prediction stress-strain response in compression from numerical
simulation and measured response from an experiment of single crytal Mo with a hole
under uniaxial compression.
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Figure 9: Qualitative comparison of predicted localization of plastic strains from numerical
simulation and evidence of localzation from deformed specimen using optical microscopy
of virgin surface and SEM of polished surface.
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Figure 10: Comparison of predicted out-of-plane displacements from numerical simulation
and measured response using a surface profilometer on a deformed specimen.
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