
SANDIA REPORT
SAND2016-5397
Unlimited Release
Printed March 2016

DARMA 0.3.0-alpha Specification

Jeremiah J. Wilke, David S. Hollman, Nicole L. Slattengren, Jonathan Lifflander,
Hemanth Kolla, Francesco Rizzi, Keita Teranishi, Janine C. Bennett

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone:
Facsimile:
E-Mail:
Online ordering:

(865) 576-8401
(865) 576-5728
reports@adonis.osti.gov
http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone:
Facsimile:
E-Mail:
Online ordering:

(800) 553-6847
(703) 605-6900
orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2

inetaprogrammink

APT is an

that serves to: 1)
runtime programmability

directly with application developers, 3) synthesize ap-
and 4) facilitate AMI1 design space

best practices.

and afront end APT runtime systenr facing
Ombedded domain specific language (EDSL)

semantics1
VDSL.1

SAND2016-5397
Unlimited Release
Printed March 2016

DARMA 0.3.0-alpha Specification
Jeremiah J. Wilke, David S. Hollman, Nicole L. Slattengren, Jonathan Lifflander,

Hemanth Kolla, Francesco Rizzi, Keita Teranishi, Janine C. Bennett

In this document, we provide the specification for
, a co-design research vehicle for

insulate applications from
Olications)

by co-designing an
runtime systenr

Abstract

PARMA (Distributed Asynchronous Resilient Models and ApH
asynchronous many-task (AMT)rmogramming models
and hardware idiosyncrasies, 2) improve

application programmer interface (API)
plication Ico-desiga activities into meaningful requirements for
characterization and definition, accelerating the development of

pARMAI
APT

is a rranslation layer

runtime systems

Am'11
between an application-facing

. The application-facing user-level
iting the generic language constructs of C++ and adding
parallel programs. Though the implementation of the
provide the front end semantics, it is nonetheless fully embedded in the C++ language and leverages a widely supported

front end
fiack end

in C++, inher-
that facilitate expressing distributed asynchronous

uses C++ constructs unfamiliar to many programmers to

subset of C++14 functionality (gcc >= 4.9, clang >= 3.5, icc > = 16). The rranslation layer leverages C++

to map the user's code onto the fiack encI runtime APT. The fiack end APT is a set of abstract classes
and function signatures that iuntime systenr developers must implement in accordance with the specification require-
ments in order to interface with application code written to the
must link to a iuntime systenr that implements the abstract
mentations will be external, drawing upon existing
provided in the pARMAIcode distribution.

IDARMAI
fiack end

templatO

front end. Executable 1DARMA applications
runtime APT. It is intended that these imple-

technologies. However, a reference implementation will be

The front end rranslation layer, and iback end APT are detailed herein. We also include a list of application
requirements driving the specification (along with a list of the applications contributing to the requirements to date),
a brief history of changes between previous versions of the specification, and summary of the planned changes in up-
coming versions of the specification. Appendices walk the user through a more detailed set of examples of applications
written in the PARMA front encI APII and provide additional technical details for those the interested reader.

3

Acknowledgment

This work was supported by the U. S. Department of Energy (DOE)
Advanced Simulation and Computing (ASC)
search.
ration, a wholly owned subsidiary of Lockheed Martin Corporation, for the
94AL85000.

Sandia National Laboratories (SNL)

4

National Nuclear Security Administration (NNSA)
program and the pohl Office of Advanced Scientific Computing Re-

is a multi-program laboratory managed and operated by Sandia Corpo-
under contract DE-AC04-pog NNSAI

Contents

11.1 Scope1

11.2 High-level Design

11.3 Programming Modell

• I LI I

11.5 Memory ModeI

11 6 Data Model

11.7 Document organization

2 1 Deferred Work Creation

D..

9

10

11

12

14

14

15

15

17

17

18

 19

. 'Se - •os

2.2.2 Keys

12.2.3 Handle Usage Rules1

2.2.4 Access Handles with Compile-time Checking

2.3 Creating Deferred Work using Functors1

2.3.1 Mixing Deferred and Immediate Arguments

2. 3 2 Fnnctor Interface Pitfallsl

2.4 Keyword arguments1

2.5 Serialization and Layout Description

2 5 1 Rasic Intrusive Interface

2.5.2 SimplePackUnpackArchive

2 5 3 Generic Archive Serialization

2 5 4 Different Rehaviors in Different Mode§

25:5 Seperate Methods for Seperate Modes1

2.5.6 Serializing Pointers and Ranges

I I r • I

17 5 8 Definition of "Serializable'l

2.5.9 Implementations for Builtin and Standard Library Types1

2.5.10 Polymorphisnt

zati on Pitfall§

.6 --SPMD support

5

20

21

21

23

23

25

26

27

27

28

28

29

29

30

31

32

33

34

34

34

35

1: Creating and Managing Work

Ow Ow II. 6

17 7.7 darma i ni tj

2.73 darma finalizPJ

2.7.4 darma_spmd_size

2.7.5 darma_spmd_rank

2 7 6 create_ work

n API. 1)ata Access Handlesl

nil initial acce9s]

7 8.2 read acceqs1

2 9 API. AccessHandle method§

2.9.1 emplace_value

r2.9.2 publish1

12.9.3 get_valuel

2 9 4 set val

2.9.5 get_reference

2.9.6 operator->

r2.9.7 get_key

2 9 8 =0 or rel easel

2.10 API: Keywords

2 10 1 readsl

10 3 version

—translation Layerl

r3.1 Separation of Responsibilities Across Layers1

3.2 Important C++ Concepts1

5.2.1 Lambda Capture for Automatic Dependency Detection and Versioning

3.2.2 Keyword Arguments1

CPhackend

4.1 Important Backend Concepts1

4.2 Class Indek

4 2 1 Class List

4 3 Class Documentation]

4 3 1 darma runtime-.abstract..backend..Flow Class Referencel

Detailed Description]

4 3.2 darma runtime-abstract..frontend-.Handle Class Reference]

Detailed Description1

11/ - so I - .6 • II I • I

6

36

36

37

37

39

40

41

43

43

45

47

47

49

52

54

55

56

57

58

59

59

60

60

61

61

63

63

63

65

65

66

66

66

66

66

67

67

67

•• ss"••.s 1. " OS "111 —' •1110" " " " 1 "

Detailed Descriptiort

" II 1" •11 P. 11'1 . •011

1.111. l I 'II "••. •• , " I •• I • II ' Di. t - - - s

Detailed Descriptiort

IIU - 111' . .01 De so - I ..41

IU•sos• i 'es De so- s • 1111

4.3.5 darma_runtime::abstract::frontend::SerializationlVlanager Class Referenc0

Detailed Descriptiort

11/ - is 6 - i 'li P. II" I • $

1. ell . 'II "•• •• 1 0 I 11 — 0 1. t " I

Detailed Descriptiort

IU - os s- 'el De II " 1 . • $ 1

4 3 7 darma runtime-abstract..frontend-ITse Class Reference1

f'ietailed Descriptiort

le/ - 111' 1 II" . • r s Do 11 - o . ••

k4 ••1 P. 11 - o 'es

5 RequirementO

5.1 High-level PhilosophY

5.2 Application Requirements for the front end AP1

5.3 Back end runtime system requirements

5.4 Co-design contributors

0 Evolution of the Specification

0.1 Specification History

0.2 New Features in 0.3.0-alpha

..11-1 - • 1

Appendix

A Example0

II e 4 • I - r . •

t 1/ • e s si -

tUi .s, .o.

A 1 3 Deferred work creation]

A.1.4 Creating handles ll

A.1.5 Creating handles 2

A.1.6 Arrow operator for handles

A.1.7 Deferred work and constraining privileges

7

68

68

68

69

70

70

70

74

74

74

75

76

76

77

78

78

78

81

81

81

82

82

83

83

83

83

85

85

85

85

86

86

86

87

88

A.2HelloWorkl 89

89

90

91

93

97

A.3 Key-Value Exampl0

A.3.1 Publishing and read access

A.4 Publishing, versioning and lifetime of handles

A.5 1D Poisson Equation

A.6 1D Heat Equation

113 Rules for Making FlowS

[3.1 Modify Capture with Immediate-Modify PermissionS

13.2 Modify Capture without Immediate Privileges1

13.3 Read Capture with lmmediate Modify PrivilegeS

13.4 Read Capture with Immediate Read Privileges

1GlossarY

103

103

103

104

104

105

RefereneeS 113

8

Chapter 1

Introduction

As we look ahead to next generation platforms and exascale computing, hardware will be characterized by dynamic
behavior, increased heterogeneity, decreased reliability, deep memory hierarchies, and a marked increase in system

(both on-node and system-wide) [T, 2]. These architectural shifts are posing significant programming
challenges for application developers as they seek solutions for: effective management of hybrid parallelism at an
unprecedented scale, efficient load-balancing and work-stealing strategies that mitigate both application and system
load imbalance, and effective management and staging of data across deep memory hierarchies. To further complicate
matters, application codes must be made performance portable across a variety of planned system architectures and be
made resilient to the increased number of anticipated faults.

OoncurrencY

programming models and runtime systemsl show promise to mitigate the challenges associated with the changes
in high-performance computing (HPC) system architectures. AM11 models are a shift away from the current

as they strive to exploit all available task parallelisni and
pipeline parallelisni, rather than rely solely on data parallelisni for OncurrencY. The term asynchronouS encompasses
the idea that 1) processes (threads) can diverge to different tasks, rather than execute the same tasks in the same order;
and 2) Oncurrency is maximized (the minimal amount of synchronization is performed) by leveraging multiple forms
of parallelism. The term many-task encompasses the idea that the application is decomposed into many
units of work, to enable the overlap of communication and computation as well as asynchronous load balancing strate-
gies. A key design goal of AIVIT models is to enable performance-based optimizations of code dynamically at runtime.
We note that performance-based code transformations are ubiquitous at the compiler-level. Compilers will add, delete,
swap, or reorder instructions to avoid unnecessary operations, improve data locality, or improve pipelining. Further-
more, there are a number of compile-time optimization tools being developed 4], that provide the ability to map a
single code kernel onto high-performance execution across diverse compute platforms. However, many optimizations
that benefit performance are unknowable until the program actually runs — as these decisions may be based on current
system performance, or the data needs of the application itself. Such dynamic runtime optimizations are much more

inunicating sequential processes (CST')programming model
lcomH

rnigratablO

expensive than compile-time optimizations, thus the use of rasks1 as a basis for dynamic runtime transformations.

The AIVIT community is currently very active (e.g., p—QI), representing a range of different design points within the
design space of AIVT11 models. While the technologies show significant potential to address challenges, the community
has not yet identified best practices and existing systems still represent a variety of different
execution mode1,hiemory mode1 and data mode1design choices.

Programming model: From a inogramming model perspective,
applications into small, inigratabk units of work.

programming mode1

models all have some notion of decomposing
Task parallelisni can be expressed in a fork-join fashion, with

users managing control-flow explicitly themselves. In other W11 programming modelsl, the user expresses
a algorithm step-by-step and, under some simplifying assumptions, the runtime derives the synchronizations
required. This often takes the form of read/write data access annotations under the assumption of

enabling runtime dependency analysis. Models leveraging runtime analysis are best suited for coarse-
as runtime systeni overheads must be amortized.

$equentia1
semantics
grained task

Execution model: Execution models broadly cover how the algorithm and corresponding correctness and perfor-
mance constraints specified in the programming modal are translated to actual execution. For example,
runtimes implement a variety of Oxecution models, including Ovent-based, fork-join (either fully stri0 or
nally strict), 4ctor modell, or ubiquitous CSP model. More subtle details include whether a constant number of
threads are always executing (e.g. pure MPI codes), new tasks are allocated to a rhread poo1, or if new threads
are allocated (forked) for new tasks. These details will also affect the synchronizations required in an execution
model. For example, fully strict fork-join models will generally not require harriersl between sibling tasks. In

9

termiH

process. Chapter provides a list of the application requirements gathered, and Chapter § tracks the
evolution of the specification, highlighting which requirements motivated changes to the specification.

software stack developers benefit from 1) PARMA's application-informed requirements, and 2) access
to code kernels and proxy applications developed via the front end Ico-desi0 process.

Facilitate AMT design space characterization, accelerating the development of AMT best practices: In the dis-

Improve AMT runtime programmability by co-designing a front end API directly with application developers:
Recent work [1N highlighted gaps with respect to productivity in some existing Amil runtime systems in par-
ticular noting requirements gaps and deficiencies in existing AM. Co-designing IDARMAI s
directly with application developers provides a mechanism for capturing different application's
requirements— giving them a voice in the design of an asynchronous tasking APk Experimenting with the
provides an agile method for application developers to reason about the API] and better articulate their

execution requirements.
Synthesize application co-design activities into meaningful requirements for runtimes: The specification provides

a mechanism for tracking the provenance of design decisions and requirements as they evolve throughout the

contrast, Icsil models will require
Memory model: kiPci

incoherent.
rnemory models

to synchronize parallel workers.
will have several properties including distributed or shared and coherent or

include message-passing models like MPI.
models have distinct address regions, but are "sharee in the sense that any memory location can

be accessed across the system by specifying both a pointer address AND process ID. In PARMA, computational
tasks by default can only operate on their local data. When remote data is required, it is communicated between
the remote and local tasks. Across the spectrum of memory models, memory locations are usually accessed via

1:)istributed memory models1
!Space (PGAS)

partitioned Global Addressl

address (put/get or sendlrecv), but lcey-value stor0 (tuple space) models identify data regions by key identifiers
(coordination). In coordination, parallel workers never directly communicate, instead 'coordinatine indirectly
via a Yey-value stor0 or rnple spac0

Data model: In order for data-flow AIVT11 models to make effective data management decisions (e.g., $licing the data
and making copies to increase parallelism), they must have some knowledge of the structure of the data. One
option for providing structural information regarding data is to impose a
application developers to define serialization slicing, and

1.1 Scope

data modal
jnterference tests

. Another option is to require
for their data blocks.

Although the AIVIT model community is quite active, the lack of standards impedes adoption of these technologies
by the application community. Although it is premature to standardize, there is sufficient breadth and depth in the

research community to begin developing community best practices. Towards this end, this document provides
the specification for PARMA, a research vehicle for AM111 programming modal Ico-desig0 PARMA aims to serve
four primary purposes:

W11

Insulate applications from runtime system and hardware idiosyncrasies: As part of its design,
rates its application-facing front end and rnntime systeM-facing
enables an application team to explore the impact of

k)a.ck end
runtime systeM

pARMAI sepa-
APK This separation of concerns

design space decisions. For example, ap-
plication developers can build their code using different PARMA-compliant 2.a.ck end implementations, without
having to deal with the combinatorial complexity of implementing their application in many different
APK It should be noted that PARMA's front end IAPl is not fixed — it will evolve based on
from both application and runtime systeM developers.

0-desig0
front end
feedback

front end APII
runtime systeM

$ysten1

Ico-design]

$ystem]

cussion above we summarize a range of high-level design decisions for AM111programming, execution, memory,
and data models. pARMA's separation of front end and beck end APIsI seeks to facilitate this design space
characterization and exploration. There is a notable tension between the design of 1) a front end APT that is
expressive, simple, and easy to incorporate within existing application code bases, and 2) a back end An that

]teml

biarriers

is simple enough to support multiple pARMA-compliant implementations that leverage existing
technologies. Consequently, IAPIls (both front end] and back end) are intended to evolve based on

iterative feedback from application, and teams.

runtime sysH

OARMAI
programming model] runtime systeM

All
rnntim0

guntim0

The rest of this chapter provides a high-level description of PARMA s structural design along with a brief summary of

pARMAI's programming, memory, data, and (compatible) execution models. We note that throughout the

1 0

Ico-design1

process, decisions are first and foremost, made to best support application requirements. Furthermore, we target a
API specification that is general enough to support AMfruntime systen) design space exploration, via build

out of PARMA-compliant back ends using existing AM11 rnntime systen) technologies. Lastly, we note that the
features detailed in Chapters g and 4 are not entirely comprehensive - meaning they do not yet capture all of the

APT

1)ack endl

application requirements driving PARIVIA Ico-desigt) This is because we are formalizing the specification process
from the inception of PARMA, layering-in features incrementally to provide the community opportunity for input,
and active engagement in the co-desigi) process. Suggested enhancements and changes to the PARMA specification
are welcome and can be made via a

1.2 High-level Design

pARMAI
DARMAI

PARMA Enhancement Plan (DEP)

is a translation layer between an application-facing front encl IAN and a)untime systen) facing
's front encl APT is an [EDS1.. in C++, inheriting the generic language constructs of C++ and adding

that facilitate distributed, deferred, asynchronous, parallel programming. Though the 1EDS.0 uses C++ constructs
unfamiliar to many programmers to implement these semantics, it is nonetheless fully embedded in the C++ language
and requires a widely supported subset of C++14 functionality (gcc >= 4.9, clang > = 3.5, icc > = 16). The

is the center of Orogramming model 0o-desigi) activities, which seek to involve a wide variety of both application

Imck enclAPT
Semantics

APT
and

front encl

rnntime systen)

PARMA
the
the

's

developers.

franslation
rback encl

pARMAI
lback encl

PARMA

leverages C++ template metaprogramming to map the user's ftont encl AN calls onto
runtime APT, bridging the Orogramming model and actual program execution. We note however that

itself does not perform any performance optimizations - these are left entirely to the
implementations. Rather, the translation layer converts the application code specified with

to make intelligent,
replication when

translation
)untime systen)
's

dynamic decisions (e.g., about ItasX order and ItasX locality or possibly even
appropriate).

front encl APT into an "intermediate representatioe that enables a rnntime systen)
task deletion and)asX

The Ilack encl APl is a set of abstract classes and function signatures that rnntime systen) developers must implement in
accordance with the specification requirements in order to interface with application code written to the PARMA front
end. Strictly speaking, the back encl APT calls only generate a stream of Oeferred tasks (tasksl with corresponding data
inputs/outputs) that implicitly capture the program's data-flow. The information passed through the)ranslation layell to
the lback encl is sufficient to (and intended to) support a Omputational directed acyclic graph (CDAG) representation
of the application. In a Itask-DAG representation, tasksl are vertices V in a graph G with directed edges E. An edge
from vertex v1 to vertex v2 indicates a precedence constraint. A CDAG representation describes task-data precedence
constraints, rather than just task-task precedence constraints. In a CDAG there are two types of vertices - Itasksl T and
data D that compose the complete set of vertices V. Edges never directly connect two tasksl and instead edges are
only ever described between a tasX vertex, t, and a data vertex, d indicating that (depending on direction of the edge)
data is either consumed or produced by a tasX. The)ask-DAG indicating task-task precedence constraints can always
be obtained from the CDAG, which captures the data-flow task graph. The CDAG is thus more general, capturing
additional information to enable runtime code transformations.

Finally, we highlight that a DARIVIA executable application must link to a rnntime systen) that implements the ab-
stract lback encl runtime
technologies. However, a reference implementation will be provided in the 1DARMA code distribution.

. It is intended that these implementations will be external, drawing upon existing AMT

There ar a number of terms, such as).anY tasX, and Orocessl that are loaded with many definitions across the literature.
Here we give special attention to define rigorous and limited definitions for such terms used throughout the document.
We use processl in the usual UNIX sense. Other terms are:

Task: The work unit instantiated directly by the application developer. rTasksl are also the smallest granularity of
migratable work unit. In the current specification, tasksl cannot migrate after beginning execution. r1'asks1 are
guaranteed to make forward progress, but are interruptible.

1 Although beyond the scope of this specification document, the interested reader will find numerous works discussing heuristics and order-
preserving transformations of task graphs that demonstrate the utility of a coarse-grained 0)AQ for enabling dynamic runtime optimization of an
algorithm p-m. We reiterate that the CDAGI is only a concept guiding the design of the back end APT and not strictly part of the
specification.

11

IDARmAl

Execution stream: An
to make forward progress. All Oxecution streamsl are tasks, but

and are the root of an independent task graph. Each
stack and, any point time, will have a local context of variables. A physical
be running many parallel Oxecution streams. Allowing multiple
basis for

will consist of a sequence of many tasks and, like tasks, is guaranteed
specifically have no parent

is guaranteed to have a unique
(in the UNIX sense) can

per physical processl is the
can exist in the same Orocessl address space,

Oxecution stream0
execution strewn)

Overdecompositionl. Since several Oxecution streams

tirocess
Oxecution streams

this introduces a strict requirement of no global variables. An Oxecution strean) is the PARMA generalization
of a thread, except that extra privatization of variables is necessary since no assumption of shared memory

can be made (even if lexecution streamsl happen to be executing in the
must perform special operations to exchange data between them (message-

must perform special key-value storel operations to exchange

between independent
same Proces0. Just as
passing, mmap), independent

Oxecution streams
processes

lexecution streams
data between them. [Execution streamsl are always assigned a unique identifier by the

Operation: Used synonymously with work unit. This is a unit of execution that is guaranteed to be non-interruptible.
An Operatiori is not equivalent to a task since tasksl are interruptible. iOperationsl are the smallest, schedulable
units of work. A task consists of a sequence of loperationsl. While tasksl are explicitly instantiated by the
application developer, Coperations (individual portions of a)ask) can be implicitly instantiated by the

can yield at the beginning/end of its component Operations, allowing the
schedule new work units for execution.

Rank: A unique integer ID for an

Ontime systen)

systeml

Oxecution strean)

)ask

rfasks

execution strean)

i.untime systeM to

This matches the MPI notion of i-ank as an integer identifying a
process within an MPI communicator. The term
lexecution strew))
4reams
$ysten)

0.nk will often be used in the specification as a synonym for
(more precisely, a metonymy for lexecution stream). Generally speaking, N parallel

are created in an single-program multiple-data (SPMD) launch (more in Section 2-72). The
then assigns unique identifiers (rank IDs) 0 through N — 1 to each Oxecution streaM. Referring to lrank

Oxecutiot)

0" will therefore function as shorthand for "the Oxecution strean)
in an Ismip launch?' Similarly, referring generically to a rank

that has been assigned
' is shorthand for "an

i-ank

i.untim0

ID 0 by the runtime
execution streani created

by an 1STMD launch with a particular 0.nk
Key-Value (KV) Store: A key-value stor0 is an associative map from keys to values. In general, there are no restric-

tions on what keys or values are, although in many cases keys are strings. The only thing required is that keys
be comparable. For an unordered map implementation of a key-value stor0, keys must usually be hashable.

Tuple Space : A generalization of a
When this specification refers to a [tuple spac0, we are only referring to a particular type the use of at tup10 as
a key within a key-value stor0. Unlike other [tuple spac0 languages (e.g. Am we do not require
to implement wildcard (or any other operations), only the comparison on fully-specified Ituples. Implementation
of the key-value stor0 as a tuple spac0 is not required. Even though variables must be constructed with a
unique WO, a particular backend implementation may choose to convert [MOO into string representations and

key-value stor0 in which keys are tuplesl of individually comparable values.

tuple spaces1

implement a simple string-based
: A particular implementation of a

be scalable for large systems, the hash space is partitioned across distributed workers. This automatically (and
predictably) scatters keys and corresponding values across the system. A DFIll implementation of a

is not required by the specification, but recommended for scalable execution.

distributed hash table (DM)
key-value stor0

key-value stor0

stor0

1.3 Programming Model

Programming models

for hashable key types. Intended to

key-valu0

provide application developers abstractions for expressing correct and performant algorithms.
As described earlier, a key design goal of AM11 models is to enable performance-based optimizations of code dynam-
ically at runtime. Runtime-based optimizations come with an associated runtime cost, which is what motiviates the
use of tasks (rather than, e.g., instructions) as the basis for dynamic runtime transformations. Existing AM11 models
provide a variety of IAPIsI for capturing and expressing Oata-flow dependenciesl and communicating these to the un-
derlying iuntime systen). One of the adoption challenges many of these rtintime systemsl face is that they require a
significant shift away from what has become the defacto standard of distributed HPC programming.

PARMA'stirogramming model
iuntime systerr)

seeks to facilitate the expression of deferred, asysnchronous work, enabling ahack endl
to perform dynamic runtime optimizations, while making it as simple as possible for programmers to

1 2

reason about the correctness of their code. This motivates pARMA's combined use of successful
concepts from a variety of existing runtime systems. One of PARMA s programming modeI key design decisions is
rooted in the following observations: 1) all application developers can effectively reason about how to write correct
sequential codes, 2) all MPI programmers can effectively reason about how to write correct CSB codes, and 3) most
applications written in or ported to PARMA will likely have SPMO as their dominant parallelism. To simplify the
implementation of SPMP-structured codes, the notion of a rank is maintained within the API. By maintaining the
notion of a rank, PARMA provides application developers a convenience mechanism for creating the initial problem
decomposition and distribution. Immediately after launch, any user-specified Oeferred work is free to be migrated by

if it will result in better performance. Because PARMA maintains the notion of a rank, it is also
to maintain CSP-like semantics (in particular, within an initial implementation or port of a code

prior to the introduction of Oferred work). This grants developers the ability to express correctness constraints through

programming modeI

the
possible for

runtime systent

PARMA

a familiar and intuitive tirogramming modeI PARMA facilitates the expression of hybrid parallelism by supporting
sequential semantics, within a rank This means that application developers can reason about code as though it were
being deployed sequentially within the rank, even in the presence of user-specified

pARMA

Oeferred work

employs C++-embedded task annotations for the specification of Oferred work. Each block of
can be considered a task (coarse-grained blocks of procedural j.mperative code), which is not necessarily performed
in program order. Instead, Oeferred work is performed asynchronously when all of its Oata-flow dependenciesl are
satisfied. Task parallelisirt is primarily achieved through permissions/access qualifiers on data that enable a runtime to

Oferred work

reason about which tasks can run in parallel and which tasks are strictly ordered. Task granularity is determined by
the user and annotations are translated by [DARMA's Oanslation layer through standard C++ constructs (e.g.,
reference counted pointers) and template metaprogramming to expose task parallelisnt inherent in the code. We note
here that PARMA's runtime optimizations are complementary to compile-time optimizations performed by petfor-

1ambdas

mance portability tools, e.g. p,4, 201 Compile-time performance portability tools provide the ability to map a single
code onto high-performance execution across diverse compute platforms.

One of the major differences between PARMA and a traditional CSP programming model is the manner in which
communication is performed. Communication between PARMA ranksl is not performed via direct messaging. Instead,

are used. Processes coordinate by putting/getting data associated with a unique Ikeyl in a
(keyl are general tup10). Coordination semantics1 enables out-of-order message arrival, deferred execution,

task migration, and resilience strategies since the application declares or describes the data it needs/produces rather
than enforcing an explicit delivery mechanism. The Icoordination semanticsl in the specification are intended to support
the use of Zero-copY mechanisms and tuple caching, generally producing execution equivalent to an MPI send/ r e cv

Ooordination semantics
Ivalue store

code.

keyH

Together, these features make PARMA a mixed programming model. As much as possible, se-
quential imperative semantics are used to produce intuitive, maintainable code. However, the "procedural imperative"
function calls and code blocks do not necessarily execute immediately. Rather than explicitly perform all work in pro-
gram order and block on data requests, they wait for all Oata-flow dependenciesl to be satisfied. Such
makes PARIVIA Oeclarative, leaving the exact control-flow up to the runtime systeni. Furthermore, it is this ability
to defer work and advance ahead that gives the Itack endl runtime systent the ability to make performance-improving
transformations.

Oeferred executiort

Although not yet supported in version 0.3.0-alpha of the specification, several important features will play a role in
the pARMA programming model

Expressive Underlying Abstract Machine Model: Notions of execution spaces and Memory spacesl will be in-
troduced formally in later versions of the specification. These abstractions (or similar ones) appear in other
runtime solutions, e.g. [®,4]. Using such abstractions 1) facilitates performance portable application develop-
ment across a variety of execution spaces, and 2) provides finer-grained control and additional flexibility in the
communication of policies regarding data locality and data movement.

Runtime performance introspection In future versions of the specification
application developer to express, guide, and leverage the use of runtime-level performance Mtrospectiort. An
important 0o-desigrt activity will include determining whether performance Mtrospectioif needs to factor into
the application-level programming modeI on the front endl or whether it belongs only in the

PARMA

systeml •

will specify hooks for the

Itack endl runtime

Expression of fine-grained deferred parallel patterns. In future versions of the specification, PARMA will specify

13

deferred fine-grained parallel patterns, e.g., deferred parallel—for, parallel—scan, etc.
Instantiating tasks in class member functions Due to idiosyncracies in C++ lambdal Oaptur0, inline

calls cannot operate on member variables within a class member function. Mechanisms for circumventing this
C++ limitation will be introduced in later versions.

Subsetting/slicing handles Certain tasksl may only require access to a subset of the data owned by a handle created
with linitial_access. Using the fiand10 in such a task therefore overexpresses contraints, which is contrary

Expressing

breate_work

to the philosophy of PARMA for avoiding unnecessary synchronizations and
subsets of classes/slices of arrays will be an important part of future specifications.

Data Staging: The memory and execution space concepts introduced above enable 1) performance portable tasks that
can run in multiple environments through a single code and 2) user-directed (or runtime-directed) asynchronous
data movement to move data to compute devices.

Collectives: Some collectives will be supported by

preconditions

PARMA in version 0.3.1 of the specification, including a 1 1—
reduce, reduce—scatter, and barrier collectives. Collectives will be data-centric rather rank centric,
as done in MPI.

Programmer-directed optimization While an abstract algorithm may make more information available to the com-
piler or runtime for performance-tuning transformations, compilers and runtime schedulers may not always
understand the global nature of the problem. As such, they may not make performance-improving optimizations
that are apparent to an application developer. A critically important part of future co-design activities will be the
development of the interface by which developers can steer the runtime towards a desired set of optimizations
that compilers or runtime schedulers might fail to perform.

1.4 Execution Models

task

The main focus of PARMA is the and corresponding translation layer that maps a program
expressed via a combination of cspl semantics, Coordination semantics, and additional C++-embedded task annotations
into a generic data-flow based description of an algorithm based on therefore prescribes very
little about execution. For example, pARMA prescribes nothing about the scheduling of nor the implementation
of the data structures (e.g., key-value storC, Nple space) required to support Coordination semantics. A

scheduler is therefore free to use, for example, either depth-first or breadth-first priorities in deferred
tasks (as captured in a CDAG). Similarly, a scheduler may use thread pooN with work queues to manage tasks or it may
use a fork-joifi model that creates new threads for each task. In this way, PARMA codes are Oxecution modell-agnostic,
only requiring that a lack end runtime systeM preserve the data-flow dependencies1 expressed in the application and
derived by the

runtime systeM
back en0

PARMA

translation layer

deferred tasks

furthermore prescribes nothing about the internals of each
- rask with flexible fine-grained parallelism, usually data parallelisM. For example, depending on dynamic

conditions, more or fewer threads may be requested for a GPU kernel. Although the pARMA front end API currently
in future

PARMA

pARMA

tasks

elastic tasks
task

only allows expressing task granularity and task data-flow, we plan for the
versions.

APT

is fully compatible with parallel

to also express Itask elasticity

pARMA-compliant fink end runtime systemsl are required to enable an efficient SPMP launch of their program,
similar to an MPI launch. This is based off application developer feedback, which has indicated that two of the most
critical challenges for scientific applications with massive data parallelisM in a task-based model include initial prob-
lem decomposition and distribution. [DARMA's efficient SPMD runtime-based launch requirement will be modified if
solutions are developed to support massive SPMD launches through compiler-based transformations.

1.5 Memory Model

The memory model for [DARMA encompasses how variables are accessed and when updates become visible to parallel
threads (concurrency). Within a PARMA Cxecution strew-0 memory is local or private, and the standard memory
model applies. To share data between Oxecution streams, PARMA uses a flat global Memory spac0 in which data is
identified by unique [tup10 identifiers, i.e. a key-value stor0 in which keys exist in a tuple spac0. Any object published

14

[ixogramming modeI

into the lcey-value stor0 can be read/written by any thread/process.

In pARMA a data hand10 is conceptually a into the key-value store1 Data handlesl are used to
manage the complexities associated with and inter-rank communication. When data needs to be made
accessible off-r ank, the application developer houblish0 the hand10 Each hand10 has a globally unique handle ID

identifiers are

reference counted pointerl
task parallelism

(i.e, a k eyl that is an arbitrary 1up10 of values into the 1cey-value store). Before a bt a s k can begin,hand10
resolved by the runtime syster4 to a specific local address. Within the task, the standard C++ memory model applies.

When publishing, the user must specify an 4ccess group for that data. Declaring an access grou0 informs the
that other ranksl currently need or will need the data, allowing the runtime to manage garbage collection and

resolution. In most cases, the Ocess group will be declared as the number of readers (1, in the case
are released (go out of scope in C++ terms), garbage collection

$ysten1
Oti-dependency
of simple point-to-point send). Once all read
or anti-dependencY resolution can occur.

handleS

In addition to facilitating coordination between data structures support $equential semanticS (see Chap-
ter for details). Here concurrency is critical to the rnemory modell and when/how updates data are made visible to
parallel threads. Again, within tasks, the C++ Ulemory mode1 applies. At the task-level (coarse-grained),
ensures atomicity of all tasksl. The PARMA translation layer enforces the C++ sequential consistency model at the
level of task in the same way that C++ ensures sequential consistency at the level of instructions. PARMA understands
read/write usages of tasksl and ensures that writes are always visible to subsequent reads - and reads always complete

enables this to happen automatically within an

pARMAI

before subsequent writes. The use of

1.6 Data Model

DARMAI

handleS

only implements a through its
and data type only exist in the application and
the specification is only aware of
actually migrate data, a

similar to the

PARMA

versions, an
the
and

back end

back end

runtime systeml
Oanslation layerS

Serializationl
1ranslation

tup10
runtime systerU

$erializationl

rankS hand10

runtimel

Oxecution stream

interface. The notion of data structure, data layout,
(see Chapter q). Thus, a implementing

or identifiers for a coarse-grained data block of a given size. To
invokes hooks implemented by the application. In future

interface will support the definition of data subsets and data slices. Again,
will only understand data and dependencies, requiring the type-aware application

to define the details of subsetting and slicing operations. This leaves the application developer
free to use arbitrary data structures, but puts more responsibility on the application developer to articulate the structure
of the data.

1.7 Document organization

4c.ey
serializatiot1

Osk

runtime syster0

This document is organized as follows. In Chapter g we introduce the front end APT. In Chapter we provide a
description of the Oanslation layerl, and in Chapter 4 we provide the specifics regarding what must be supported by
each of the back end abstract classes in order to implement the PARMA specification. In Chapter we include
a list of application requirements driving the specification (along with a list of the applications contributing to the
requirements to date). We conclude this document with Chapter §, which includes a brief history of changes between
previous versions of the specification, along with a list of the planned changes in upcoming versions. Appendix A
provides a suite of examples that illustrate the front end Am features.

1 5

data mode1

16

Iltuntime systems, the application developer creates blocks of work (a task)and defines the
to begin executing. Rather than require application developers to explicitly define vertices
or use explicit fork-join constructs, in PARMA, task preconditionsl are implicit in either

or the data-flow inherent in the coordination (more below).
is instantiated (but not necessarily executed) via the function. For inline tasks (as compared to

functor-based Osks, more below), this utilizes the C++ mechanism to yield the following syntax:

Itasks

Chapter 2

DARMA Front End API

2.1 Deferred Work Creation

InPARMA like other
for thePreconditionsl

and edges in a
task

Itask-DAQ
the sequential order of
Work create_work

lambd4

//outer task
create_work([=]{
// <-- deferred work in captured context

}) ;
//continuing context in outer task

key-value stor0

Oaptur0

[Deferredl

In PARMA fleferred work and task are generic terms we use for work performed by code inside the capturing
This does not necessarily imply that the Continuing context (after the create_work) will be executed before the

(note that ̀ lcaptured worr and ̀lcaptured context" are two other generic terms we use interchangeably
with fleferred work). We highlight here that Oeferred work does not need to be deferred. A more precise term may
therefore be deferrable work, but we use deferred to match previous literature. If a MsKs Preconditionsl are all satisfied
(data is available with correct permissions), the tuntime systent may execute it immediately. In fact, the runtime may
execute the outer continuing context, the inner deferred context, or another context entirely if there are pending tasks.

Captured work

1ambd4

While this syntax leverages C++ 11 1ambdas, the user does not need to understand C++ 11 standard features to use
create work (this complexity is managed by
the work specified within a
immediately and may be executed by the Ilack encli tuntime systent any time after all of its preconditionsl are satisfied.

(waiting for data to be produced) or Miti-dependency (waiting for data to be
for a task are never given explicitly, but are instead derived implicitly
objects, discussed in detail below. For example, to satisfy

create_work
pARMAIs Oanslation layeti

Ideferred execution
as summarized in Chapter M. All

Preconditions are either
released so it can be overwritten).
based on sequential usage of

Oependency

semantics

is queued for

Preconditions
A.ccessHandle

the following code should print "first: 42, second: 84":

auto my_handle = initial_access ("some_data_key") ;
create work ([=]

my_handle.set_value (42) ;

1) ;
create_work([=]{

cout << "first: " « my_handle.get_value();

}) ;
create work ([=] {

my_handle.set_value (my_handle.get_value () *2) ;

1) ;
create_work([=]{

cout << ", second: " << my handle.get_value();

17

The task does not need to execute

sequentiat

) ;

The code produces results equivalent to a C++ code in which
just replaced with the underlying type. These

Sequential semantics

create_work

sequential semantic0
is removed and ccessHand10 is

are pivotal to the pARMAIprogramming mode1

provide a simple and intuitive way of coding asynchronous work, by limiting programmer bur-
den, avoiding deadlock, and enabling runtime optimizations. However, in cases with massive SPIVIDI parallelism across
a distributed memory machine, it may be more scalable and natural to code in a CSP-like framework involving parallel

. Rather than coding as if only operating within a single
aware of multiple parallel
Oxecution streams

pARNIA

Oxecution streams
Oxecution strearn, the programmer must be

uses coordination data between parallel Oxecution streamsl, rather than exchanging data through s end/re cv
pairs. Two Oxecution streams never explicitly exchange data. Instead they iDubl i sir and fetclr from a
Coordinating (rather than communicating) abstracts physical data locations to better support task migration. Addi-

key-value stor0

tionally, it removes message-ordering requirements to better support
appears to be a centralized, global data store that copies data in/out, the

transfers. Thus both
store

nsynchronous

a MIT that supports
principle in 1DARMA intuitive
to a parallel, scalable execution by the

Izero-copy
programming modal

sequential semantics

data transfers. While the
key-value stor0

key-valu0
can be implemented as

and Oordination semanticsl follow the same
concepts that simplify reasoning about algorithms are transformed

andnanslation layer

In the example here, variables are not passed down from a
produces a value and publishes it to a key-value stor0. Another
a key-value stor0 The processes coordinate with publish/fetch pairs similar to s end/ r ec v pairs in the

}pack encfruntime systenr

parent task to Ohild tasks
lexecution strewn

model of MPI.
Execution Stream 0:

auto sender =

initial_access<int>("counter"); auto recver =

sender.set_value(42);

sender.publish(n readers=1);

Execution Stream 1:

read_access<int>("counter");

Instead of defining !task preconditionsl implicitly via sequential order,
by requiring that a particular block of data be fetcfied from the

are given in SectionOxecution streams Z61

2.2 Data Access Handles

task preconditions
key-value stor0 More on

Instead, one Oxecution strewn
reads the value by 1etchling it from

CS1-1

are specified more explicitly
SPMPprograms and parallel

AccessHandle<T> objects are lightweight wrappers around the actual data structure of interest having type T. The
add a control block (metadata) that tracks uses of the fiand10 and enforces $equential semantics, analogous

to smart pointers that wrap pointer types and provide a reference counting control block. Critically, this interface is
non-intrusive, wrapping any type T without requiring that type to be modified.

handles

Most critically, an AccessHandle enables deferred access since A.ccessHandle
states. Ready and pending are not rigorously defined in the state table for

can exist in ready or pending
lAccessHand10in Section Z2.3I, but rather

guiding concepts. Ready fiandlesl can be dereferenced (have their underlying values 1etchied) and be used immediately
to perform work. Pending 1iandlesl cannot be dereferenced, but can still be used to schedule or instantiate work. Thus
even if a handk is carrying pending or unresolved data, execution can advance thereby unrolling more of the task
graph.

This lookahead is the key element that enables runtime optimizations. Lookahead gives the
complete knowledge of the task graph instead of locally executing step-by-step. By looking ahead, the
can reorder or migrate tasksl to maximize data locality and improve load balance. The most critical conceptual change
from standard C++ to IDARMA are pending variables that enable lookahead, unlike conventional C++ variables that
must always be "ready".

runtime systern more
runtime systern

klandles can be created three different ways.

18

1. a

2. a

3. a

hand10

fiand10

hanc110
lhand10

to data that does not yet exist in the system but needs to be created, or

to data produced by another process that needs to be read, or

to data produced by another process that needs to be overwritten or modified. Note that this type of
does not exist in the current version of the specification.

Type 1 is denoted as init i a l_acces in [DARMA, which informs the rnntime systern that the data with the
specified Ikeyl does not yet exist, and the user intends to create this data.Hence, an linitial_accessl data
is usually followed by a memory allocation, and a value assignment. Remark: Although we could explicitly write
out AccessHandle<T>I in the code below, we strongly encourage programmers to use the C++ auto keyword. It
will greatly increase code portability for future (potentially backwards-incompatible) versions of PARMA with the
additional benefit of decreasing code verbosity.

auto float_handle = initial_access<float>("float_key");
create_work([=]{
float_handle.set_value(3.14);

});

As stated above,pARMAI
dination semantics
to Obtasks

fiand10

provides two methods for expressing task Preconditionsl Isequential semanticsl and
is necessary in both methods. Once created, a fiandlel can be passed along

A Iland10 created by linitial_accessl can also be
via 1cey-value storel coordination.

initial_accesS
within the same, sequential

ipubli s hed, making it available to other

1-land10

Oxecution streaiP
Oxecution streams

OoorH

of Type 2 above request read-only access to data produced via external Oxecution streamsl through Iread acceS s

1 (which causes a fetch to be performed). As such, r ead_a cccess is only relevant for applications that use coordi-
nation to express data flow.

auto float_handle = read_access<float>("another_float_key");
create_work([=]{
float val = float handle.get value();
std::cout << "Value read with key another_float_key is " << val;

}) ;

Immediately following the Iread_accessl function, the lAccessHandle will be pending instead of ready. To
enable Iget_valuel to be called (put the Iland10 in a ready state), the fiand10 must be used inside of a

I. c r e at e_wo rk defers execution of the code block until the key-value store resolves the value of f lo at_han dle
and converts it to a ready state. This might involve moving data if the float is on a remote node. Remark: future
versions of PARMA will enable tasksl to begin optimistically with some Ilandlesl still in a pending state, but this is not
supported in the current version of the specification.

create_work

In general, any calls to [get_value should occur within a scoped code block to avoid dangling references to stale
physical memory locations. Calls to get value should go inside a c re at e work block when possible to guaran-
tee availability of the data.

2.2.1 Publish

By default, unless explicitly published, data hanciles1 are visible only to tasks1 within the same scope Qtasksl that have a
copy of the actual FiccessHandle<T>I object, created as discussed in Section 272). For data to be globally visible
in the global memory space (key-value store), the application developer must explicitly pub 1 i s h data. Unpublished
data will be reclaimed once the last fiand10 referencing it goes out of scope (i.e refcount goes to zero), freeing the
memory and resolving any anti-dependencies analogous to the destructor invocation in C++ when a class goes out of
scope.

Published data, however, is globally visible to all Oxecution streamsl and requires more "permanence." In order to
resolve anti-dependencies associated with the publish or garbage collect the memory, published data must know its
Uccess grouP. When all read handlesl within an Uccess grouP have been deleted or released globally, the memory

19

holding the published data can be reclaimed. The easiest way to declare an
supported method) is to simply give the total number of additional read V2s.ccessHandle<T>I objects that will be
created referring to it (recall that read lAc ce s sHandle<T>I objects cause a fetch to be performed). In future versions,
hints will be supported about which specific tasksl will need to read data. This publi sh EMI mechanism replaces an
analogous MP I Send/ Recv or, for a publish with many readers, replaces an MP I Bcast. In MPI, these function
calls force an MP I_S e n d or MP I_Wa i t to block until the runtime systenr guarantees that the data has been delivered.
An 4ccess group in 1DARMA provides a similar guarantee. Until all readers in an 4ccess group have received or released
their data, PARMA cannot garbage collect or clear anti-dependencies.

laccess group

auto float handle = initial access<float>("float key");

create_work([=]{

float_handle.set_value(3.14);

}) ;
float_handle.publish(n_readers=1);

The n_readers
Systern

(and currently the only

specification in the ipubli s 4 call is a lceyword argument (see Section 2.4) that informs the
that the data (associated with float_key) will only ever be read once, and hence can be safely garbage

collected soon after. This code provides similar functionality to an MPI s end /r eceive.

runtim0

As discussed above, handles can either be ready or pending. In reality, the distinction is more subtle. The "readiness"
and "pendingness" can be different for read usages and write usages. Thus a handle can be read-ready, but modify-
pending. This will be the case after Ipublish operations. Pub 1 i sh operations are treated as asynchronous read
operations — that is, h . publ i sh (. . .) is equivalent to

create_work (reads (h) , [=] { . . .}) ;

This means that the same precautions should be taken as with asynchronous reads. In particular, even if the handle
was ready for modifying before ipubli s h it is no longer valid to call h . s et_va lue () after the ipublish. The
asynchronous read done by the Publi sh may or may not have occurred yet. In this scenario, one should use instead

create_work([=]{ h.set_value(...); });

to force the handlO from a pending state to a ready state.

Publication Versions

If a ban* is going to be published multiple times (or, more specifically, if the
is going to be published multiple times), it needs to be published with a different
is just like a Ikeyl — an arbitrary tup10 of values (see Section Z27). For instance:

/** Execution stream 0 */

auto float_h =

initial_access<float>("float_key");

auto int_h =

initial access<int>("int key");

/* Execution stream 1 */

int_h.publish(n_readers=3, version=77);

//Use version() for multiple parts

float_ha.publish(n_readers=1,

version("alpha",42));

XeY with which the
-version

hand10was created
each time. A versionl

/* Execution stream 1*/

auto my_int = read_access<int>(

"int key", version=77);

auto my_float = read_access<float>(

"float_key", version("alpha",42));

A Ve r s i oh has similarities with an MPI tag, as they both ensure the uniqueness of data. However, unlike MPI
which uses a combination of message order and tag to uniquely identify messages and match send/ recv pairs, the

asynchronous model does not allow implicit publication order to be used in matching [publish inEl pairs.
Instead, all publications must uniquely identify each publication with a specific
PARMA

20

.versio4

2.2.2 Keys

In the examples in this section, the key to the ccessHandle<T>I has always been a single string. A keY in
can be an arbitrary tuple of values. This makes it very easy for the application developer to create an

expressive and descriptive Ikeyl for each piece of data. can comprise different bit-wise copiable data types. The
illustrates the use of the 1-ank within the hand10 keY The following example shows

pARMAI

example at the end of Section
the use of an aribitrary tup10 as akey

int neighbor id
double other_identifier;

// some code that sets neighborlD and other_identifier

auto float handle = initial access<float>("float key",
neighbor_id,
other_identifier);

2.2.3 Handle Usage Rules

As alluded to above,
The state of a
used for scheduling

hand10
handles are assigned states, and these states change based on the operations applied to them.
encompasses both its read/write permissions and its "readiness." Pending hanclles can only be

while ready handlesl can be immediately used to do work. Here we more rigorously dividetasks
permissions into two main categories:

a Scheduling: Permissions a hand10 may use when instantiating tasks with create_work. These permissions
apply independent of handk readiness (immediate permissions). Generally, this will be Read (handk may only
used in read-only tasks) or Modify (handk may be used in read-only or read-write tasks).

b Immediate: Permissions that apply immediately, indicating the "readiness" of the
can never be greater than $cheduling permissionst A handle within a

sions doing immediate work than it can for instantiating deferred work.
$ions

For the two methods of creating handlesl, we have the following initializations.

task
hand10 firnmediate permisH

can never have greater permis-

• initial access<T>: Initialized with scheduling modify, immediate none. The
mode when instantiating Oeferred work. However, the
be used immediately for reads or writes.

hand10
hanclIel can be used in any

is not necessarily initialized and as such cannot

• r e a d_a c ce s s <T>: Initialized with scheduling read, immediate none. The handk can only be used for reads
when instantiating Oeferred work. However, the handk is not necessarily initialized and as such cannot be used
immediately.

To clarify, consider the following code:

//Predecessor outer state
create_work([=]{
//Capture (inner) state

})
//Continuing outer state

In the outer task, a handk will have an initial pair of scheduling/immediate permissions (predecessor state). After the
call to r e at e_work, the handk s state will have changed, potentially losing some immediate permissionsl within
the continuing outer state block. As specified currently, execution does not begin inside the Captured work block until
the handlesl it uses becomes ready. Inside the r e at e_wo r k (capture state), the handlers immediate and scheduling
permisssions will therefore remain the same as they were in the predecessor outer state block.

21

Predecessor State get_value
emplace_value

set_value
get_reference

Scheduling
permissions

Immediate
permissions

Allowed? Continuing as Allowed? Continuing as

None
Read
Read
Modify
Modify
Modify

None
None
Read
None
Read
Modify

No -
No -
Yes Read/Read
No -
Yes Modify/Read
Yes Modify/Modify

No
No
No
No
No
Yes

-
-
-
-
-

Modify/Modify

Table 2.1 Operations on the various states

Predecessor State read-only capture and publish modify capture

Scheduling
permissions

Immediate
permissions

Allowed?
Capture
Handle

Continuing
Handle

Allowed?
Capture
Handle

Continuing
Handle

None None No No
Read None Yes Read/Read Read/None No
Read Read Yes Read/Read Read/Read No
Modify None Yes Read/Read Modify/None Yes Modify/Modify Modify/None
Modify Read Yes Read/Read Modify/Read Yes Modify/Modify Modify/None
Modify Modify Yes Read/Read Modify/Read Yes Modify/Modify Modify/None

Table 2.2 Deferred (capturing) operations on the various states.

Table 2. t summarizes the state transitions involving these three handlesl following create_work

To illustrate the importance of requesting the minimum permissions a task requires, consider the following:

auto float_handle = initial_access<float>("yet_another_float_key");

create_work(reads(float_handle), [=] {

std::cout « "Value read with key yet_another_float_key is "
« float handle.get value() « std::endl;

})

create_work(reads(float_handle), [=] {

float val = float_handle.get_value();

if (val > 0) std::out « "Value is positive" « std::end;
})

//read—write work down here

In this case, Isubtasksl are created that only need read access. Without the Ireadsl qualifier, these tasksl could not run
in parallel (or out-of-order) since they would by default request read-write permissions. !Sequential semanticsl would
then require them to write in-order sequentially. This example highlights the importance that tasksl only ever request
the permissionsthey need. Over-requesting permissions will limit the amount of available parallelism in the code.

The distinction between Immediate permissionsl and $cheduling permissionsl is generally not explicit in the application.
When a fiand10 is created with init i a s or read_acces, it is implicitly given Immediate permissions of
None. When a fiand10 is used inside a task instantiated in the application with create_work, the

(and Oanslation layer) implicitly guarantees immediate permissions of Read or Write equal to the
For simple cases, the application developer only needs to think of a single permission (not distinguishing

scheduling/immediate). More more advances uses of PARMA (and features in future versions of the specification),
and

back end
systeM
permissions

Mntim0
scheduling

an application developer will need to understand both $cheduling permissions

To further illustrate, below is an incorrect usage of modify permissions

22

Immediate permissions

WRONG CORRECT

initial_access<int> a 1 initial_access<int> a
2 //a is in Modify/None 2 //a is in Modify/None
3 a.set value(1) X 3 create work([=]{ //modify capture
4 a.get value() X 4 a.emplace_value(1) ✓

a.set_value(1) ✓

a.get_reference()=1 ✓

});

5

6

7

Additionally, we demonstrate an incorrect usage of read permissions

WRONG CORRECT

read access<int> b 1 read access<int> b
2 //b is in Read/None 2 //b is in Read/None
3 b.get_value() X 3 create_work([=]{ // capture
4 b.set_value(1) X 4 b.get_value() ✓

5 create_work([=]{ //capture 5 });

6 b.set value(1) X
7 });

2.2.4 Access Handles with Compile-time Checking

The AccessHandle<T>I class actually has a second template argument, t r ait s, that the translation layer uses
to propagate static information about permissions, so that it can do as many compile-time checks as possible. The
user should never directly specify t r ait s for an A.cce s s Ha n dl e < T . Rather, DARMA returns a type with the
correct compile-time traits from access and read access. DARMA also uses traits to implement
the ReadAcce s sHandle<T> type alias used as a formal parameter to functors that need read-only permissions on
a handleT (see § 2.3 for details of the DARMA functor interface). DARMA can take advantage of this to, for instance,
raise a compile-time error if the user attempts to call et_valu0 on a handle returned by e ad_access. Note
that this will only work if the user gives the auto type specifier for the left-hand side of the assignment. The type

itself (i.e., with default t r ait s template parameter) has completely unrestricted compile-
time permissions, and thus implies no compile-time checking. However, unlike its more restricted analogs, it can hold
handles with any permissions.

AccessHandle<T>

2.3 Creating Deferred Work using Functors

Thus far, the only method we've introduced for creating fleferred work

auto h = initial_access<int>("my_key");

is using C++ [lambdas. For instance,

2 create_work([=]{ h.set_value(42); });
3 create work(reads(h), [=]{
4 cout << h.get_value() << endl; // prints "42"
5 });

While this is a useful shorthand that makes it easy to get simple programs up and running quickly, PARMA also
provides a far more powerful and flexible mechanism for describing and creating fleferred work functors. While
functors are significantly more verbose than the in-line lambdn syntax, they are also much more feature rich and allow

1Note that IReadAccessHandle<T>I is not the same as the return value of He ad_access. The former specifies requirements for a functor
parameter, while the latter specifies bounds on the available permissions for a handle. The t r a it s template parameter is different for these two,
though the latter can be cast to the former.

23

[PARMA to perform some additional optimizations that aren't available to [lambdasl because of the limitations inherent
to the C++ language itself. The same piece of code from above can be written with functors:

1

2

struct SetTo42 f

void operator()(AccessHand1e<int> h) const f

3 h.set_value(42);

4 }

5 };

6

7 struct PrintIntValue f

8 void operator () (int v) const f

9 cout << v << endl;

lo }

11 };

12

13 int darma main(...) f

14 /* */

15 auto my_handle = initial_access<int>("my_key");

16 create_work<SetTo42>(my_handle);

17 create_work<PrintIntValue>(my_handle);

18 /* */

0

Even though this code snippet is substantially more verbose than the lambi:14 version, it provides some useful advan-
tages. Most noticeably, the functors SetTo42 and PrintIntValue are reusable, just like normal functions. They
can be implemented in different files or even different translation units for code cleanliness and modularization.

There are some more subtle differences too, though. Notice that in PrintIntValue,AccessHandle: : get value
() never needs to be called. As long as the type to which the AccessHandle refers is convertible to the formal
parameter given in the functor call operator, PARMA will call g-et_valu0 automatically. Also, since the formal
parameter is a value (as opposed to a reference), PARMA can deduce at compile time that this Print IntValue
makes a read-only usage of its argument. (This would work the same way if the formal parameter had been int
const &, a const lvalue reference). Even more subtly, the fact that the formal parameter for P r i nt IntValue isn't
an Pic c e s s H andl el communicates to pARMA at compile time that Print IntValue won't schedule any tasksl that
depend on my_handle inside of Print IntValue (we call this a [Leaf task with respect to my_handle), which is
useful information that the kmck end Nntime systeM can utilize to make informed scheduling decisions. To accomplish
the same effect for a modify usage, we can give a formal parameter that is a non-const lvalue (e.g., int &). The
SetTo42 functor could then be rewritten:

1 struct SetTo42 {

2 void operator () (int& val) const {

3 val = 42;

4 }

5 };

As you can see, the functor code starts to look very much like regular C++ code.

The Ilambd4 interface can still be mixed with the functor interface. For instance,

1 struct Compute42 {

2 void operator () (AccessHand1e<int> h) const

3 create work ([=] f

4 h. set value (21) ;

5 1) ;
6 create_work([=]{

7 h.set_value(h.get_value() * 2);

8 1) ;

24

9

10 };

As you can see, if we want to be able to schedule more deferred uses of a
as a formal parameter.2 If we want to pass on a read-only
3 and the formal parameter type:

hand10, we have to take an
AccessHandle

AccessHand10

, we can do so by giving ReadAccessHandle

1 struct PrintlntReadHandle f

2 void operator () (ReadAccessHandle<int> h) const f

3 create_work ([=] f

4 std: :ofstream f ("42.txt") ;

5 f << h.get value () << endl;

6 1) ;
7 create_work ([=] f

8 cout << h.get_value << endl;

9 });

10 }

11 };

The nested tasksl will request read permissions on h, just as if they had been created with create_work (reads (
h)). Moreover, any attempts to call h. set_value () inside of Print IntReadHandle will result in a
compile-time error (unlike in the pure Iambd4 case), since PARMA knows at compile time that the ReadAccessHandle
<T> is read-only.

2.3.1 Mixing Deferred and Immediate Arguments

In PARMA, deferred functor invocations can also take normal, value arguments. These can, of course, be mixed (i.e.,
an invocation can take some Oic ce s sHand10 arguments and some value arguments in the same call). However, since

can be tricky, there are some special rules involved with value arguments toOeferred executionl create_work

• When the formal parameter to the functor is a non-const lvalue reference, deferred invocation of the functor can
only be made with an Ts.cce ssHand10 as that argument. For instance,

1 int i;

2 auto j = initial_access<int>("mykey");;

3 create_work<setIo42s>(i); // X compile-error!

4 create_work<SetTo42>(j); // V

• When the formal parameter is a const lvalue reference, the deferred invocation must also take AccessHand10
as argument. References cannot be made to regular C++ variables for deferred execution since, by deferring,
the referred to variable may no longer exist. An implicit copy would be required that isn't apparent from the
syntax to make the variable permanent. To do this, you need to either use a value formal parameter or explicitly
use darma_runtime : :darma_copy:

1 struct PrintlntRef f

2 void operator () (const int& val) const { cout << val << endl;

3 };

4 int darma_main(...) f

5 /* */

2Equivalently, an lvalue reference or a const lvalue reference to an cessHandlel can be given.
and the copy overhead is negligible (though giving a reference parameter will be slightly more efficient)

3Note that is identical to AccessHandlel in every way except that it is known to be read-only at compile time, whereas
has unknown compile-time permissions. A11 compile-time qualified Otcces sHandlel variants are castable to

variant with greater compile-time permissions)

FiccessHandle

lAccessHandle

25

objects ignore const,

lAcces sHandle
OiccessHandle (and to any other

6 int i = 42;

7 auto j = read_access<int>("mykey");

8 create_work([=]{ j.set_value(42); });

9 create work<PrintIntRef> (i); // X compile error, implicit copy of i

10 create work<PrintIntRef>(42); // V 42 is an rvalue (prvalue)

11 create_work<PrintIntRef>(j); // V j is an AccessHandle<int>

12 create_work<PrintIntRef>(darma_copy(i)); // V explicit darma_copy used

0 create_work<PrintIntRef>(std;:move(i)); // V i is an rvalue (xvalue)

14 /* ... */

15 }

This isn't a matter of constness, but one of reference-ness; even if i had been declared as const int i =
4 2; , line 9 would still be a compile-time error, since the reference may have expired by the time the

actually runs and a copy needs to be made.*orX

• Normal arguments by default can not be implicitly converted to
the reverse is allowed, and even encouraged when appropriate).

2.3.2 Functor Interface Pitfalls

A.ccessHandle

deferred

formal parameters (whereas

• Rvalue references (T & &) can't be given as formal parameters to PARMA functors, and doing so may lead to
unexpected and/or undefined compile-time and/or runtime behavior. This is related to how PARMA detects
attributes of the formal parameters for functors, but it's also redundant — you can just use a regular value
parameter. Because of the way Oeferred executiorr works, rvalues must be moved into storage until the actual
invocation occurs anyway, so there is no savings from using an rvalue reference over a value parameter.

• The PARMA functor interface doesn't currently support deferred invocation of functors with templated call
operators (the detection idiom we use woudn't work here, and besides, we wouldn't even know if the deduced
type is supposed to be an lAccessHand10 or not!). Limited support for this may be available in the future.
Note that the functor class itself can still be templated, as long as the functor's template parameters are given
explicitly at the invocation site:

1 struct CantBeUsed f

2 template <typename T>

3 operator() (T val) const;

4 };

5 template <typename T>

6 struct ThislsFine f

7 operator() (T val) const;

8 };

9 int darma_main(...) f

10 /* ... */

11 auto h = initial access<int>("hello");

12 create_work<ThisIsFine<int>>(h);

0 /* ... */

14 }

• Functors don't have state in PARMA. (Even if they did, there is no access to the functor instance at the call site,
so that state wouldn't be useful).

26

2.4 Keyword arguments

Similar to higher-level languages like Python, the DARMA C++ interface allows the user to specify arguments to
many of the 1APii functions and constructs using either positional argumentS or keyword argumentS. In addition, many
optional arguments may only be specified using keyword argumentS. The syntax for specifying a
is identical to that of Python: keyword=value. For instance, if there is a function some_function in the

arg_a, count, and flag, that function can be invoked

keyword argument

DARMA 1APii that accepts positional orkeyword argumentS
equivalently in any of the following ways:

/* some_function signature:
* void some_function(std::string arg_a, int count, bool flag);
*/
// All of the following are equivalent:
some function("hello", 42, true);
some_function(arg_a="hello", count=42, flag=true);
some_function(count=42, flag=true, arg_a="hello");
some_function("hello", flag=true, count=42);

Note that positional argumentS may not be specified after the first keyword argument, and an argument cannot be
specified more than once, even as a positional and keyword argument. Both of these lead to compile-time errors.
Omitting a required argument is also a compile-time error, as is giving an argument of the incorrect type:

// Error: arg_a specified more than once
some_function("hello", 42, true, arg_a="whoops!");

// Error: missing required argument flag
some function("hello", count=42);

// Error: cannot convert bool to std::string
some_function(arg_a=false, flag=true, count=42);
some function(false, 42, true);

// Error: positional argument given after first keyword argument
some_function(arg_a="hello", 42, flag=true);

The enabling of Python-like keyword argumentS introduces no runtime overhead. For those interested in C++ details,
are accomplished using constexpr class instances with overloaded assignment operator, with

arguments passed to the callable using perfect forwarding. More implementation details are given in Section
keyword argumentS

2.5 Serialization and Layout Description

3.2.2,

Any data that is migrated or moved across the network bewteen Memory spacesl must be first be serialized. The
provides an extremely flexible and extensible interface for describing se-

rialization and/or layout of C++ types. In spite of this flexibility, the vast majority of use cases only require the
understanding and use of one or two very basic abstractions. However, the [DARMA serialization interface provides
a wide variety of features to handle complex and corner cases, as well as features to tune and optimize performance-
critical cases. The following section describes the PARMA serialization interface, beginning with abstractions that
handle the vast majority of use cases and expanding to progressively more niche features later in the section.

Note that this section is entitled "Serialization and Layout Description" rather than just "Serializatioe because the
interface provides ways to specify movement of data in ways that aren't traditionally considered serialization, such as
describing a type as a series of femote direct memory access (RDMA) pointers with associated sizes. More details to
follow.

pARMAI front endl programming model

27

2.5.1 Basic Intrusive Interface

The most basic and straightforward way to specify serialization of a user type in PARMA, and the method that
should be used in the vast majority of cases (with, perhaps, one simple extension discussed below), is providing
a publicly accessible serialize method in the user class. The serialize method provided for this purpose
should be non-const and should take a single argument, which in the simplest case will be an lvalue reference to
a darma_runtime : : serialization : : SimplePackUnpackArchive object. For instance, consider the
following (somewhat contrived) user-defined class:

1 class MyClass {

2 private:

3 double a_, b_;

4 std::string label ;

5 double prod_sqrt_;

6 public:

7 static constexpr const char unlabeled_string[] = "<unlabeled>";

8 MyClass(int a, int b)

9 : MyClass(unlabeled string, a, b)

10 { }

11 MyClass(std::string const& label, int a, int b)

12 : a_ (a) , b_ (b) , label_ (label) ,
0 prod_sqrt_(a_ == b_ ? a_ : std::sqrt(a_*b_))

14 { }

15 1 ;

The simplest way to allow PARMA to interact with myCl a s s is to provide a serialize method in the class
definition:

1 using Archive = darma runtime::serialization::SimplePackUnpackArchive;

2 class MyClass {

3 public:

4 /* ... */

5 void serialize(Archive& ar) f

6 ar l a_ l b l label l prod sqrt ;

7 }

8 };

As you can see, the type S implePackUnpackArchive has an overload for operator l 0 , takes a serializable
type, and returns itself (more on what constitues a "serializable type' later).

2.5.2 SimplePackUnpackArchive

pARMAI encapsulates advanced serialization behaviors in the archiv0 Concept The only archiv0 type fully imple-
mented in the current specification is S imp 1 e P ackunpackArchive, which performs serialization in the most
basic and traditional way. On the sender side, DARMA performs two serialization passes: one in sizing mode and
one in packing mode. The receiver only requires one pass: unpacking. These modes can be queried using the archive
object methods i s_s i z ing () , i s_p a ck in g 0 , and i s_unp acking 0 , only one of which will return true at
any given time. All larchiv0 types implement these methods.

4later versions of the specification may allow private implementations with a friend specification

28

2.5.3 Generic Archive Serialization

As PARMA evolves and as more performance considerations are addressed, the IDARMA team and our collaborators
plan to provide other Ochiv0 types which take more advanced serialization strategies, such as enabling RDMA access
to pieces of a type. In order to write code that can take advantage of these features when they become available, the
vast majority of user types can simply provide a templated serialize method:

1 class MyClass {

2 public:

3 /* ... */

4 template <typename Archive>

5 void serialize(Archive& ar) {

6 ar I a_ I b_ I label_ I prod_sqrt_;

7 }

8 };

2.5.4 Different Behaviors in Different Modes

Consider again the myClass example above. Since prod sqrt can be recomputed on the fly, it may be desirable
to avoid including it in the data to be moved and instead just recompute it on the receiving side. To do this, however,
we need the s e r i a 1 i z e method to perform different actions in unpacking mode than in the other modes. The
is_unpacking () method makes this easy:

1 class MyClass {

2 public:

3 /* ... */

4 template <typename Archive>

5 void serialize(Archive& ar) {

6 ar I a_ I b_ I label_;

7 if(ar.is_unpacking())

8 prod_sqrt_ = a_ == b_ ? a_ : std::sqrt(a_*b_);

9 1
10 };

Notice also that the label field of My C 1 a s s has the same static value if a label is ungiven every time. If MyC 1 a s s
often does not have a 1 abe1_, it may be advantagous to pack a boolean indicating whether the label exists, followed
by the label itself only if the label is given. We can do this using the same approach:

1 class MyClass {

2 public:

3 /* ... */

4 template <typename Archive>

5 void serialize(Archive& ar) {

6 ar la lb;

7 bool has_label;

8 if(!ar.is_unpacking()) {

9 has_label = label_ != unlabeled_string;

10 ar I has_label;

11 if(has label) ar I label ;

12 }

13 else { // ar.is_unpacking()

14 ar I has_label;

15 if(has_label) ar I label_;
16 else label_ = unlabeled_string;

29

17 // From before :

18 prod_sqrt_ = a_ == b_ ? a_ : std: :sqrt (a_*b_) ;

19 }

20 }

21 } ;

2.5.5 Seperate Methods for Seperate Modes

If the logic for packing is significantly different from the logic for unpacking, the serialization of a MyClass object
may involve a significant number of if statements. For this and other reasons, PARMA allows the user to specify
seperate pack, unpack, and compute_si z e methods as needed. Each takes an larchive object as an argument, and
the pack and compute_size methods must be const. The first example that recomputes prod_sqrt_ could
then be rewritten as:

1

2

3

4

class MyClass {

public:

/* */

template <typename Archive>

5 void serialize(Archive& ar) f

6 ar I a_ 1 b_ 1 label_;
7 }

8 template <typename Archive>

9 void unpack(Archive& ar) {

10 ar I a_ 1 b_ 1 label_;

11 prod_sqrt_ = a_ == b_ ? a_ : std::sqrt(a_*b_);

12 }

13 };

The more specialized pack, unpack, and compute_size methods always have higher priority than serial i z e,
so in this case PARMA will invoke unpack during the unpacking pass while still calling s e r i a 1 i z e in the sizing
and packing passes.

The performance-concious reader may have further noticed that since the operator I () implementation must func-
tion in all three modes, there will be branches or switches based on the mode. Thus, in a performance-critical context,
the user may want operators that are specific to the phase in question. This could also be accomplished (and may be
in the future) by passing in different types for the sizing, packing, and unpacking phases, which is yet another reason
to use the templated versions of these methods instead. This can also be done using operator<< () for packing,
operator» () for unpacking, and operator% for sizing. The final serialize with both the prod_sqr t_
and label_ optimizations could then be rewritten as:

1

2

3

4

class MyClass {

public:

/* */

template <typename Archive>

5 void compute_size(Archive& ar) const f

6 ar % a_ % b_;

7 if(label_ == unlabeled_string) ar % false;

8 else ar % true % label_;

9 }

10 template <typename Archive>

11 void pack(Archive& ar) const f

12 ar << a_ << b_;

0 if(label_ == unlabeled_string) ar << false;

14 else ar << true << label_;

30

15 }

16 template <typename Archive>

17 void unpack(Archive& ar) {

18 ar >> a_ » b ;

19 bool has label;

20 ar » has_label;

21 if(has_label) ar » label_;

22 else label_ = unlabeled_string;

23 prod_sqrt_ = a_ == b_ ? a : std::sqrt(a_*b_);

24 1

25 1;

Unless absolutely performance critical, these optimizations should be avoided. Besides being significantly more ver-
bose, these optimizations affect code maintainability. If another member variable c_ were added to MyClass, the
serialization implementation in the final example would have to be modified in three places, whereas the earlier ex-
amples, while potentially less performant, only have to be updated in one place. Also, failure to ensure that the order
of member variable serialization is identical in multiple places can lead to hard-to-detect bugs. Thus, we recommend
using the single s e r i a 1 i z e method except in performance-critical, inner-loop-like code.

2.5.6 Serializing Pointers and Ranges

PARmAl also provides a convenient way to serialize iterables of serializable objects using darma_runtime : :
serialization: : range. As a simple example:

1 template <typename T>

2 class MyData {

3 private :

4 T* data ;

5 size_t n_items;

6 public:

7 MyData (T const* copy_from, size_t n)

8 : n_items (n) {

9 data_ = new T [n] ;

10 std: : copy (copy from, copy from+n, data) ;

11 }

12 -MyData () { delete [] data_; }

13 1 ;

If we restrict ourselves to only making MyData<T> instances that hold serializable types T, we can write the
serialize method for this class as

1 using darma_runtime::serialization::range;

2 template <typename T>

3 class MyData {

4 public:

5 /* ... */

6 template <typename Archive>

7 void serialize(Archive& ar) {

8 ar 1 range(data , data_ + n items);

9 }

10 1 ;

31

2.5.7 Non-intrusive Interface

Classes for which the user cannot define an intrusive s e r ialize method (or any of the other intrusive methods),
for one reason or another, can still be made serializable by defining a specialization (partial or full) of the class
darma_runtime: : serialization: : Serializer<T> for the type in question.5 Like the intrusive interface,
these classes can define a serialize method; individual compute size, pack, and unpack methods; or some
combination of these, with the specific versions having higher priority. All of these methods must be const (the
Serializer object itself isn't allowed to have state anyway; it's just a convenient mechanism for grouping functions for
a class non-intrusively). Their signatures are a bit different from the intrusive analogues. Consider a slightly different
version of MyClass from above, the public interface of which is specified as:

1 class YourClass

2 public:

3 double get_a () const;

4 void set_a(double val);

5 double get_b () const;

6 void set b (double val) ;

7 std::string const& get_label() const;

8 void set_label(std::string const& val);

9 double get_product_sgrt() const;

10 };

Assuming YourClass is default constructible, a way to specify a serialization for YourClass non-intrusively is:

1 namespace darma_runtime { namespace serialization f

2 template <>

3 struct Serializer<YourClass> f

4 template <typename Archive>

5 void serialize(YourClass& yc, Archive& ar) const f

6 if(!ar.is_unpacking()) f

7 double a = yc.get_a () ;

8 double b = yc.get_b () ;

9 std: : string label = yc .get_label () ;

10 ar l a l b l label;

11 1
12 else {

13 double a, b;

14 std: : string label;

15 ar l a l b l label;

16 yc. set a (a) ;

17 yc. set_b (b) ;

18 yc. set_label (label) ;

19 1
20 1
21 };

22 1 // end namespace darma runtime: : serialization

As before, we can split this into serialize and unpack methods. However, the unpack method requires a
slightly different signature:

1 template <typename Archive>

2 darma runtime::serialization::Serializer<YourClass>::unpack(

3 void* allocated, Archive& ar

5 Generic implementations requiring partial specialization with an enable_if clause should use darma_runt ime : : serialization : :
detail : : Serializer_enabled_if<T, Enable>. Consult source code for more details.

32

4) const;

Rather than being a reference to an instance of the class itself, the first argument to the non-intrusive unpack method
is a pointer to the beginning of a chunk of memory of size sizeof (YourClass) allocated by the backend, but not
constructed. This allows for the unpacking of non-default-constructible classes. The unpack method must construct
the object at that memory location using the C++ placement new. The syntax of placement new might be a little strange
if you've never seen it before, but once you see it, its use is pretty straightforward. The non-intrusive S e r i a l i z e r
for YourClass can then be written as:

1 namespace darma runtime { namespace serialization

2 template <>

3 struct Serializer<YourClass> f

4 template <typename Archive>

5 void serialize(YourClass& yc, Archive& ar) const f

6 assert(!ar.is unpacking()) // just in case

7 double a = yc.get_a();

8 double b = yc.get_b();

9 std::string label = yc.get_label();

10 ar l a l b l label;

11 1
12 template <typename Archive>

13 void unpack(void* allocated, Archive& ar) const f

14 double a, b;

15 std::string label;

16 ar l a l b l label;

17 // Since YourClass is default-constructible, the placement new

18 // that we want looks like this:

19 YourClass* yc = new (allocated) YourClass();

20 yc->set_a(a);

21 yc->set_b(b);

22 yc->set label (label) ;

23 1
24 I ;

25 I I // end namespace darma_runtime : : serialization

The non-intrusive interface versions of pack and compute_size have similar signatures to that of serialize,
except they take a const lvalue reference as their first argument:

1 template <typename Archive>

2 darma_runtime::serialization::Serializer<YourClass>::compute_size(

3 YourClass const& val, Archive& ar

4) const;

5 template <typename Archive>

6 darma_runtime::serialization::Serializer<YourClass>::pack(

7 YourClass const& val, Archive& ar

8) const;

The non-intrusive serialization interface has higher priority than the intrusive one, but in general the user should not
define both or mixed intrusive and non-intrusive serializations.

2.5.8 Definition of "Serializable"

Having introduced the 4rchiv0 Oncept the intrusive interface, and the non-intrusive interface, we're finally ready to
formally define "serializable' as PARmAl sees it. PARMA views the serializability of a given type as a property

33

associated with that type and a given archiveI type — a type T can be described as "serializable with IarchiveI type K.
We've been sloppy about this up to this point because it's usually clear from context which IarchiveI type we're referring
to (or if we're referring to a generic IarchiveI type given as a template parameter). This allows for the development of

types that, for instance, only handle performance sensative types, but do so very efficiently.archiveI

2.5.9 Implementations for Builtin and Standard Library Types

The PARMA Itranslation layeil has default Serializer implementations for many builtin and standard library types.
Currently this includes anything that meets the standard container IconceptI (for which the value types are also serial-
izable), Wain old data (POD) types, st d: :pa i r of serializable types, and compile-time sized arrays of serializable
types. Many of the implementations in the current backend are with respect to a generic IuchiveI type, but since
S imp lePa ckUnpa ckAr ch ive is the only archivel type currently implemented, the code is only tested with this
larchive1 thus far.

You can define a serialization for any bitwise copyable, pop type simply by specializing darma runtime::
serialization::serialize_as_pod<T>toinhefitfiwastd::true_type:

1 class MyPlainOldData {

2 int i, j, k;

3 double x, y, z;

4 };

5 namespace darma_runtime { namespace serialization f

6 template <>

7 struct serialize as pod<MyPlainOldData> : std::true type { };

8 }} // end namespace darma_runtime::serialization

2.5.10 Polymorphism

Deserialization into polymorphic base class pointers is currently not supported by the PARMA serialization interface.
If a type is to be used in a context that requires PARIVIA to deserialize it (most importantly, as wrapped by an

or the type of an argument passed to a functor-style Icreate_workl that could be migrated),
the concrete type must be known at compile time. Support for this will be forthcoming, but will likely require an
intrusive interface. There are a number of other patterns in the programming literature that can be used to mimic
run-time polymorphism, and we suggest the user consider these if necessary.

1AccessHandle<T>1

2.5.11 Serialization Pitfalls

• Because DARMA detects the various intrusive and non-intrusive serialize, pack, unpack, etc. methods,
const-incorrectness or an otherwise incorrect signature can cause these methods to go undetected and lead to
unexpected behavior. For instance,

1 class MyClass f

2 public:

3 /* */

4 template <typename Archive>

5 void serialize (Archive& ar) {

6 ar I a_ 1 b_ I label_;

7 }

8 template <typename Archive>

9 void unpack(Archive ar) { // X missing lvalue reference in parameter!

10 ar I a_ 1 b_ I label_;
11 prod_sqrt_ = a_ == b_ ? a_ : std::sqrt(a_*b_);

12 }

34

13 };

would fail to ever define prod_sqrt_ because the unpack method would not be detected and
would fall back on serialize for the unpacking process. Most of the common mistakes we anticipate are
checked with st at ic_as serts, but it is impossible to check all possible mistakes. Care should be taken
when this issue could arise. Note that if only s e r i a 1 i z e had been defined incorrectly, for instance:

1 class MyClass
2 public:

3 /* */

4 template <typename Archive>

5 void serialize(Archive& ar) const f // X should not be const!

6 ar I a_ 1 b_ I label_ I prod_sqrt_;

PARMA

7 }

8 };

then the code that uses MyClass would simply fail to compile, since MyClass isn't serializable with any
archive types.

2.6 SPMD support

Most applications written in or ported to 1DARMA will likely have
simplify the implementation of 5PMP-structured codes, the notion of a MO is maintained within the APli. Again,
rather than rely entirely on Isequential semanticsl in cases of massive data parallelism, many independent parallel

can begin simultaneously and coordinate via the key-value stor0 Each Oxecution strewn is assigned
ID, analogous to the MPI rank assigned to processes in a MPI communicator. The initialization and

is via the calls Iclarma in i tl and Iclarma f inaliz el The total

Oxecution streams
a unique
termination of the runtime in each
number of

Ira*

5PMD
Oxecution strearri

lexecution strewn
Oxecution streams

is queried with

5PMD as the dominant form of parallelism. To

are queried with the call kiarma_spmd_s i z 0, and the Mnk ID of a particular
1darma_spmd_rank

int darma_main(int argc, char**argv){

darma_init(argc, argv);

size_t n_ranks = darma_spmd_size();

size t me = darma spmd rank();

darma_finalize () ;

return 0;

1

. A typical user written main program will look as follows:

The 1-ank is a very useful concept to orchestrate dependencies in a 1STMD model since data pertaining to a Mnk can be
associated with keys that utilize the Mnk for uniqueness. The example below illustrates this concept, where the
is integral to the Ikeyl associated with data originating on thatIra*

size t me = darma spmd rank();

auto data_handle = initial_access<double>("data_key", me);

IranY

Note that in [DARMA, 5PMD Mnksl are actually just a special kind of task that happens to have a name containing
the ranX, and can be treated as such. In most cases, these named tasks (ranks) will be Oxecution streamsl, independent
tasks with no parent. However, the similarity to traditional, MPI-style
porting and scalability significantly.

SPMDupon launch should improve the ease of

We emphasize again that within [DARMA s supprot for 5PMP, coordinating (rather than communicating) abstracts
physical data locations to better support task migration. Additionally, it removes message-ordering requirements to
better support asynchronous data transfers. We further reiterate that even though the key-value stor0 appears to the
application developer to be a traditional data store, it can be implemented in a scalable distributed fashion.

35

2.7 API: Creating and Managing Work

ln this section we provide details regarding the PARIVIA 0.3.0-alpha

2.7.1 da rma ma in

Summary
darma main is the entry point PARMA uses to launch the user's code.

Syntax

int darma_main(int argc, char** argv)

Details
The signature of
code.

Code Snippet

darma_main mimics the signature of int main () , which C++ uses as the entry point to user

1 #include <darma.h>

2 int darma_main(int argc, char** argv)

3 {

4 return 0;

5

Figure 2.1 Basic usage of

36

darma_main

2.7.2 darma_init

Summary
darma init initializes the execution environment for a

Syntax

void darma_runtime: :darma_init (int& argc, char**& argv) ;

Positional Arguments

• argc: command line arguments count.

• argv: array arguments.

The input parameters are the command line argument count and array arguments provided to main. Note that the back
end will process and remove any PARMA back encil-specific arguments from these, leaving any application-specific
arguments untouched.

Details
Must be called exactly once per
function is called. Together with

Code Snippet
See code fordarma_init

Irank ("exactly once" may change in later spec versions) before any other
darma_finalizO

in Figure I27Z.

2.7.3 darma_finalize

Summary
darma_finalize the

Syntax

void darma runtime: :darma finalize () ;

PARMA It'ank

Positional Arguments
None.

execution strewn

VARMAI

PARMA
(see § 12.7.3), this creates an Iexecution streaml that defines a

execution environment for a

Irankl

Details Called to signify the end of the that defines a . At least by the time this
function returns, the back end guarantees that all work (tasks) created between the corresponding
and this invocation, as well as all of the decendents of that work, must be completed. No user-level
are allowed after this call, though the implicit invocation of the destructors of
final closing brace of darma_main) is allowed. Must be called exactly once for each call of
in turn must be called exactly once per in the current version of the specification).

PARMA Ira*

ViccessHand10

37

darma_init

IDARMAI

call
operations

objects (at, e.g., the
Oarma_init(which,

Code Snippet

1

2

3

#include <darma.h>

int darma_main(int argc, char** argv)

{

4 using namespace darma_runtime;

5

6 darma_init(argc, argv);

7 std::cout << "DARMA initialized" << std::endl;

8

9 // code goes here

10

11 std::cout << "Finalizing DARMA..." << std::endl;

12 darma finalize();

13 return 0;

14 }

Figure 2.2 Basic usage of

Restrictions and Pitfalls

Oarma

called from within a

darma init and darma finalize to initialize and finalize environment.

should be called at the outermost tasX depth on a . In other words, it should never be
create_work or other asynchronous context.

38

1

2

3

4

5

6

7

2.7.4 darma_spmd_s i ze

Summary
darma spmd size the number of rnnks (or Oxecution streams) in the PARMA environment.

Syntax

/* unspecified */ darma_runtime::darma_spmd_size();

Positional Arguments
None.

Return
An object of unspecified type that may be treated as a st d: : s i z e_t giving the number of
environment.

Details
This function gives the number of rnanksl or
is the number of times the back end has invoked
program (and thus, it is also the number of times the back end expects the user to invoke darma_init).

Oxecution streamsPARMA
darma main

rnnks in the

Code Snippet

#include <darma.h>

int darma_main(int

1

using namespace

darma_init(argc,

argc, char** argv)

darma_runtime;

argv);

const size_t size = darma_spmd_size();

8 // . . .

9

10 darma_f inali ze () ;

11 return 0 ;

12 1

Figure 2.3 Basic usage of

Restrictions and Pitfalls

pARMAI

is executing the program with. Specifically, it
anywhere in the system for this particular run of the

darma_spmd_size

• The value returned by this function will always return true for greater-than comparison with 0, and will always
be convertible to a s t d: : s i z e_t with a value greater than O.

• The return type is unspecified to allow future expansion to generalized rnnksl. For instance, future versions of the
specification may allow the user to request the rnnk as an { x , y, z } tup10 of indices in a structured lattice.

39

2.7.5 darma_spmd_rank

Summary
darma spmd rank returns the
voked.

Syntax

Irank index associated with the Iexecution streaM from which this function was in-

/* unspecified */ darma runtime::darma spmd_rank();

Positional Arguments
None.

Output
An object of unspecified type that may be treated as a s t d: :size t which is less than the value returned by
kiarma spmd_size

Details
This function returns the MnIC index of the calling PARMA Oxecution strewn If the value returned by darma_spmd_S i ze
is convertible to a std: : s i z e_t with the value N, then the value returned by this function will be convertible to a
std: :size_t with the value r, which will always satisfy 0 <= r < N. Furthermore, the type of the value returned
by this function will always be directly comparable to the type returned by Idarma_spmd_sizel and to 0 such that
this previous condition is met. The value returned is also equality comparable with 0, the value returned will be true
for equality comparison with 0 on exactly one rank. The value returned by this function will be unique on every
(in the equality sense), and will be the same across multiple invocations of the function within a given i-ank. The value
returned will also be the same at any asynchronous work invocation depth within a i-ank s Oxecution streaM, regardless
of whether that work gets stolen or migrated.

Code Snippet

1 #include <darma.h>

2 int darma_main(int argc, char** argv)

3 {

4 using namespace darma_runtime;

5 darma_init(argc, argv);

6

7 // get my rank

8 const size t myRank = darma spmd rank();

9 // get size

lo const size_t size = darma_spmd_size();

11

12 std::cout << "Rank " << myRank << "/" « size « std::endl;

0

14 darma finalize();

15 return 0;

16 1

Figure 2.4 Basic usage of

40

darma spmd_rank

2.7.6 creat e work

Summary
create_work instantiates Ideferred work to be executed by the

Syntax

systeni

// Functionally:

create_work ([=]

// Code expressing deferred work goes here

1) ;

// or:

create work(

ConstraintExpressions...,

[=] {

// Code expressing deferred work goes here

) ;

// or:

create_work<FunctorType>(ArgumentsToFunctor...);

// Formally:

/* unspecified */ create work(Arguments..., LambdaExpression);

/* unspecified */ create_work<Functor>(Arguments...);

Positional Arguments

• LambdaExpression A C-HF11
arguments. More details below.

• ConstraintExpressions .. (optional) If given, these arguments can be used to express modifications
in the defaultIcaptur0 behavior of PiccessHandle<T>I objects captured by the LambdaExpression given
as the final argument. In the 0.3.0-alpha-specification, the only valid permission modification expression is the
return value of the Ireads () I modifier (see § 2.10.1), which indicates that only read operations are performed
on a given hand10 or handlesl within the LambdaExpression that follows.

• Argument sToFunctor In the deferred functor invocation version, these arguments are pattern-matched
with the formal parameters of the functor, causing the deferred invocation to invoke the call operator of FunctorType
with arguments derived from these as described in § 2.3. Constraint expressions may also be used in the
corresponding positional argument spots for a given ccessHandle<T>I argument.

Ilambd4 expression with a copy defaultHcaptur0 (i.e., [=]) and taking no

Return
Currently void in the 0.3.0-alpha-specification, but may be an object of unspecified type in future implementations.

Details
This function expresses work to be executed by the iuntime systemj. Any A.ccessHand10 variables used in the
LambdaExpression or given in Argument sToFunctor will be captured and made available inside the
capturing context or FunctorType call operator as if they were used in sequence with previous capture opera-
tions or deferred functor invocations with the same handlel. Depending on the scheduling permissions available to
the AccessHandle<T> at the time of Icreate workl invocation and on the ConstraintExpressions
given as arguments, this function call expresses either a read-only capture or a modify capture operation on a given

(see § If a hand10 h has Read scheduling permissions when it is captured or if the explicit constrainthand10

41

expression reads (h) is given in the ConstraintExpressions . . . arguments, Icreate_workl functions as
a read-only capture operation on that hand10. Otherwise, it functions as a modify capture. Formal parameters to the
Funct or Type call operator can also affect the type of capture operation that is performed, as discussed in §

Additional general discussion on use of Icreate_workl can be found in §

Code Snippet

1 create_work ([=] {
2 std::cout << " Hello world! " << std::endl;

3 });

Figure 2.5 Basic usage of

Restrictions and Pitfalls
Most of the general restrictions and pitfalls related to
restrictions are given here.

2.1

create_work

create_work

2.3

are discussed in § Zt Some more technical

• Because of the way in which Icreate_workl is implemented, placement of multiple
tions on the same line of code will not compile. For instance:

// X does not compile, gives cryptic error message
create_work([=]{}); create_work([=]{});

create work

This is particularly easy to accidentally do when defining preprocessor macros:

// X does not compile, gives even more cryptic error message
#define foo(...) _VA_ARGS_
foo(

create_work([=]{});
create_work([=]{});

)

Note that this is not a problem when using nested calls:

/ / .1 not a problem
create_work([=]{ create_work([=]{}); }); // works fine

Other than the obvious solution of putting the
worked around by putting any of the later

/ / si works fine
create work([=]{}); { create work([=]{});

// V also fine
foo(

create_work([=]{});
f create_work([=]{}); }
f create work([=]{}); }

c reat e_work

create_work
create_work

)

42

opera-

invocations on multiple lines, this issue can be
calls within their own scopes:

1

2.8 API: Data Access Handles

In this section, we discuss the functions that create

2.8.1 initial_access

Summary
initial_access creates a

Syntax

AccessHandle<T> darma_runtime::initial_access<T>(argl, arg2, ...);

Positional Arguments
arg 1, arg2, ...: arbitrary tuple of values defining the Ikeyl of the data.

Return
An object of unspecified type that may be treated as an

Details
This construct creates a

handle

handle

handles in the PARMA 0.3.0-alpha APT.

to data that does not yet exist in the key-value store but needs to be created.

PLccessHandle<T> with the Ikeyl given by the arguments.

to data that does not yet exist but needs to be created. The handle
Modify and None hnmediate permissionsl. The function takes as input an arbitrary
values. Note that this has to be unique (see Section 222). One cannot define two handlesl with the same
even if they are created by different On10. One basic way to ensure this is the case is to always use the t.a.nlc ID as one
component of the

is created with
ofhiple

Code Snippet

Icey

Pcey

1 auto my_handlel = initial_access<double>("data_key_l", myRank);
2 auto my_handle2 = initial_access<int>("data_key_2", myRank, "_online");

Figure 2.6 Basic usage of

Restrictions and Pitfalls

initial_access

Pcey

• Because the actual type returned by init ia 1 a c ces s<T> is unspecified, you should generally use aut o
instead of naming the type on the left hand side of the assignment (this is generally a good idea in modern C++).

In other words,

// V good, preferred
auto my handlel = initial access<double>("good");

// X still compiles, but not preferred (may miss out
// on some future optimizations and compile—time checks)
AccessHandle<double> my_handlel = initial_access<double>("bad");

43

scheduling permissions

For more, see §2.2.4

44

2.8.2 read access

Summary
read access<T> creates a
system.

Syntax

handlel with read-only access to data that has been or will be published elsewhere in the

/* unspecified, convertible to AccessHandle<T> */

darma_runtime::read_access<T>(Keyparts..., version=KeyExpression);

Positional Arguments

• KeyP art s . . tuple of values identifying the key of the data to be read.

Keyword Arguments

• vers ion=KeyExpres sion (or ver sion (KeyExpression . . .) , see § z4 for multiple-right-hand-side
keyword argument usage): the version used to publish the data to be accessed. The value can be an arbitrary
KeyExpression.

Return
An object of unspecified type that may be treated as an AccessHandle<T> with the key given by the arguments.

Details
This function creates a tiand10 to data that already exists and needs to be accessed with read-only privileges. It takes

of values uniquely identifying the data that needs to be read. Immediately following this function,
and None finmediate permissionsl. The XeyHve r s i oni requested

as input the tup10
the fiand10 will have Read scheduling permissions
must eventually match that of ake 17 versionl that was ipubli shed.

In general, read_acces s data is migratable and potentially stored off-node.

Code Snippet

1

2

3

4

/* on one rank : */

auto my_handlel = initial_access<double> ("key_1") ;

create_work ([=] {

my handlel . emplace value (5 . 3) ;

5 })
6 my_handlel.publish(n_readers=1, version="final");

7

8 / / .

9

10 /* potentially on another rank: */

11 auto readHandle = read_access<double>("key_1", version="final");

12 create_work([=]{

13 std::cout << readHandle.get_value() << std::endl;

14) ;

45

Restrictions and Pitfalls

• Because the actual type returned by read_access<T> is unspecified, you should generally use auto instead
of naming the type on the left hand side of the assignment (this is generally a good idea in modern C++). In
other words,

// ./ good, preferred
auto my_handlel = read_access<double>("good", version=17);

// X still compiles, but not preferred (may miss out

// on some future optimizations and compile-time checks)

AccessHandle<double> my_handlel = read_access<double>("bad", version="oops");

For more, see §2.2.4

46

2.9 API: AccessHandle methods

In this section, we describe the methods that can be called on
by the access and e ad access functions).

2.9.1 emplace value

ccessHandle<T>

Summary
emplace_value constructs an object of the type pointed to by an
by forwarding the arguments to the constructor for T.

Syntax

// functional:

some handle.emplace value(argl, arg2, ...);

objects (i.e., the objects returned

FiccessHandle<T>

// Formal:

void AccessHandle<T>::emplace_value(Args&&... args);

Positional Arguments

• a rgs.. . (deduced types): Arguments to forward to the constructor of T.

Details

object (that is, T) in place

AccessHandle<T>::emplace value () mimics the syntax for in-place construction in standard library
containers. See, for instance, std::vector<T>::emplace_back(...) . If in-place construction is unnec-
essary or undesired, Iset_valuel can be used instead. Note that calling lemplace_valuel on a handle requires
Modify jmmediate permissions (see § If a previously constructed value exists (or a default constructed value, if
possible) for the value held by the AccessHandle<T>I, it will be destroyed via T: : -T O.

Code Snippet

1 struct LoudMouth f

2 LoudMouth(int i, double j) { cout << "Ctor: " « i << ",

3 };

4 auto h = initial_access<LoudMouth>("key");

5 create_work([=]f

6 h.emplace_value(42, 3.14); // prints "Ctor: 42, 3.14"

7 });

Figure 2.7 Basic usage of

47

emplace_value

< < < < endl; 1

Restrictions and Pitfalls

• In the current version of the specification, types that are default constructible will always be default constructed
before first use. For non-default-constructible types, however, memory of the correct size (i.e., sizeof (T))
will only be allocated, but no constructor will be called. The user must call emplace_value (...) before
performing any operations on the data (or risk undefined behavior).

48

2.9.2 publish

Summary
publish the data pointed to by a given liand10 so that it can be retrieved on other

Syntax

void

AccessHandle<T>::publish(n_readers=..., version=...)

Positional Arguments
None.

Keyword Arguments

• n_readers=size_t (optional): informs theiuntime systern

pARMAI

how many times read_access will be called
in order to access this data. If omitted, it defaults to 1.

• version=KeyExpression (or version (KeyExpression...), see § R,.4 for multiple-right-hand-side
usage) (optional): informs the runtime systein what version to associate with the data being

published. The value can be an arbitrary KeyExpression. If omitted, the version defaults to an empty
(i.e., a Ikeyl 1-uple with zero components). Omitting this keyword implicitly indicates to the runtime systern that
the Itand10 (or any Itand10 with the same name key) will not be published again in the remaining lifetime of the
program.

1ceyword argumenr

Details
Publish the data associated with a given Iiandle h such that it can be retrieved

invocation that gives the same name key as h and the same
to iDublish A ipublish is a read-only capture operation (see § V2-3).

read_access

O_readers

versionl

lceyword argumenr

Code Snippet

key

key

times anywhere via a
as the one given to the

1 auto me = darma spmd rank () ;

2 assert (darma_spmd_size >= 2) ;

3 if (me == 0) {

4 auto my_handle = initial_access<double> ("key_1") ;

5 create work ([=]

6 my handle . emplace value (5.3) ;

7 1) ;
8 my_handle.publish(n_readers=1, version="only");

9 }

10 else if(me == 1) {
11 auto my handle = read access<double>("key 1", version="only");
12 create_work([=]{

0 cout << my_handle.get_value() << endl; // prints "5.3"

14 }) ;

15

Figure 2.8 Basic usage of

49

publish

Restrictions and Pitfalls

publishlputs more burden on the programmer to avoid race conditions and deadlock, which are automatically
avoided when relying entirely on Isequential semantics. This is similar to deadlock situations with sends and
receives in MPI in which communicating processes block on a receive before sending to each other. For instance,
the following snippet deadlocks:

// This code deadlocks!
auto me = darma spmd rank () ;
assert (darma spmd size () >= 2) ;
if (me == 0) {

auto hl = initial_access<int> ("key", 0) ;
auto h2 = read_access<int> ("key", 1) ;
create_work ([=]

hl . set value (42) ;
hl .publish () ;
cout << h2.get_value () « endl;

1) ;
1
else if (me

auto h3 =
auto h4 =

/ /
/ /

== 1) {
initial_access<int>("key", 1);
read_access<int>("key", 0);

create_work ([=]
h3. set_value (73) ;
h3.publish () ;
cout << h4 . get value ()

1) ;

< < endl;

Deadlock! (eventually, at the latest when darma_finalize() is
called): neither of the above create_work()s can ever run

This snippet deadlocks because a dependency loop has been created between two [publisNread_accessl
pairs. While the deadlock is relatively obvious here, it can be much more difficult to decipher in a more
complex code, especially if, for instance, hl and h2 are arguments to a function, or if the parts of the Xeys
used to construct the handlesl are variables with values dependent on some previous computation.

• It is particularly easy to create deadlock scenarios by publishing a lhand10 and fetching it within the same
For this reason, we recommend extreme caution when this scenario could arise, and in general we suggest that
the user should avoid doing so if at all possible.

• Since Ipublishl is a read-only capture operation, it must have
calling publishlon a handlO with other scheduling permissionsl
capture operations, calling on a with Modify
Read jmmediate permissions in the Continuing context See §
code results in a runtime error at the marked line:

publishl

scheduling permissions

iunk

of Read or Modify;
is a runtime error. Also, as with all read-only

jrnmediate permissions results in a handlel with
for more details. For example, the following

auto h = initial_access<int> ("key") ;
create work ([=]

h. set value (5) ;
h.publish () ;
h. set_value (10) ; // X h does not have Modify immediate permissions

1) ;

• It is an error to call
• If ioublish is called on a given

again on that Iiandk or any other
Note that because of the default behavior of the

ipublish on a hand10
Iiand10

with the same codlinkkey and
without the

with the same namehand10
versionl

versionl
Yeyword argument

version

50

key

more than once.
it is an error to call

for the remaining lifetime of the program.
giving an explicit Iversion that

ipublish

Yeyword argument

handlel

is the empty key (e.g., h . publish (version ()) or h . publish (vers ion=make_key ())) will lead

to this same behavior.

51

2.9.3 get value

Summary get_value accesses the data pointed to by a

Syntax

const T& AccessHandle<T>::get_value();

Positional Arguments
None.

Return
A const reference to the data associated with the 111E

Details
Calling4et_valu0

Code Snippet

on aliand10

bandlelin a read-only manner.

requires Read or Modify finmediate permissions (see §

1 AccessHandle<double> my_handle = initial_access<double>("key_1", myRank);

2 create_work([=]{

3 my_handle.set_value(3.14);

4 });

5 create work(reads(my handle), [=]{

6 cout << my_handle.get_value() << endl; // prints "3.14"

7 });

Figure 2.9 Basic usage of

Restrictions and Pitfalls

get value

• Do not hold the reference returned by this method across an asyncronous operation on the source band10. For
example, the following results in undefined behavior:

auto h = initial_access<int>("my_key");

create_work([=]{ h.set_value(5); });

create_work([=]{

auto const& v = h.get value();

create_work([=]{ h.set value(10); });

cout << v << endl; // X undefined behavior!!

1);

Instead, to be safe, we recommend that when mixing synchronous and asynchronous code, enclose assignments
and their corresponding uses in their own scope:

52

auto h = initial_access<int>("my_key");

create_work([=]{ h.set_value(5); });

create_work([=]{

{ // begin scope for v

auto const& v = h.get value();

cout << v << endl;

} // ✓ prevent accidental usage of v after the create_work using h

create_work([=]{ h.set_value(10); });

// uses of v here are now a compile-time error rather

// than undefined behavior

1);

53

2.9.4 set value

Summary
s et value sets the value of the data pointed to by a

Syntax

template <typename U>
void AccessHandle<T>::set_value(U&& value)

Positional Arguments

hand10

• value (type convertible to T): The new value for the data.

Details
This invokes T : : operator= (u&&) (T's assignment operator to a universal reference to U) with the argument
value. If the type T has no assignment operator for this type, calling s et_value will be a compile-time error. If
you need to invoke an in-place constructor instead, use

Code Snippet

emplace_value

1 auto h = initial access<double>("key 1");
2 create_work([=]{
3 h.set_value(55.343);
4 });

Figure 2.10 Basic usage of

Restrictions and Pitfalls

set_value

• The specification of the method is likely to change in the future to be analogous to the behavior of, e.g., s t d : :
vector<T> : :push_back () (as it relates to std: :vector<T> : : emplace_back ()). If this could be
a problem for T, you should probably use Omplace_value for now.

54

2.9.5 get_re f erence

Summary
get reference gets a non-constant reference to the data pointed to by the

Syntax

T& AccessHandle<T>::get_reference()

Positional Arguments
None.

Return
A non-constant reference to the data.

Details
This method requires Modify

Code Snippet

hnmediate permissions

Iland10

See § I2.2.3I for more information onlimmediate permissionsl

1 AccessHandle<double> my handle1 = read_access<double>("key 1", myRank);

2 create_work([=]{

3 my_handlel.get_reference() = 242.343;

4 });

Figure 2.11 Basic usage of

Restrictions and Pitfalls

get_reference

• Do not hold the reference returned by this method across an asyncronous operation on the source hand10. For
example, the following results in undefined behavior:

auto h = initial_access<int>("my_key");

create work([=]{ h.set value(5); });

create_work([=]{

auto& v = h.get_reference();

create_work([=]{ h.set_value(1()); });

cout << v << endl; // X undefined behavior!!

1);

See recommendations in § I2.9.31 for more.

55

2.9.6 operator->

Summary
operator-> is a dereference operator to directly access the object pointed to by the

Syntax

T* AccessHandle<T>::operator->();

Input Parameters
None.

Return
Returns a reference to the data pointed to by the Ilandle

Iland10

Details
Just like set_value and 4et ref er en c e, this operator requires Modify nnmediate permissionX to invoke safely.
Unlike set_value and [get_referencel, however, the loperator->I can also be invoked on IiandleX that only
have Read mmediate permissionX. In that case, it is up to the user to ensure that only const methods are called on
the resulting object. In other words, Acces sHandle<T> : : operator-> () lets you "shoot yourself in the foot."
If more safety is desired, use the more verbose forms with set_valu0 and

Code Snippet

get_reference

1 //...

2 typedef std::vector<double> vec;

3 AccessHandle<vec> my_handle2 = initial_access<vec>("key_2", myRank);

4

5 create_work([=]{

6 my_handle2.emplace_value(0.0);

7 my handle2->resize(4);

8 double * vecPtr = my_handle2->data();

9 1) ;

Figure 2.12 Basic usage of

56

: operator->

1
2

3

4

5

6

7

8
9

10

2.9.7 get_key

Summary
get key gets the Ikeyl identifying the data pointed to by the

Syntax

bandle

darma_runtime::types::key_t const& AccessHandle<T>::get_key();

Positional Arguments
None.

Return
The Ikeyl identifying the data.

Details
This method can be called at any time after the
lmmediate permissionsl

Code Snippet

handle is created. It does not require any Ischeduling permissions nor

//...

auto myRank = darma_spmd_rank();

AccessHandle<double> my_handlel = read_access<double>("key_1", myRank);

auto myK = my_handlel.get_key();

create_work ([=] {

my_handlel . get_reference () = 242.343;

auto myK = my_handlel . get_key () ;

assert (myRank == myK . get_key () . component<l> () . as<int> ()) ;

1) ;

Figure 2.13 Basic usage of

57

get_key

2.9.8 =0 or release

Summary
re 1 e a s e or =0 releases the reference to the data held by the

Syntax
These two are equivalent.

/ / Functional:
some_handle = 0;
some_handle.release()

hand10

// Formal

void AccessHandle<T>::operator=(std::nullptr_t);

void AccessHandle<T>::release();

Positional Arguments
None.

Return
None.

Details
Release the reference to the underlying data held by a given handlO. Note that this effectively only decrements the
reference count; the data itself will not be deleted unless there are no other existing handleX referring to it. Releasing
at the earliest possible time can help avoid some deadlock situations, particularly with published data, and potentially
increase Ooncurrency

Code Snippet

1 //

2 AccessHandle<double> my handle1 initial access<double>("key 1", myRank);

3 create_work([=]{

4 my_handlel.get_reference() = 242.343;

5 });

6 my_handlel.release();

7 //

Figure 2.14 Basic usage of

58

=0 or release

2.10 API: Keywords

In this section, we describe the keywords of the DARMA-0.3.0-alpha

2.10.1 reads

Summary
reads is a keyword argument
within that task.

Syntax

for create_work

create_work(reads(handles...), [=]{

// code
});

Positional Arguments

that constrains permissions of a set of bandlesl to be read-only

• handles . . . : list of Acces sHandle<T> objects to constrain to read-only privileges.

Details
Used as a
that task. It can contain a single

lceyword argument

Code Snippet

to a create_work
hand10or a list of

to constrain permissions for a list of fiandleS to be read-only within
handles

1 / / . . .
2 auto my_handle = initial_access<double>("data", myRank);
3 create_work([=]{
4 my handle.emplace value(0.55);

5) ;
6 create_work(reads(my_handle), [=]{
7 std::cout << " " << my_handle.get_value() << std::endl;
8 my_handle.set_value(3.14); // X runtime error

9 1) ;
10 //

Restrictions and Pitfalls

Figure 2.15 Basic usage ofreads

• This can only be called as keyword argument to cre at e_wor k. Use in other contexts will lead to compile-time
errors, run-time errors, or undefined behavior.

59

2.10.2 n readers

Summary
n readers is a keyword argumenttoIpublisn

In namespace darma_runtime : :keyword_arguments_for_publicat ion.

2.10.3 version

Summary
version is a Iceyword argument to Ipublish and read_access<T>

In namespace darma_runtime : : keyword_argument s_f or_publicat ion.

Chapter 3

Translation Layer

A key design principle of PARMA is the ability to explore the design space of back enci
plementations without requiring changes in the application code. Since the front endj API is essentially an
and most with which we want to interface use traditional C or C++ constructs, a layer is
needed that translates WSU-based application code into C++ constructs that the back enc1rnntime systemsl can easily
implement and interact with. Given that 1DARMA is strictly embedded in C++, this layer makes heavy use of newer
C++ motifs and features from C++11 and C++14, such as template metaprogramming, perfect forwarding, constant
expressions (constexpr), and bmbda Oaptur0. Many of the additions to C-FF in recent years have centered around
making it easier for the user to express compile-time optimizations and transformations that the compiler can make to
reduce runtime overhead. As such, much of the translation PARMA does between the front enci EDSE and the

happens at compile time, and should result in minimal runtime overhead with most modern

rnntime systeM

back enci

rnntime systeni
compilers.

iuntime systems

3.1 Separation of Responsibilities Across Layers

pARMAI
systeni

separates responsibilities across the three different layers: application, translation, and
The list below describes the most important quantities and concepts that are required for writing and running
applications. Each layer will either read, write, or never use each quantity. Some of these quantities are parts

of the specification while certain other quantities are introduced for illustrating concepts, and are not strictly part of
the specification. Some quantities are repeated from previous sections.

back encI

im-
VDSU

back

PARMA

rnntim0

• AccessHandle: a variable (templated on data type) that is used in the application as arguments toltasksland for
reading/writing values in a data block. Each has its own unique copy of AccessHandle. AccessHandles are
never shared across tasks'.

• Data Type: the type of a variable, e.g., int, ve ct o r <double>.
• Data Layout: the layout or internal structure of a data type, usually telling whether a type is contiguous in
memory and whether a type holds only data (e.g., double) or has lookup pointers.

• Data Size: the total size a data block occupies in memory (number of bytes).
• Task Dependencies: a relationship between a taslc and data indicating the tasX depends on the data being avail-

able before the bsk can run.
• Task Precedence Constraints: a relationship between tasksl indicating that an ordering constraint exists between

tasks'.
• Access Permissions: access permissions (read, read-write, etc.) for an AccessHandle within a
• Address: a pointer through which data is accessed. The pointer provides no information on the size or type of
memory being accessed. It merely provides a means of accessing data at a particular memory location.

The following items are not strictly part of the specification, but are useful for having a rigorous vocabulary to explain
and understand the ffunslation layeil. These are quantities that are likely to be used in a
implementation, but are not required. As will be discussed in the back encf section, all of these quantities (if used by a

iuntime system), exist in an abstract class Instance that the ffanslation layeil interacts with.

taslc

back enci iuntime systeni

back enci

• Handle ID: the generalization of a variable in C++. A globally unique ID identifying a block of data that
represents the "same" quantity across time. This corresponds to, e.g., values mesh that are updated iteratively.
This is NOT synonymous with an actual physical location.

• Generation: an ID that distinguishes logically distinct generations of the same Handle ID. Updating the values in

61

Quantity App Translation Layer Backend

Data Type Creates Reads DNE
Data Layout Modifies Reads DNE
Data Size Modifies Reads Reads
Task Dependencies Modifies Reads Reads
Task Order Constraints DNE Creates Modifies
Address Reads DNE Modifies
Access Permissions Modifies Reads Reads
Handle ID DNE Opaque Create Creates
Generation DNE Opaque Modify Creates
Logical ID DNE Opaque Pass Creates
Physical ID DNE Opaque Pass Modifies

Table 3.1 Which concepts are modified by a given layer, which exist opaquely, and finally which concepts do
not exist (DNE).

a Data Handle changes the data and therefore progresses the generation. Two data blocks with the same Handle
ID that contain different logical times (usually different iterations) will be different generations.

• Data Blocks: the actual physical memory allocations where data lives. Data blocks comprise not just an address,
but potentially size and location information such as whether memory is DRAM, HBM, GPU, or remote.

• Logical ID: a tuple of Generation and Handle ID. Two Data Handles with the same logical ID must access
exactly the same values, but potentially different physical locations, and thus are logically the same. All objects
with the same Logical ID are required to have the same Handle ID. Thus, Logical ID equivalence is a stronger
condition than Handle ID equivalence.

• Physical ID: a tuple of Address, Generation, and Handle ID (although not required to be implemented as a
tuple). Two Data Handles with the same Physical ID not only access exactly the same values, but must also
access exactly the same memory location. Two logically distinct blocks that happen to access the same memory
location at different times do NOT share a Physical ID. All data Irandlesl with the same Physical ID must have
the same Logical ID and therefore the same Handle ID. Physical ID equivalence is then a stronger condition
than Logical ID or Handle ID.

The way in which quantities are used in each layer of the software stack can have several possibilities:

• Modifies: The layer both reads and manipulates the given quantity.
• Creates: A subset of Modifies. The layer creates the initial version of something, but is not allowed to modify

the quantity thereafter.
• Reads: The layer reads and understand a quantity, but is not allowed to manipulate it.
• Opaque Modify: The caller layer understands operations that need to be performed that will modify a struct, but

the implementation details are hidden by an interface. For example, a caller can pass a forward-declared struct
by pointer to a function. The function (callee) can modify integer members within the struct. Even though the
caller initiates the modification, the internal details of the struct are opaque to the caller and are only known to
the callee (function).

• Opaque Pass: A caller provides values in a struct to be read by a callee function, but the values are opaque to
the caller function. Similar to Opaque Modify, but the callee function cannot modify the struct.

• DNE: The concept does not exist - it is neither manipulated nor read by a layer.

We now summarize where quantities are created, modified, and read in Table3 Ai

A critical part of the PARMA design avoids potential interference between layers that can read/modify the same
quantity. Operations occurring in the lback endl must have guarantees that the application and Oanslation layerl are not
creating conflicts. We must therefore define a life cycle for each task

• Precursor: Dependencies are modified during the execution of a precursor
• Initialization: The taslc is created and initialized before being passed to a scheduler or task queue.
• Waiting: The task has been created is waiting in a queue to be scheduled or run.
• Running: The task has been popped from the queue and is actively running.
• Deletion: The task has finished running and is releasing its resources.

62

tasX

Quantity Precursor Initializing Waiting Running Deletion

Data Type
Data Size
Acces s Permis sions
Task Dependencies
Task Order Constraints
Address

App Creates
App Creates
App Modifies
App Creates
n/a

TL Reads
TL,BE Reads
TL,BE Reads
TL,BE Reads
TL Creates
BE Modifies

TL Reads
BE Reads
BE Reads
BE Reads

App Reads
App Modifies
n/a
n/a

BE Modifies n/a

TL Reads
TL,BE Reads
TL,BE Reads
TL,BE Reads
BE Reads

n/a BE Modifies App Reads BE Reads

Table 3.2 Usage of different quantities throughout a single task's life cycle

Critically, Table I3.2I ensures that each layer has no conflicts. No two layers simultaneously have modify permissions
during the life cycle of a tas1C, nor can one layer read simultaneously as another layer modifies. Two layers can
simultaneously read, although even that rarely happens.

3.2 Important C++ Concepts

Even though neither the front encl API application programmers nor the I:lack endl implementation developers need
to understand the implementation details of the translation layer, it is useful to document several of the idioms and
"tricks" used in the Iranslation layer for those wishing to have a thorough understanding of all PARMA layers, and
particularly for those who wish to contribute to the expansion and adaptation of the [EDS1.1 that is the
Thus, a few of the basic techniques and concepts used by the translation layer are documented below.

3.2.1 Lambda Capture for Automatic Dependency Detection and Versioning

front encl

The most pivotal trick to document here is (semi-)automatic dependency detection through the C++ 11 lambd4 mecha-
nism and the copy capture-default (that is, [=]). The C++ standard specifies that if the copy capture-default is given,
any variables that are ODR-uselk inside of the lambda's scope but defined outside of are copied by value into that

's scope. Furthermore, if a lambda with a copy capture-default is moveC the move constructors of the inner
scope copies will be invoked (or, if no user-defined move constructor is given but a user-defined copy constructor is,
the copy constructor is invoked). We can leverage this fact along with a thread-safe (and thread-specific) global context
object to associate captured AccessHandle<T> objects with the capturing create_work () invocation as
dependencies. Furthermore, if we make the relevant members of AccessHandle<T> mutable, we can modify the

that has been copied from to increment the version, so that later tasks will depend on the completion of earlier
the same hand10. Thus, the mechanism can be used for both dependency

lambda

hanc110
create_work calls that
detection and

Oaptur0
$equential semantics

3.2.2 Keyword Arguments

Oaptur0

The tricks used to emulate keyword arguments in C++ are well-known and have been exploited elsewhere to similar
effect. The addition of perfect forwarding and constant expression semantics to C++ 11 and C++ 14 allow this to be
done with rigorously zero runtime overhead — all transformations used to interpret Yeyword argumentsl as traditional,
positional arguments can occur at compile time.

1"one definition rule"-used. See Ihttp : //en. cppreference . com/w/cpp/language/definition#ODR—us4 for details. As this
source states, "Informally, an object is odr-used if its address is taken, or a reference is bound to it, and a function is odr-used if a function call to it
is made or its address is taken.'

2technically, defined in the 's "reaching scope," which is also formally defined
3e.g., with std: : move (); have a deleted copy constructor

lambda
lambdas

4e.g., the Boost::Parameter library

63

64

Chapter 4

Backend

The back en0 AP-11 is organized into two namespaces:

1. darma_runt ime : : abst ract : : f rontend
2. darma_runt ime : : abst ract : :backend

The first contains abstraction base classes of entities that are implemented in the franslation layer and are the only
constructs in that layer that the lback end runtime systeM is allowed to interact with. The second contains abstract base
classes that must be concretely implemented in the lback end runtime systern and are the only lback end abstractions the

is allowed to interact with. Below is a summary of the requirements to implement these abstractions,
the documentation for which is taken from the Doxygen-style comments in the source code itself. As such, the source
code may be a better resource for those interested in this part of the document, but we have included it here for
completeness.

Itranslation layer

4.1 Important Backend Concepts

Although some of this terminology was given in the introduction, we repeat definitions here. Some of the terms here
have C++ classes that directly represent them. Other terms are only concepts, useful in illustrating the use of other C++

classes.

Task: The work unit instantiated directly by the application developer. Tasks are guaranteed to make
progress, but are interruptible.

Execution stream: An Oxecution strewn will consist of a sequence of many taskS, and, like tasks, is guaranteed to
make forward progress. All Oxecution streamS are taskS, but Oxecution streamS specifically have no parent
and are the root of an independent task-DAO There is no class corresponding uniquely to an
since all streams are tasks'.

Operation: This is a unit of execution that is guaranteed to be non-interruptible. An Operation is not equivalent to
a task since tasksl are interruptible. OperationS are the smallest, schedulable units of work. A task consists
of a sequence of OperationS. While taskS are explicitly instantiated by the application developer,
(individual portions of task) can be implicitly instantiated by the runtime systeM. There is no class provided
corresponding directly to an Operation Since only one component Operation of a !task may be active at any given
time, a

forward

execution strewn

OperationS

Handle: The
immutable type.

Logical Time: An abstract notion of time progressing as

task always corresponds uniquely to an

PARmAl
Operation

generalization of a variable. Handle encapsulates both a unique immutable name (key) and an

OperationS are performed on the values encapsulated by a
Handle. There is no class corresponding to logical time. The progression of logical time for Use objects is
encapsulated in the input and output Flows (see below).

Use: A Use corresponds to a Handle at a particular moment in logical time. Uses are always unique to an
Operations cannot add or remove uses from its context. Tasks, being interruptible, can add and remove Use
instances. Uses carry particular permissions and therefore have some intent of Read, Write, or Modify.

Flow: A Flow encapsulates a data-task relationship. An input Flow indicates that a Use requires a particular value
before its corresponding Operation begins. An output Flow indicates that a Use produces a particular value after
being released at the end of its corresponding Operation. All Use objects have exactly two Flow objects — one
input and one output — and each Flow is associated with exactly one Use. A Modify Use will have an input
Flow indicating the value consumed and an output Flow indicating the value produced. A Read Use is will also

Operation

65

have an output Flow even though it produces no data since the "outpur indicates the release of data and clearing
of an anti-dependence.

Dependency: Although Dependency is not a class in PARMA, a task will always have an initial set of Uses that must
become available for the task to begin. This initial set of uses are the "dependencies" of a

4.2 Class Index

4.2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

4 VII • IL 1 • 11 1

task

A backend-allocated object representing the input/output state of a Handle at the beginning/end of
a task

4 • 111 . t • I •• - le•••.le -
Encapsulates a named, mutable chunk of data which may be accessed by one or more tasks that
use that data (or the privilege to schedule permissions on that data) 617

411 • It I • II •• • II •• •l I 4 — id • • .11 D-
A class encapsulating the attributes of a particular publish operation

. gee t • -••. e . ••1 - e•• r. I • II

Abstract class implemented by the backend containing much of the runtime
darma_runtime::abstract::frontend::SerializationManageil

An immutable object allowing the backend to query various serialization sizes, offsets, behaviors,
and data, for a given handle and its associated data block

VII 11 I • II • •• • I I • • • 41

A piece of work that acts on (accesses) zero or more Pand10 objects at a particular point in the
apparently sequential uses of these Hand10 objects

4 t l • 11 •• • e a •• I I "

Encapsulates the state, permissions, and data reference for a given use of a H.and10 at a given time .

4.3 Class Documentation

4.3.1 darma_runtime::abstract::backend::Flow Class Reference

A backend-allocated object representing the input/output state of a Handle at the beginning/end of a task.

#include <flow . h>

Detailed Description

ZE

A backend-allocated object representing the input/output state of a Handle at the beginning/end of a task.

When executing tasks, data "flows" from one task to the next. A precursor task produces data that will be consumed
by a successor task. Each task carries a unique Use variable for each Handle it uses. Each Use has an input flow
and output flow. This is true even of a read-only Use, with the output indicating the release of anti-dependence. An
equivalence relationship between two Flows a and b is indicated by allocating the lloW a with a call to Runt
: :make_same_flow (b) or vice versa. Equivalence must be defined within the backend. The translation layer will
never make an equivalence test itself.

The life-cycle of ak to*consists of 4 strictly ordered phases. For some Vlo* instance flw,

• Creation — & flw is a pointer returned by any of make_initial_flow () , make_fetching_flow () ,
make_null_flow () , make_same_flow () , make_forwarding_flow () , or make_next _f low ()

66

• Registration — Each flow is owned by a Use as either input or output. Each Use will be registered through
before being used in a task or publication. All flows have exactly one Use

association in their lifetime; that is, & flw is either a return value of Use: :get_in_flow () or Use: : get
_out_flow () for some Use object that is an argument to register_use () at some time after flw was
created but before it is released. To ensure this strict ordering of the r 1 owl life-cycle, the runtime must en-
force atomicity among register_use (&u) , make_next_flow, (& flw,)/make_forwarding
flow (& flw,)/make_same_flow (& flw,), release_use (&u) for any r 1 cpw f 1 w that could
be returned by u.get_in_flow () or u.get_out_flow () for some Use u.

Runtime: :register_use ()

• Release - Each rlowl
: :release_use ()

is owned by a Use as either input or output. r 1 owls are released through to
on the owning us e. The r 1 ow will never be used directly (or indirectly) by the translation

after calling r e lease_use O.

• At most one call to runtime .make_next_flow (&flw, ...) can happen anytime after creation, but
before release. Any number of calls to runtime .make_same_flow (& flw,) can happen anytime
after creation, but before release. At most one call to runtime .make_forwarding_flow (& flw,)
can be made in the lifetime of a rlow (and this call does not preclude a make_next_flow (& flw,)
call also being made)

Two Flo* objects, a and b, are considered to consume or produce the same version of the same data if a was con-
structed using make_same (b) or if b was constructed using make_same (a). The flow returned by make_—,
s ame (a), however, is a different object and is therefore has an independent life cycle and is independently modifiable
by the backend.

The documentation for this class was generated from the following file:

• flow.h

4.3.2 darma_runtime::abstract::frontend::Handle Class Reference

Encapsulates a named, mutable chunk of data which may be accessed by one or more tasks that use that data (or the
privilege to schedule permissions on that data).

#include <handle.h>

Public Member Functions

• virtual types::key_t const & get_key () const =0

get_key Returns a unique key. Multiple calls to this function on the same key object must always return the same value
• virtual 5erializationManageti const * get_serialization_manageil () const =0

get_serialization_manager Returns a type-specific serialization manager. The object returned will be persistent as long
as thelYik exists

Detailed Description

Encapsulates a named, mutable chunk of data which may be accessed by one or more tasks that use that data (or the
privilege to schedule permissions on that data).

A kiand10 represents an entity conceptually similar to a variable in a serial program.

Member Function Documentation

virtual types::keyA const& darma_runtime::abstract::frontend::Handle::getkey () const [pure vir—
tual] get_key Returns a unique key. Multiple calls to this function on the same key object must always return the
same value

67

Returns

A unique key identifying the tuple.

virtual SerializationManager const* darma_runtime::abstract::frontend::Handle::get_serialization_manager (
) const [pure virtual] get_serialization_manager Returns a type-specific serialization manager. The object
returned will be persistent as long as the Hand10 exists

Returns

A type-specific serialization manager

The documentation for this class was generated from the following file:

• handle.h

4.3.3 darma_runtime::abstract::frontend::PublicationDetails Class Reference

A class encapsulating the attributes of a particular publish operation.

#include <publication_details .h>

Public Member Functions

• virtual types::key_t const & get_version_narn0 () const =0

Get the unique version (as a key) of the item being published. The combination of h.get_key() and
must be globally unique for aklandlO h returned bytise::get_handle()for the use given as the first argument to Runtime
::publish_use() for which this object is the second object.

Lget_version_name()

• virtual size_t Iget_n_fetchersl () const =0

Get the number of unique fetches that will be peiformed. All N fetches must be complete before the backend can declare
a publication to be finished.

Detailed Description

A class encapsulating the attributes of a particular publish operation.

Member Function Documentation

virtual types::keyA const& darma_runtime::abstract::frontend::PublicationDetails::get_version_name () const
[pure virtual] Get the unique version (as a key) of the item being published. The combination of h.get_key()
and get_version_name() must be globally unique for a Illand10 h returned by Vse::get_handle() for the use given as the
first argument to Runtime::publish_use() for which this object is the second object.

Returns

A unique version name for the current publication of a given Handle

virtual size_t darma_runtime::abstract::frontend::PublicationDetails::get_n_fetchers () const [pure vir—
tual] Get the number of unique fetches that will be performed. All N fetches must be complete before the backend
can declare a publication to be finished.

68

Returns

The number of Runtime::make_fetching_flow() calls that will fetch the combination of key and version given in
the publish_use() call associated with this object

The documentation for this class was generated from the following file:

• publication_details.h

4.3.4 darma_runtime::abstract::backend::Runtime Class Reference

Abstract class implemented by the backend containing much of the runtime.

#include <runtime.h>

Public Types

• enum FlowPropagationPurpose Input Output ForwardingChanges

A set of enums identifying the relationship between two flows.

• typedef frontend::Task taskA

• typedef enum

A set of enums identifying the relationship between two flows.

OutputFlowOfReadOperation

Oarma_runtime::abstract::backend::Runtime::FlowPropagationPurpose

Public Member Functions

• virtual void fegister_task (types::unique_ptr_template<

Register a task to be run at some future time by the runtime system.

• virtual Ifrontend::Task * Aet_running_task () const =0

frontend::Task > &&task)=0

}

flow_propagation_purpose

Get a pointer to the frontend:: Task object currently running on the thread from whichiget_running_task(Iwas invoked.

• virtual void

Register a frontend::Us0 object.

• virtual [Flo* *

Make an initial

• virtual ploNV *

Make an fetching

• virtual I-loNV *

Make a null

fegister_us0

Makeinitial_flo*

Flo*

(frontend::Us0 *u)=0

(frontend::Hand10 *handle)=0

to be associated with the handle given as an argument.

Make_fetching_flo*

Flo*

rontend::Handl- *handle, types::keyA const &version_key)=0

to be associated with the handle given as an argument.

Make_null_floAV

Flo*

(frontend::Hand10 *handle)=0

to be associated with the handle given as an argument.

• virtual [Flo* * Make_same_flo* (Flo* *from,

Make a _flow that is logically identical to the input parameter.

• virtual yloNV * Make_forwarding_flo* (Ho* *from,

flow_propagation_purpose_f purpose)=0

flow_propagation_purpose_r purpose)=0

Make a new input Flo* that receives forwarded changes from another inputFl—W, the latter of which is associated with
a Use on which Modify immediate permissions were requested.

• virtual plc)* * Make_next_flo* (Fr* *from, flow_propagation_purpose_r purpose)=0

Make a flow that will be logically (not necessarily immediately) subsequent to anotherrl—W.

• virtual void felease_us0 (frontend::Us0 *u)=0

Release a Use object previously registered with register_use.

• virtual void publish_use (frontend::Use *f,frontend::PublicationDetails *details)=0

Indicate that the state of a Handle corresponding to a given Use should be accessible via a corresponding fetching usage
with the same version_key.

69

Detailed Description

Abstract class implemented by the backend containing much of the runtime.

Note

Thread safety of all methods in this class should be handled by the backend implementaton; two threads must be
allowed to call any method in this class simultaneously.

Member Enumeration Documentation

enum darma_runtime::abstract::backend::Runtime::FlowPropagationPurpose A set of enums identifying the
relationship between two flows.

Enumerator

Input The new flow will be used as the input to another logical Use of the data

Output The new flow will be used as the output for another logical Use of the data

ForwardingChanges The new flow will be used as an input to another logical Use of the data that incorporates
changes made to data associated with an input [L-lo* for which Modify immediate permissions were re-
quested, thus "forwardinr the modifications to a new logical Use. Only ever used with
flow0

inake_forwarding_H

OutputFlow0fReadOperation The new flow will be used as the corresponding return of get_out_flow() for a
read-only Use that returns a given flow for get_in_flow().

Member Function Documentation

virtual void darma_runtime::abstract: :backend::Runtime::registerAask (types::unique_ptrAemplate< fronterml—
::Task > && task) [pure virtual] Register a task to be run at some future time by the runtime system.

See frontenth:Task for details

Parameters

task A unique_ptr to a task object. Task is moved as rvalue reference, indicating transfer of ownership to the
backend.

See

virtual frontend::Task* darma_runtime: :abstract: :backend: :Runtime::getrunningiask () const [pure
virtual] Get a pointer to the frontend::TasX object currently running on the thread from which

was invoked.task()

Returns

ket_running_i—

A non-owning pointer to the frontend::Task object running on the invoking thread. The returned pointer must be
castable to the same concrete type as was passed to [Runtime::register_task0 when the task was registered.

70

Remarks

See

If the runtime implements context switching, it must ensure that the behavior of Runtime::get_running_task() is
consistent and correct for a given running thread as though the switching never occurred.
The pointer returned here is guaranteed to be valid until Task::run() returns for the returned task. However,
to allow context switching, it is not guaranteed to be valid in the context of any other task's run() invocation,
including child tasks, and thus it should not be dereferenced in any other context.

virtual void darma_runtime::abstract::backend::Runtime::register_use (frontend::Use * u) [pure vir—
tual] Register a frontend::Us0 object.

This method registers a Use object that can be accesses through the the iterator returned by t.get_dependencies()
for some task t. register_use will always be invoked before register_task for any task holding a Use u. Accessing
a frontend::Usel u through a frontend::TasX t is only valid between the time register_use (&u) is called and
release_use (&u) returns. No make_* functions may be invoked on either the input or output flows of a Use u
returned by Use::get_input_flow() and Use::get_output_flow() before calling tegister_use0. Additionally, no make_*
functions may be invoked on the input or output flows of a Use u after calling t-elease_use()

virtual Flow* darma_runtime::abstract::backend::Runtime::makeinitialflow (frontend::Handle * handle)
[pure virtual] Make an initial I-lo* to be associated with the handle given as an argument.

The initial Ilo* will be used as the return value of u->get_in_flow() for the first Use* u registered with write privileges
that returns handle for u->get_handle() (or any other handle with an equivalent return for get_key() to the one passed
in here). In most cases, this will derive from calls to initial_access in the application code.

Parameters

handle A handle encapsulating a type and unique name (variable) for which the tio* represents the initial state

virtual Flow* darma_runtime::abstract::backend::Runtime::make_fetching_flow (frontend::Handle * handle,
types::key_t const & version_key) [pure virtual] Make an fetching I41o* to be associated with the handle
given as an argument.

The fetching usage will be used as a return value of u->get_in_flow() for a Use* u intended to fetch the data published
with a particular handle key and version_key.

Parameters

handle A handle object carrying the key identifer returned by get_key()

version_key A unique version for the key returned by handle->get_key()

virtual Flow* darma_runtime::abstract::backend::Runtime::make_nullflow (frontend::Handle * handle)
[pure virtual] Make a null 11-1o* to be associated with the handle given as an argument.

A null usage as a return value of u->get_out_flow() for some Use* u is intended to indicate that the data associated
with that Use has no subsequent consumers and can safely be deleted. See

71

1-elease_use0

Parameters

handle The handle variable associate with the flow

virtual Flow* darma_runtime::abstract::backend::Runtime::make_same_flow (Flow *from, flow_propagatiom—
_purpose_t purpose) [pure virtual] Make a flow that is logically identical to the input parameter.

Calls to filake_same_flow() indicate a logical identity between Flows in different Use instances. filake_same_flow0
may not return the original pointer passed in. Igo* objects must be unique to a Use. Flows are registered and released
indirectly through calls to gister_use0/release_use(). The input
through a tvgister_use0 call, but not yet released through a
times filake_same_flow0 can be called with a given input.

Parameters

to filake_same_flow0 must have been registered
release_use()call. There is no restriction on the number of

from An already initialized flow returned from ma ke _*_f low

purpose An enum indicating the relationship between logically identical flows (purpose of the function). For
example, this indicates whether the two flows are both inputs to different tasks or whether the new flow
is the sequential continuation of a previous write (forwarding changes)

A new 1141o* object that is equivalent to the input flow

virtual Flow* darma_runtime::abstract::backend::Runtime::make_forwarding_flow (Flow * from, flovir_
propagation_purposeA pmpose) [pure virtual] Make a new input [Flo* that receives forwarded changes
from another input 11-1o*, the latter of which is associated with a Use on which Modify immediate permissions were
requested.

Parameters

from An already initialized flow returned from make_*_flow

purpose An enum indicating the relationship between logically identical flows (purpose of the function). In the
current specification, this enum will always be ForwardingChanges

virtual Flow* darma_nintime::abstract::backend::Runtime::make_next_flow (Flow *from, flow_propagation
_purpose_t purpose) [pure virtual] Make a flow that will be logically (not necessarily immediately) sub-
sequent to anotherklo*

Calls to filake_next_flow() indicate a producer-consumer relationship between Flows. filake_next_flow() indicates that
an operation consumes Flow* from and produces the returned Flow*. Flows are registered and released indirectly
through calls to i-egister_use(Vrelease_use(). Pio* instances cannot be shared across Use instances. The input to

must have been registered with i.egister_use(), but not yet released throughImake_next_flow()

Parameters

t.elease_use()

from The flow consumed by an operation to produce the Ilo* returned by filake_next_flow()

purpose An enum indicating the purpose of the next flow

72

Returns

A new Flow object indicating that new data will be produced by the data incoming from the Flow given as a
parameter

virtual void darma_runtime::abstract::backend::Runtime::release_use (frontend::Use * u) [pure vi r—
tual] Release a Use object previously registered with register_use.

Upon release, if the Use* u has immediate_permissions() of at least Write, the release allows the runtime to match the
producer flow to pending Use instances where u->get_out_flow() is equivalent to the consumer pending->get_in
flow() (with equivalence for l4lo* defined in flow.h). The location provided by u->get_data_pointer_reference() holds
the data that satisfies the pending->get_in_flow()

If the return value of u->get_out_flow() is the same as or aliases a created with Make_null_flow0 at the time
-elease_use0

Flo*
is invoked, the data at this location may be safely deleted.

If the Use* u has scheduling_permissions() of at least Write, but has no immediate permissions the Use* is an "alias"
use. As such, u->get_out_flow() only provides an alias for u->get_in_flow(). u->get_in_flow() is the actual producer
flow that satisfies all tasks/uses dependeing on u->get_out_flow(). There will be some other task t2 with Use* u2 such
that u2->get_out_flow() and u->get_in_flow() are equivalent. release_use(u2) may have already been called, may be in
process, or may not have been called when release_use(u) is invoked. The backend runtime is responsible for ensuring
correct satisfaction of pending flows and thread safety (atomicity) of release_use(...) with aliases. An alias use can
correspond to another alias use, creating a chain of aliases that the backend runtime must resolve.

Alias resolution should be implemented in constant time. That is, if l4lo* a aliases b and Ylo* b aliases c, the fact that
a aliases c should be discernible without linear cost in the size of the set { a, b, c}.

If the Use* u has immediate_permissions() of Read, the release allows the runtime to clear anti-dependencies. For a
task t2 with Write privileges on Use* u2 such that u2->get_in_flow() is equivalent to u->get_in_flow() (or u->get_4—
out_flow(), depending on backend implementation) If u is the last use (there are no other Use* objects registered with
u->get_in_flow() equivalent to u2->get_in_flow()) then task t2 has its preconditions on u2 satisfied.

Parameters

u The Use being released, which consequently releases an in and out flow with particular permissions.

virtual void darma_runtime::abstract::backend::Runtime::publish_use (frontend::Use *f, frontend::Publication
Details * details) [pure virtual] Indicate that the state of a Handle corresponding to a given Use should be
accessible via a corresponding fetching usage with the same version_key.

See PublicationDetails for more information

Parameters

u The particular use being published

details This encapsulates at least a version_key and an n_readers

See also

PublicationDetails

The documentation for this class was generated from the following file:

• runtime.h

73

4.3.5 darma_runtime::abstract::frontend::SerializationManager Class Reference

An immutable object allowing the backend to query various serialization sizes, offsets, behaviors, and data, for a given
handle and its associated data block.

#include <serialization_manager .h>

Public Member Functions

• virtual size_tget_metadata_sizO() const =0

returns the size of the data as a contiguous C++ object in memory (i.e., sizeof(T))

• virtual size_t et_packed_data_sizO(const void *const object_data) const =0

Get the size of the buffer that the pack_data()function needs for serialization.

• virtual void pack_dat4 (const void *const object_data, void *const serialization_buffer) const =0

Packs the object data into the serialization buffer

• virtual void hnpack_dat4 (void *const object_dest, const void *const serialized_data) const =0

Unpacks the object data from the serialization buffer into object_dest.

Detailed Description

An immutable object allowing the backend to query various serialization sizes, offsets, behaviors, and data, for a given
handle and its associated data block.

Remarks

The only method that is valid to invoke for the 0.2.0 spec implementation is

Member Function Documentation

get_metadata_size()

virtual size_t darma_runtime::abstract::frontend::SerializationManager::get_packed_data_size (const void *const
object_data) const [pure virtual] Get the size of the buffer that the Oack_data() function needs for serial-
ization.

Parameters

object_data pointer to the start of the C++ object to be serialized. The object must be fully constructed and valid
for use in any context where it could be used when unpacked ("could be user is a user-defined
concept here, but basically means that operations performed on the object must yield results and
side-effects "as-if' the serialization had never happened).

virtual void darma_runtime::abstract:frontend::SerializationManagempack_data (const void *const object,
data, void *const serialization_buffer) const [pure virtual] Packs the object data into the serialization
buffer.

Parameters

object_data pointer to the start of the C++ object to be serialized. Must be in the exact same state as
when Aet_packed_data_size() was invoked with the same object.

serialization_buffer the buffer into which the data should be packed. The backend must preallocate this buffer to
be the size returned by get_packed_data_size0 when invoked immediately prior to
pack_data0 with the same object_data pointer

74

Remarks

Idata_size0
The backend must ensure that no running task has write access to the object_data between the time

is called and pack_data0 returns, such that the state of object_data does not change in this time frame
(under, of course, the allowed assumptions that the user has correctly specified aliasing characteristics of the
handle or handles pointing to object_data).

get_packed_-

virtual void darma_runtime::abstract:frontend::SerializationManagemunpack_data (void *const object_dest,
const void *const serialized _data) const [pure virtual] Unpacks the object data from the serialization
buffer into objectAest.

Upon invocation, object_dest must be allocated (by the backend) to have size ket_metadata_size0 but the
method is responsible for construction of the object itself into this buffer. Upon return, object_dest should point

to the beginning of a C++ object that is fully constructed and valid for use in any context where it could have been
used before it was packed (see get_packed_data_size0 for clarification of "could have been user)

Unpack_

oata()

Parameters

object_dest backend-allocated buffer of size get_metadata_size0 into which the object should be constructed
and deserialized

serialized_data a pointer to the beginning of a buffer of the same size and state as the second argument to
packAata0 upon return of pack_clata0 for the corresponding object to be unpacked.

The documentation for this class was generated from the following file:

• serialization_manager.h

4.3.6 darma_runtime::abstract::frontend::Task Class Reference

A piece of work that acts on (accesses) zero or more fiand10 objects at a particular point in the apparently sequential
uses of these Rand10 objects.

#include <task.h>

Public Member Functions

• virtual types::handle_container_template< IUse const * > const & Iget_dependenciesl () const =0

Return an Iterable of TAO objects whose permission requests must be satisfied before the task can run.

• virtual void ()=0
Invoked by the backend to start the execution phase of the task's lffe cycle.

• virtual const types::key_t & ket_nam0 () const

returns the name of the task ff one has been assigned withs'et_name() or a reference to a default-constructed Key if not.

• virtual void set_narn0 (const types::key_t &name_key)=0

sets the unique name of the task

• virtual bool is_migratablel () const

returns true iff the task can be migrated

• virtual size_t ket_packed_sizO () const =0

Returns the number of bytes required to store the task object. Not relevant for current specification which does not
support task migration.

• virtual void toack (void *allocated) const =0

Pack a migratable serialization of the task object into the passed-in buffer.

75

Detailed Description

A piece of work that acts on (accesses) zero or more I-IandlO objects at a particular point in the apparently sequential
uses of these I-Iand10 objects.

Life-cycle of a ifasX for some instance t:

• registration — register_task() is called by moving a unique_ptr to t into the first argument. At registration time,
all of the IUs0 objects returned by the dereference of the iterator to the iterable returned by t.get_dependencies()
must be registered and must not be released at least until the backend invokes t.run() method.

• execution — the backend calls t.run() once all of the dependent Uses have their required permissions to their
data. By this point (and not necessarily sooner), the backend must have assigned the return of get_data_pointer_-
reference() to the beginning of the actual data for any IUsel dependencies requiring immediate permissions.

• release — when rInsk.run0 returns, the task is ready to be released. The backend may do this by deleting or
resetting the unique_pn passed to it during registration, which will in turn trigger the —Task() virtual method
invocation. At this point (in the task destructor), the frontend is responsible for calling release_handle_access()
on any UsiO instances requested by the task and not explicitly released in the task body by the user.

Member Function Documentation

virtual types::handle_container_template<Use const*> const& darma_runtime::abstract::frontend::Task::get4—
_dependencies () const [pure virtual] Return an Iterable of IUs0 objects whose permission requests must
be satisfied before the task can run.

See description in [Insk and IUs0 life cycle discussions.

Returns

An iterable container ofUse objects whose availability are preconditions for task execution

virtual const types::key_t& darma_mntime::abstract::frontend::Task::get_name () const [pure vir—
tual] returns the name of the task if one has been assigned with set_name(), or a reference to a default-constructed
Key if not.

In the current spec this is only used with the outermost task, which is named with a key of two size_t values: the SPMD
rank and the SPMD size. See darrna_backendinitialize() for more information

Returns

A key object giving a unique name to the task

virtual void darma_runtime::abstract::frontend::Task::set_name (const types::key_t & nameicey) [pure
virtual] sets the unique name of the task

In the current spec this is only used with the outermost task, which is named with a key of two size_t values: the SPMD
rank and the SPMD size. See darma_backendinitialize() for more information

Parameters

name _key A key object containing a unique name for the task

virtual bool darma_runtime::abstract::frontend::Task::is_migratable () const [pure virt ua I] rcturns
true iff the task can be migrated

76

irasX

Remarks

always return false in the current spec implementation. Later specs will need additional hooks for migration

Returns

Whether the task is migratable.

virtual sizei darma_runtime::abstract::frontend::Task::getpacked_size () const [pure virtual] Re-
turns the number of bytes required to store the task object. Not relevant for current specification which does not
support task migration.

Returns

The size in bytes need to pack the task into a serialization buffer

virtual void darma_runtime::abstract::frontend::Task::pack (void * allocated) const [pure virtual]
Pack a migratable serialization of the task object into the passed-in buffer.

Parameters

allocated The pointer to region of memory guaranteed to be large enough to hold the serialization of the class

The documentation for this class was generated from the following file:

• task.h

4.3.7 darma_runtime::abstract::frontend::Use Class Reference

Encapsulates the state, permissions, and data reference for a given use of a klandle at a given time.

#include <use.h>

Public Types

• enum
None

Permissions
=0,

Reduce
[Readl

=4 }
=1,
{
Write=2, Modify =3,

An enumeration of the allowed values that

• typedef enum

Vmmediate_permissions0andscheduling_permissions()can return.

darma_runtime::abstract::frontend::Use::Permissions

An enumeration of the allowed values that

Public Member Functions

• virtual Handle const *ket_hand1e

immediate_permissions()

() const =0

termissions_t

andlscheduling_permissionsOcan return.

Return a pointer to the handle that this object encapsulates a use of

• virtual fiackend::Flo* * Aetin_floW 0=0

Get the Flow that must be ready for use as a precondition for the riitsk t that depends on this I tI,s'd

• virtual Nckend::Flo* * ket_out_flo* 0=0

Get the Flow that is produced or made available when this I (Is0 is released.

77

• virtual Oermissionsf immediate_permissions () const =0

• virtual Oermissions_t scheduling_permissionsl () const =0

• virtual void *& get_data_pointer_referenc0 0=0

Detailed Description

Encapsulates the state, permissions, and data reference for a given use of a

Use objects have a life cycle with 3 strictly ordered phases. For some Usel

at a given time.

instance u,

I-Iand10

• Creation/registration — & u is passed as the argument to register_use(). At this time, u.get_in_flow() and u.get_—>
outflow() must return unique, valid Flow objects.

rlask or Publish use (up to once in lifetime):

— Task use: For tasks, & u can be accessed through the iterable returned by t.get_dependencies() for some
object tpassed to register_task() after u is created and before u is released. At this time, u.immediate
_permissionsO, u.scheduling_permissions(), and u.get_data_pointer_reference() must return valid values,
and these values must remain valid until Runtime: Telease_use(u) is called (note that migration may change
this time frame in future versions of the spec).

Task

— Publish use: A single call to Runtime::publish_use() may be made for any Us0. The frontend may imme-
diately call release_use() after publish_use(). If the publish is deferred and has not completed by the time
release_use0 is called, the backend runtime must extract the necessary Flow and key fields from the

• Release — Following a task use or a publish use, the translation layer will make a single call to Runtime: :release_-
use. The IUsel instance may no longer be valid on return. The destructor of IUs0 will NOT delete its input and
output flow. The backend runtime is responsible for deleting Flow allocations, which may occur during release.

Member Enumeration Documentation

enum darma_runtime::abstract::frontend::Use::Permissions An enumeration of the allowed values that immechalte

I-Permissions0

Enumerator

None A
None

and scheduling_permissions0 can return.

Use may not perform any operations (read or write). Usually only immediate_permissions will be

Read An immediate (scheduling) IUs0 may only perform read operations (create read-only tasks)

Write An immediate (scheduling) IUse may perform write operations (create write tasks)

Reduce An immediate (scheduling) 11.Js0 may perform reduce operations (create reduce tasks). This is not a
strict subset of Read/Write privileges

Member Function Documentation

virtual permissionsA darma_runtime::abstract::frontend::Use::immediate_permissions () const [pure vir—
tual] Get the immediate permissions needed for the Flow returned by getin_flow0 to be ready as a precondition
for this 1=1

virtual permissionsA darma_runtime::abstract::frontend::Use::scheduling_permissions () const [pure vir—
tual] Get the scheduling permissions needed for the Flow returned by ket_in_flow0 to be ready as a precondition
for this

78

virtual void*& darma_runtime::abstract::frontend::Use::get_clata_pointer_reference () [pure virtual]
Get a reference to the data pointer on which the requested immediate permissions have been granted.

For a IUsel requesting immediate permissions, the runtime will set the value of the reference returned by this function
to the beginning of the data requested at least by the time the backend calls Task::run0 on the task requesting this

The documentation for this class was generated from the following file:

• use.h

79

II.JsO

80

Chapter 5

Requirements

5.1 High-level Philosophy

The front en0 AP1 requirements are informed by a few high-level design principles:

•
.

Keep simple things simple
Keep tractable things tractable
Make difficult things tractable

• New programming mocleN should not complicate reasoning about code correctness
• New programming modelsl should simplify application-specific performance optimizations
• Pareto rule: 80% of the compute benefit from modest human effort preferred over 100% of compute benefit
from massive human effort

Essentially, code written in the
Additionally, the

high-performance to the runtime/compilers. Rather,
mance improvements in ways not previously possible.

Our approach is informed by what we see as the "axiomatic" challenges facing high-performance computing:

Ming models
DARMAIprogramming mode1

DARMA programming modal

DARMAI

Ispmp

should be not be more difficult than existing
should not pass off 100% of the responsibility for

should enable application developers to express perfor-

Program-

(Oata parallelism) will remain the dominant parallelism and primary structure of application codes
• New architectures will have too much compute capacity for basic Oata parallelisrn to fill

and pipeline parallelisM will help "filr the compute capacity on machines
• The traditional Ostract machine modell (flat memory spaces, uniform compute elements) will get further from

actual system architecture as accelerators and deep memory hierarchies become more commonplace
• Applications with dynamic load balance or dynamic sparsity will require composable, migratable chunks of

work

Task parallelisin

5.2 Application Requirements for the front end API

Based on Co-design efforts with application and

IAPIrequirments have been identified:

• The[DARMAIfront end]
and simple way.

• The
tures.

• The
• The

PARMA

IDARmAl
[DARMAI

ftont en4

front end]

IAPII

IAPII

ftont endI
IAPII

funtime systern development teams, the followingPARMAfront en0

must enable the development and deployment of ISPMD algorithms in an intuitive

must not limit the ability of hte application developer to use their own data struc-

must support collective communication operations.

IAPII must not limit the ability of the application developer to express and control the
initial problem decomposition.

• The
parallelism.

PARNIA front end]IAPII must not limit the application developer's ability to mix and express all forms of

81

5.3 Back end runtime system requirements

Althouth a primary purpose of the PARMA specification is to provide a back encl runtime systerh specification that is
relatively execution model agnostic, we will synthesize our application and runtime-system co-design activities into a
list of back encl Mntime systerh requirements. To date, the following requirements have been identified:

• A pARMA-compliant runtime systerh must support an efficient SPMD launch of an application code.
• A

data structures.
• A PARMA-compliant

pARMAI compliant Mntime systeM

runtime systerh
tween multiple streams of execution.

5.4 Co-design contributors

must not limit the ability of the application developer to use their own

must efficiently implement distributed, key-value-style coordination be-

In addition to the authors listed on this document, the APl is being 0o-desighed and vetted with application developers
and computer scientists whose knowledge spans the entire runtime software stack.

Applications affecting the design and requirements:

• S andia
Matt Bettencourt)

• Sandia

Advanced Technology Development and Mitigation (ATDM)Ascl

reentry code (POCs: Micah Howard, Steve Bova)
• Trilinosl Phalanx package for finite element matrix assembly (POC: Roger Pawlowski)
• Uncertainty quantification driver (POCs: Eric Phipps, Francesco Rizzi)
• Domain decomposition preconditioners for linear solvers (POCs: Ray Tuminaro, Clark Dohrman)

electromagnetic plasma code (POC:

AsclIATDAI

Computer Science Research Efforts

• Kokkos (POCs: Carter Edwards, Christian Trott)
• Data Management (POCs: Craig Ulmer, Gary Templet)
• Low-level operating systems requirements (POCs: Stephen Olivier, Ron Brightwell)

82

3. provide
4. introduce the use of

for often-used data,
5. require explicit publication of all data to the

Chapter 6

Evolution of the Specification

6.1 Specification History

Version 0.1 of the specification existed in API form only, and the documention of that version of the specification
differs substantially enough from the current one that it is not included in this work. In version 0.1 of the specification:

1. all input and output dependencies had to be explicitly enumerated by the application developer,
2. data was passed to all tasks (even inline task0 via function parameters,
3. all inputs and outputs to each task were declared using
4. explicit versioning of inputs/outputs was required to keep data logically distinct, and
5. sequential ordering of statements within DARMA had no significance for task ordering.

0ordination semantics

Application developer concerns regarding version 0.1 of the specification centered around the 1) verbosity of the
approach, 2) the difficulty of reasoning about correct program order of tasks, and 3) the fact that
functioned poorly in the contexts of hierarchical data structures and dependencies, like classes with members that
were also classes. The first two of these issues are addressed in version 0.3.0-alpha of the specification, and the third
concern will be addressed in later releases of the specification.

create_work

6.2 New Features in 0.3.0-alpha

In version 0.3.0-alpha of the specification we:

1. leverage the C++ Oaptur0 mechanism to minimize verbosity of the front endl API,
2. introduce a functor interface that is more feature rich than the lambdal interface,

within an Oxecution streanf to facilitate reasoning about program order,
variables to access data in the Yey-value stor0 to limit number of key-value operations

sequential semantics
band10

Yey-value stor0

6.3 Planned Features in Future Releases

for data shared between Oxecution streams

As part of the 0-design process, this specification will evolve quickly. Based on feedback thus far, there are already
many additional features planned for future incarnations of the specification that will be released this calendar year
(2016). These are summarized below:

0.3.1: • Hierarchical Oependencies (e.g., classes that have dependencies as member variables) and containment
and aliasing management

• Task creation within class member functions
• Support for collectives

0.4: • Schedule-only bandles for "branch" Itasksl that create many other tasksl, but do not read data
• Include support for expression of execution space and memory space and assignment of work
among these abstract machine model concepts

• Custom data models supporting arbitrary data slicing/interference tests

83

• Data staging hooks to accompany custom slicing
• MPI interoperability, allowing DARMA to run within MPI programs

0.5: • I_,eaf task optimizations for tasksl that create no
• Load balancing hooks and hints to expose existing backend load balancing algorithms and hints to the user
• Serialization of polymorphic classes
• MPI interoperability, allowing MPI to run within DARMA programs

0.6: • Distributed containers (vectors and maps distributed across execution streams)
• Serialization of polymorphic classes
• read_write_access fetching of published data

subtasks

84

Appendix A

Examples

A.1 Basic functionalities for lambda interface

A.1.1 DARMA environment

Example showing how to initialize and finalize the DARMA environment.

1 #include <darma.h>

2 int darma_main(int argc, char** argv)

3 {

4 using namespace darma_runtime;

5

6 std::cout << "Initializing darma" << std::endl;

7 darma init(argc, argv);

8

9 // empty, don't do anything

10

11 std::cout << "Finalizing darma" << std::endl;

12 darma finalize();

13 return 0;

14 1

A.1.2 DARMA rank and size

Example showing DARMA rank and size.

1 #include <darma.h>

2 int darma_main(int argc, char** argv)

3 f

4 using namespace darma runtime;

5 darma_init(argc, argv);

6

7 // get my rank

8 const size_t myRank = darma_spmd_rank();

9 // get size

lo const size_t size = darma_spmd_size();

11

12 std::cout << "Rank " << myRank << "/" << size << std::endl;

0

14 darma finalize();

15 return 0;

16 1

85

A.1.3 Deferred work creation

Example showing a very simple create_work with no dependencies.

1 #include <darma.h>

2 int darma main(int argc, char** argv)

3 {

4 using namespace darma_runtime;

5 darma_init(argc, argv);

6 const size_t myRank = darma_spmd_rank();

7 const size t size = darma spmd size();

8

9 create_work([=]

11 std::cout << "CW: Rank " << myRank << "/" << size << std::endl;

12 });

13

14 darma_finalize();

15 return 0;

16 }

A.1.4 Creating handles 1

use

1 #include <darma.h>

2 int darma main(int argc, char** argv)

3 {

4 using namespace darma_runtime;

5 darma_init(argc, argv);

6 const size_t myRank = darma_spmd_rank();

7 const size t size = darma spmd size();

8

9 // this just creates different handles for different types

10 // NOTE: data does not exist yet, only handles!

11 auto my_handlel = initial_access<double>("data_key_1", myRank);

12 auto my_handle2 = initial_access<int>("data_key_2", myRank);

13 auto my handle3 = initial access<std::string>("data key 3", myRank);

14 // etc...

15

16 darma_finalize();

0 return 0;

18 1

A.1.5 Creating handles 2

Another example on init ial_access handle and its use.

1 #include <darma.h>

2 int darma_main(int argc, char** argv)

3 {

4 using namespace darma_runtime;

5

86

6 darma_init(argc, argv);

7 const size_t myRank = darma_spmd_rank();

8 const size_t size = darma_spmd_size();

9

10 // this just creates different handles for different types

11 // NOTE: data does not exist yet, only handles!

12 auto handlel = initial_access<double>("data_key_1", myRank);

13 auto handle2 = initial_access<std::string>("data_key_3", myRank);

14

15 create work([=]

16

17 // first, constructs data with default constructor

18 handlel.emplace_value(3.3);

19 handle2.emplace_value("Sky is blue");

20

21 // get current values pointed to by the handles

22 auto hlVal = handlel.get_value();

23 auto h2Val = handle2.get_value();

24 std::cout << "After construction: hlValue=" << hlVal << std::endl;

25 std::cout << "After construction: h2Value=" << h2Val << std::endl;

26

27 // reset values using set value function

28 handlel.set_value(6.6);

29 handle2.set_value("Sky is green");

30 std::cout << "After reset: hlValue=" << handlel.get_value() << std::endl;

31 std::cout << "After reset: h2Value=" << handle2.get value() << std::endl;

32

33 // reset values using reference

34 auto & hlr = handlel.get_reference();

35 auto & h2r = handle2.get_reference();

36 hlr = 9.9;

37 h2r = "Sky is yellow";

38 std::cout << "After reset: hlValue=" << handlel.get_value() << std::endl;

39 std::cout << "After reset: h2Value=" << handle2.get_value() << std::endl;

40 });

41

42 darma finalize();

43 return 0;

44

A.1.6 Arrow operator for handles

Example showing the arrow operator on an handle.

1 #include <darma.h>

2 int darma_main(int argc, char** argv)

3 {

4 using namespace darma runtime;

5 darma_init(argc, argv);

6 const size_t myRank = darma_spmd_rank();

7 const size_t size = darma_spmd_size();

8

9 // create handle to data

87

10

11

12

13

auto my_handlel = initial_access<std::vector<double>>("data", myRank);

create_work([=]

1
// first, constructs data with default constructor

14 my handlel.emplace value(0.0); // set to zero

15 // operator-> : get access to methods of object pointed to by handle

16 my_handlel->resize(4);

17

18 // get the data and set values

19 double * vecPtr = my handlel->data();

20 for (int i = 0; i < 4; ++i)(

21 vecPtr[i] = (double) i + 0.4;

22 1
23

24 // get the last element and check its value

25 std::cout << my_handlel->back() << std::endl;

26 if (my_handlel->back() != 3.4)1

27 std::cerr << "Error: handle value != 3.4!" « std::endl;

28 std::cerr << " " _FILE_ << ":" << _LINE_ << '\n';

29 exit(EXIT FAILURE);

30 1
31 });

32

33 darma_finalize();

34 return 0;

35 }

A.1.7 Deferred work and constraining privileges

Example showing how to issue a c reate_work and constraining privileges on a handle to be read-only.

1 #include <darma.h>

2 int darma_main(int argc, char** argv)

3 {

4 using namespace darma_runtime;

5 darma_init(argc, argv);

6 const size_t myRank = darma_spmd rank();

7 const size t size = darma spmd size();

8

9 // handle to data

W auto my_handle = initial_access<double>("data", myRank);

11 create_work([=]{

12 my handle.emplace value(0.55);

13 });

14

15 // downgrade my_handle to read_only inside following create_work

16 create_work(reads(my_handle),[=]{

17 std::cout << " " << my handle.get value() << std::endl;

18 });

19

20 darma_finalize();

21 return 0;

22 1

88

A.2 Hello World

Example for one possible implementation of "hello worldr. There are three main parts involved:

1. the DARMA environment is initialized,

2. each rank issues a task to store a greeting message into a string, and

3. each rank then creates a task to printing to standard output the message and its rank.

1 #include <darma.h>

2 int darma_main(int argc, char** argv)

3 {

4 using namespace darma_runtime;

5

6 darma init(argc, argv);

7 size_t me = darma_spmd_rank();

8 size_t n_ranks = darma_spmd_size();

9

10 // create handle to string variable

11 auto greeting = initial access<std::string>("myName", me);

12 // set the value

13 create_work([=]{

14 greeting.set_value("hello world!");

0 });

16

17 // print the value
18 create_work([=]{

19 std::cout << "DARMA rank " << me

20 << " says: " << greeting.get_value() << std::endl;

21 });

22

23 darma_finalize();

24 return 0;

25 }

A.3 Key-Value Example

This example is to illustrate simple transactions with the key-value store, but in a distributed setting. We will ask each
rank to publish a float to be read by two readers, a rank on the left and one on the right. Then we will ask each rank to
get two floats, those published by the left and right neighbors and print to screen. We use periodic logic for neighbors.

1 #include <darma.h>

2 using namespace darma_runtime;

3 using namespace darma_runtime::keyword_arguments_for_publication;

4 int darma_main(int argc, char** argv)

5 {

6 darma init(argc, argv);

7 size t me = darma spmd rank();

8 size_t n_ranks = darma_spmd_size();

9

10 // define neighbors with periodic arrangement

11 size_t left_nbr = (me == 0) ? n_ranks-1 : me-1 ;

89

12 size_t right_nbr = (me == n_ranks-1) ? 0 : me+1 ;

13

14 auto float_to_pub = initial_access<float>("floatKey", me);

15 create work([=]

16 {

17 //set_value could be replaced by the more verbose

18 //->allocate, followed by, ->get() = value

19 float_to_pub.set_value(2692.0 + me); //a float I like

20 });

21

22 float_to_pub.publish(n_readers=2);

23 //n_readers=2: two read_access handles will be defined for this

24

25 // fetch the data

26 auto float from left = read access<float>("floatKey", left nbr);

27 auto float_from_right= read_access<float>("floatKey", right nbr);

28 create_work([=]

29

30 std::cout << "My rank is " << me

31 « " values from my left/right are "

32 « float from left.get value() « " "

33 « float_from_right.get_value() « std::endl;

34 });

35

36 darma_finalize();

37 return 0;

38 1

A.3.1 Publishing and read access

This example explains in more detail the use of publish and read_access. The example involves two DARMA

ranks, each creating data, publishing it, and then fetching the other rank's data.

1 #include <darma.h>

2 int darma_main(int argc, char** argv)

3 {

4 using namespace darma runtime;

5 using namespace darma runtime::keyword arguments for publication;

6

7 darma_init(argc, argv);

8

9 const size_t myRank = darma_spmd_rank();

10 const size t size = darma spmd size();

11

12 // only run with 2 ranks

13 if (size!=2){

14 std::cerr << "# of ranks != 2, not supported!" « std::endl;

15 std::cerr « " " FILE « ":" « _LINE_ « '\nf;

16 exit(EXIT FAILURE);

17 }

18

19 // rank0 reads from source = rankl

20 // rankl reads from source = rank0

90

21 size_t source = myRank==0 ? 1 : 0;

22

23 auto my_handle = initial_access<double> ("data", myRank) ;

24

25 create work ([=]

26 1

27 my_handle .emplace_value (0 . 5 + (double) myRank) ;

28

29 // n readers == 1 because :

30 // rank() reads data of rankl

31 // rankl reads data of rank()

32 my_handle . publish (n_readers=1) ;

33 1) ;

34

35 AccessHandle<double> readHandle read access<double>("data", source);

36 create_work([=]

37 {

38 std::cout << myRank << " " << readHandle.get_value() << std::endl;

39 if (myRank==0){

40 if (readHandle.get value() != 1.5){

41 std::cerr << "readHandle.get value() != 1.5" << std::endl;

42 std::cerr << " " _FILE_ << ":" << _LINE_ << '\nr;

43 exit(EXIT_FAILURE);

44 }

45 }

46 else

47 {

48 if (readHandle.get_value() != 0.5){

49 std::cerr << "readHandle.get_value() != 1.5" << std::endl;

50 std::cerr << " " _FILE_ << ":" << _LINE_ << '\nr;

51 exit(EXIT FAILURE);

52 }

53 }

54 1) ;

55

56 darma finalize () ;

57

58 return 0;

59 }

A.4 Publishing, versioning and lifetime of handles

Lifetime of handles is tricky, particularly for read_acces s type handles. In the following example, we initialize
data, publish it, fetch it from another rank, modify the data, publish it again under a new version, and then fetch the
new version from another rank. The c r e at e_work on lines 64 — 68 can't execute until the back end knows the first
fetched version is no longer in use. We put an extra set of { } around the code in lines 40 — 61 to tell the back end
that the readHandle is no longer needed and can go out-of-scope and the fetching is done.

Without the scoping {}, the code would deadlock. darma_finalize () cannot return until after all the create_-
work s have completed. However, without the additional scoping, the backend would not know that the first fetched
version is no longer needed until darma_main () returns, which requires darma_f inal i z e () to have already
returned.

91

While scoping is necessary in this case, there will be other cases where it only helps to improve efficiency and concur-
rency in the scheduling and execution of tasks. Scoping is a good programming practice.

1 #include <darma.h>

2 int darma_main(int argc, char** argv)

3 {

4 using namespace darma runtime;

5 using namespace darma runtime::keyword arguments for publication;

6

7 darma_init(argc, argv);

8 const size_t myRank = darma_spmd_rank();

9 const size_t size = darma_spmd_size();

10

11 // only run with 2 ranks

12 if (size!=2)

13

14 std::cerr << "# of ranks != 2, not supported!" << std::endl;

15 std::cerr << " " FILE << ":" << _LINE_ << '\n';

16 exit(EXIT_FAILURE);

17 1
18

19 // rank0 reads from source = rankl

20 // rankl reads from source = rank0

21 size t source = myRank==0 ? 1 : 0;

22

23 // create data

24 auto my_handle = initial_access<double>("data", myRank);

25 create_work([=]

26

27 my_handle.emplace_value(0.5 + (double) myRank);

28

29 // n_readers == 1 because:

30 // rank0 reads data of rankl

31 // rankl reads data of rank0

32 my handle.publish(n_readers=1,version=0);

33 });

34

35 // first time reading

36 /* scopinh below {} is needed because it tells the backend that readHandle

37 will go outofscope and so backend has more detailed info.

38 Scoping is a good practice and in this case is needed to avoid deadlock.

39 */

40

41 auto readHandle = read_access<double>("data", source,version=0);

42 create work([=]

43

44 std::cout << myRank << " " << readHandle.get_value() << std::endl;

45 if (myRank==0){

46 if (readHandle.get_value() != 1.5){

47 std::cerr << "readHandle.get value() != 1.5" << std::endl;

48 std::cerr << " " _FILE_ << ":" << _LINE_ << f\nf;

49 exit(EXIT_FAILURE);

50 1
51 }

52 else

92

53 {

54 if (readHandle.get_value() != 0.5)f

55 std::cerr << "readHandle.get_value() != 0.5" << std::endl;

56 std::cerr << " " _FILE_ << ":" << _LINE_ << r\n';

57 exit(EXIT FAILURE);

58 }

59 }

60 });

61 }

62

63 // reset value and update version

64 create_work([=]

65 1

66 my_handle.set_value(2.5 + (double) myRank);

67 my handle.publish(n readers=1,version=1);

68 });

69 // second time reading

70 auto readHandle2 = read_access<double>("data", source,version=1);

71 create_work([=]

72 {

73 std::cout << myRank << " " << readHandle2.get value() << std::endl;

74 if (myRank==0){

75 if (readHandle2.get_value() != 3.5){

76 std::cerr << "readHandle2.get_value() != 3.5" << std::endl;

77 std::cerr << " " _FILE_ << ":" << _LINE_ << '\n';

78 exit(EXIT FAILURE);

79 }

80 1

81 else

82 f

83 if (readHandle2.get value() != 2.5){

84 std::cerr << "readHandle2.get value() != 2.5" << std::endl;

85 std::cerr << " " _FILE_ << ":" << _LINE_ << '\n';

86 exit(EXIT_FAILURE);

87 1

88 1

89 });

90

91 darma_finalize();

92 return 0;

93 }

A.5 1D Poisson Equation

Boundary value problem:

192u(x)

ax2
= f (x) in 52 = (0, 1), with u(0) = 0, u(1) = exp (1) sin (1) (A.1)

where f (x) = 2 exp (x) sin (x). This problem is chosen because it has an exact solution, namely uexact = exp (1) sin (1).
The exact solution will be used for checking the correctness of the code.

93

Discretize the domain with N equally spaced points such that

ui ti u(x,), f2 = f (xi) xi = =
N
1 1, i = 0,1, ..., N — 1
—

Use central difference approximation for the second derivative for all interior points:

/.,,,,-2,,,
)2
+,,,_, _ f i, for i = 1, ..., N — 2(Ax

Uo = 0, uN_1 = exp (1) * sin (1) Dirichlet BC

This translates to a linear system of equations Au = f where A is an N — 2 x N — 2 tridiagonal matrix

A=

—2 1
1 —2 1

1 —2 1

. 1
1 —2

(A.2)

(A.3)

(A.4)

and u is the unknown, and f is the right-hand-side. Both u and f have size N — 2. Solving this linear system yields
the solution at all the inner points of the domain. For demonstration purposes, we solve this system using Thomas
algorithm, a method well-suited for tridiagonal systems. The solver needs these vectors:

1. a: contains all the sub-diagonal entries.

2. b: contains all the diagonal entries.

3. c: contains all the upper-diagonal entries.

4. d: contains all the right-hand-side entries. Also, our current version of the solver is such that on exit, the vector
d contains the solution.

How do we implement this in DARMA? For demonstration purposes, we limit our attention to the case of a single
rank. More complex examples involving multiple ranks will be shown later.

There are three main steps involved, namely initialization, solution of the linear system, and error checking. The
DARMA main file is as follows:

1 #include "../common_poissonld.h"
2 #include "../constants.h"
3 #include <darma.h>
4 using namespace darma_runtime; //here because headers below need this too
5 #include "initialize.h"
6 #include "solveTridiag.h"
7 #include "checkError.h"
8
9 int darma_main(int argc, char** argv)
10 {
11 darma_init(argc, argv);
12 size_t me = darma_spmd_rank();
0 size t n spmd = darma spmd size();
14
15 // supposed to be run with 1 rank
16 if (n_spmd>1){
17 std::cerr << "# of ranks != 1, not supported!" << std::endl;
18 std::cerr << " " _FILE_ << ":" << _LINE_ << '\n';

94

19 exit(EXIT_FAILURE);

20 }

21

22 typedef std::vector<double> vecDbl;

23 // handles for data needed for matrix

24

25

26

27

28

29 // initialize the handles

30 initialize(subD, diag, supD, rhs);

31

32 // solve tridiagonal system

33 solveTridiagonalSystem(subD, diag, supD, rhs);

34

35 // check solution L1 error

36 checkFinalLlError(rhs);

37

38 darma finalize();

39 return 0;

40 1

auto

95

subD = initial_access<vecDbl>("a",me); // subdiagonal

auto diag = initial_access<vecDbl>("b",me); // diagonal

auto supD = initial_access<vecDbl>("c",me); // superdiagonal

auto rhs = initial_access<vecDbl>("d",me); // rhs and solution

The header file constants.h contains:

The initialization function has the form:

1 void initialize(AccessHandle<std::vector<double>> & subD,

2 AccessHandle<std::vector<double>> & diag,

3 AccessHandle<std::vector<double>> & supD,

4 AccessHandle<std::vector<double>> & rhs)

5 {

6 create_work([=]

7 {

8 // first call default constructors

9 subD.emplace_value(); diag.emplace_value();

M supD.emplace_value(); rhs.emplace_value();

11 // resize and reset all to zeros

12 subD->resize(nInn,0.0); diag->resize(nInn,0.0);

13 supD->resize(nInn,0.0); rhs->resize(nInn,0.0);

14 // get data pointers

15 double * ptrDl = subD->data(); double * ptrD2 = diag->data();

16 double * ptrD3 = supD->data(); double * ptrD4 = rhs->data();

17

95

ue(); diag.emplace_value();

M supD.emplace_value(); rhs.emplace_value();

11 // resize and reset all to zeros

12 subD->resize(nInn,0.0); diag->resize(nInn,0.0);

13 supD->resize(nInn,0.0); rhs->resize(nInn,0.0);

14 // get data pointers

15 double * ptrDl = subD->data(); double * ptrD2 = diag->data();

16 double * ptrD3 = supD->data(); double * ptrD4 = rhs->data();

17

18 // loop and set the values based on finite-difference stencil

19 double x = dx;

20 for (int i = 0; i < nInn; ++i)

21 {

22 ptrD2[i] = -2; // diagonal elements

23

24 // sub and super diagonals

25 if (i>0)

26 ptrDl[i] = 1.0;

27 if (i<nInn-1)

28 ptrD3[i] = 1.0;

29

30 // right hand side

31 ptrD4[i] = rhsEval(x) * dx*dx;

32

33 // correction to RHS due to known BC

34 if (i==1)

35 ptrD4[i] -= BC(xL);

36 if (i==nInn-1)

37 ptrD4[i] -= BC(xR);

38

39 x += dx;

40 }

41 });

42

The function to solve the linear system is:

1 void solveTridiagonalSystem(AccessHandle<std::vector<double>> & subD,

2 AccessHandle<std::vector<double>> & diag,

3 AccessHandle<std::vector<double>> & supD,

4 AccessHandle<std::vector<double>> & rhs)

5 {

6 create_work([=]

7 {
8 double * pta = subD->data();

9 double * ptb = diag->data();

10 double * ptc supD->data();

11 double * ptd = rhs->data();

12

13 solveThomas(pta, ptb, ptc, ptd, nlnn);

14 });

15

Finally, we check for convergence by checking the Ll-norm of the error between the computed and true solution.

1 void checkFinalLlError(AccessHandle<std::vector<double>> & solution)

2 1

3 create_work([=]

4 {

5 double * ptd = solution->data();

6

7 double error = 0.0;

8 double x = dx;

9 for (int i = 0; i < (int) solution->size(); ++i)

96

10

11 error += std: :abs (trueSolution (x) - ptd[i]);

12 x += dx;

13 }

14 std::cout << " L1 error " << error << std::endl;

15 assert (error < le-2);

16 });

17

A.6 1D Heat Equation

In this section, we solve the following simple problem:

2OT (x , t) =

a a

0T (x , t) in
SZ (0, 1), with T(0, t) = 100, T(1, t) = 10, Vt > 0 (A.5)

at 2

where T(x, t) is the temperature, t is time, and a is the thermal diffusivity. The steady-state solution of this problem
is a straight line connecting the left and right boundary conditions.

We discretize the spatial domain with N equally spaced points such that

x = Ax =
N

1

1
i = 0,1,...,N— 1 (A.6)

Similarly, in time with niter steps such that

tm = mAt, At =
niter — 1'

t max
rrt = 0, 1, •••, niter — 1 (A.7)

We use second-order finite-differences in space, and Euler method in time. Hence, the discrete version takes the form:

Tim+1 — Tim Tin+11 2Tirn + Tim

—
a

At Ax2
(A.8)

where Tp represents the approximate temperature at the i-th grid point, at the m-th time instant. Hence, for every

grid point i, given the solution at the current time instant Tim, the solution at the next step is given by

7+1- = 7 +
aAt

(T — +)
Ax2 i+1 -1 (A.9)

For demonstration purposes, we adopt here a = 0.0075, discretize the domain with N = 16, use rtit„ = 2500 time
steps and consider At = 0.05 which is sufficiently small for the numerical method to be stable. The main constants
are defined in the following header file:

1

2

3

#ifndef EXAMPLES HEAT_1D_COMMON_H_

#define EXAMPLES_HEAT_1D_COMMON_H_

4 constexpr int n_iter = 2500; // num of iterations in time

5 constexpr double deltaT = 0.05; // time step

6 constexpr double alpha = 0.0075; // diffusivity

7

8 constexpr int nx = 16; // total number of grid points

9 constexpr double x_min = 0.0; // domain start x

10 constexpr double x_max = 1.0; // domain end x

97

11

12

constexpr double deltaX = (x_max-x_min) / ((double) (nx-1)) ;

constexpr double cfl = alpha * deltaT / (deltaX * deltaX) ;

// cell spacing

// cfl condition

13 static_assert (cfl < 0 .5, "cfl not small enough") ;

14 // alpha * DT/ DX^2

15 constexpr double alphadtovdxsq (alpha * deltaT) / (deltaX * deltaX) ;

16

17 constexpr double T1 = 1 0 0 . 0; // left BC for temperature

18 constexpr double Tr = 1 0 . 0; // right BC for temperature

19

20 // steady state solution

21 double steadysolution (double x)

22 (

23 const double a = (T 1-Tr) / (x_min-x_max) ;

24 const double b = T1 - a * x_min;

25 return a*x + b;

26 }

27

28 #endif /* EXAMPLES_HEAT_1D_COMMON_H_ */

The problem involves three main stages, namely initialization, time advancing, and convergence check. We use four
DARIVIA ranks to distribute the grid points, such that each rank handles a local grid with 4 points. In brief, the problem
is setup by having each rank generate tasks for its local grid, then communicate with the neighboring ranks to get the
information for the ghost points needed to update the stencil. A high-level schematic of the work-flow is shown in
Figure IA.11

a
0
0

Rank 0 Rank 1 Rank 2 Rank 3

• • • • • -h • • • • • • • • •

ghost points
dependency

ghost points
dependency

initialize

Task

--1

Initialize

•

Task

Initialize

Task

Figure A.1 Schematic of task generation for the heat 1D PDE.

The full main code is shown below.

1 #include <cmath>

2 #include <darma.h>

3 #include "../common_heatld.h"

4

5 /*

98

6 Full grid:

7 o o o o o o o o o o o o o o o o

8

9 Distribute uniformly accross all ranks:

10

11 + o o o o *

12 * o o o o *

13 * o o o o *

14 * o o o o +

15

16 r0 rl r2 r3

17

18 Locally, each rank owns elements:

19

20 o o o o

21

22 where inner points are: o

23 ghosts points are: *

24

25 The points denoted with + are not needed because outside of domain,

26 but exist anyway so that each local vector has same size.

27

28 Below we use following shortcut for indices of key points:

29

30 o o o *

31 lli li ri rri

32 */

33

34 int darma_main(int argc, char** argv)

35 {

36 using namespace darma runtime;

37 using namespace darma runtime::keyword_arguments_for_publication;

38 darma_init(argc, argv);

39 const size_t me = darma_spmd_rank();

40 const size_t n_spmd = darma_spmd_size();

41 // supposed to be run with 4 ranks

42 if (n spmd!=4){

43 std::cerr << "# of ranks != 4, not supported!" << std::endl;

44 std::cerr << " " FILE << ":" << LINE << f\n';

45 exit(EXIT_FAILURE);

46 1

47

48 // Figure out my neighbors. 0 or n_spmd-1, I am my own neighbor

49 const bool is_leftmost = me == 0;

50 const size_t left_neighbor = is_leftmost ? me : me - 1;

51 const bool is_rightmost = me == n_spmd - 1;

52 const size t right neighbor = is rightmost ? me : me + 1;

53 assert(nx % n_spmd == 0); // same number of points locally

54 const int num_points_per_rank = nx / n_spmd;

55 const int num_points_per_rank_wghosts = num_points_per_rank + 2;

56 const int num_cells_per_rank = num_points_per_rank-1;

57

58 // useful to identify local grid points

59 const int lli = 0;

99

60 const int li = 1;

61 const int ri = num_points_per_rank;

62 const int rri = num_points_per_rank+1;

63

64 // left boundary of my local part of the grid

65 const double xL = is_leftmost ? 0.0 : num_points_per_rank * deltaX * me;

66

67

68

69 /**

70 initialize temp field and ghost values

71 **/

72

73 // handle to my data

74 auto data = initial access<std::vector<double>>("data", me);

75 // handle to ghost value for my left neighbor

76 auto gv_to_left = initial_access<double>("ghost_for_left_neigh", me, 0);

77 // handle to ghost value for my right neighbor

78 auto gv_to_right = initial_access<double>("ghost_for_right_neigh", me, 0);

79

80 create work([=]

81 1
82 data.emplace_value();

83 data->resize(num_points_per_rank_wghosts, 50.0);

84 auto & vecRef = data.get_reference();

85

86 if(is_leftmost)

87 vecRef[li] = T1;

88 if(is_rightmost)

89 vecRef[ri] = Tr;

90

91 // all tasks need to set the values of the ghosts

92 gv_to_left.set_value(vecRef[li]);

93 gv_to_right.set_value(vecRef[ri]);

94

95 });

96 // publish only the ghost points, since data remains local

97 gv_to_left.publish(n_readers=1);

98 gv_to_right.publish(n_readers=1);

99

100

101 /**

102 Time loop

103 **/

104 for (int iLoop = 0; iLoop < n_iter; ++iLoop)

105 {

106 auto gv from left neigh

107 = is leftmost ? read_access<double>("ghost for left neigh",me,iLoop) :

read_access<double>("ghost_for_right_neigh",left_neighbor,iLoop);

109

110 auto gv_from_right_neigh

111 = is rightmost ? read_access<double>("ghost for right neigh",me,iLoop) :

112 read access<double>("ghost for left neigh",right neighbor,iLoop);
113

100

114 gv_to_left = initial_access<double>("ghost_for_left_neigh",me,iLoop+1);

115 gv_to_right = initial_access<double>("ghost_for_right_neigh",me,iLoop+1);

116

117 create work([=]

118

119 auto & dataRef = data.get_reference();

120 std::vector<double> my_T_wghosts(dataRef);

121 my_T_wghosts[lli] = gv_from_left_neigh.get_value();

122 my_T_wghosts[rri] = gv_from_right_neigh.get_value();

123

124 // update field only for inner points based on FD stencil

125 for (int i = li; i <= ri; i++)

126

127 double FD = my_T_wghosts[i+1]-2.0*my_T_wghosts[i]+my_T_wghosts[i-1];

128 dataRef[i] = my T wghosts[i] + alphadtovdxSg * FD;

129 1
130

131 // fix the domain boundary conditions

132 if(is_leftmost)

133 dataRef[li] = Tl;

134 if (is rightmost)

135 dataRef[ri] = Tr;

136

137 gv_to_left.set_value(dataRef[li]);

138 gv_to_right.set_value(dataRef[ri]);

139 });

140

141 if (iLoop < n_iter-1){

142 gv_to_left.publish(n_readers=1);

143 gv_to_right.publish(n_readers=1);

144 1

145

146 } //time loop

147

148 /**

149 Check convergence & print

150 **/

151

152 // calculate error locally

153 auto myErr = initial_access<double>("myllerror", me);

154 // need a separate variable for the collective result

155 auto myGlobalErr = initial access<double>("globalllerror", me);

156 create_work([=]

157

158 const auto & vecRef = data.get_reference();

159 // only compute error for internal points

160 double error = 0.0;

161 for (int i = li; i <= ri; ++i)

162

163 double xx = xL+(i-1)*deltax;

164 error += std::abs(steadySolution(xx) - vecRef[i]);

165 1

166 myErr.set value(error);

167 myGlobalErr.set_value(error);

101

168 });

169 // will be read by all ranks except myself

170 myErr.publish(n_readers=n_spmd-1);

171

172 // each rank performs global sum: mimicing collective

173 for (int iPd = 0; iPd < n_spmd; ++iPd)

174 {
175 if (iPd != me)

176 {
177 auto iPdErr = read access<double>("myllerror",iPd);

178 create_work([=]

179 {
180 myGlobalErr.get_reference() += iPdErr.get_value();

181 });

182

183

184

185 create_work([=]

186 1
187 std::stringstream ss;

188 ss << " global L1 error « myGlobalErr.get value() << std::endl;

189 std::cout << ss.str();

190 if (myGlobalErr.get_value() > le-2)

191 {
192 std::cerr << "PDE solve did not converge: L1 error > le-2" << std::endl;

193 std::cerr << " " FILE << ":" << LINE << '\n';

194 exit(EXIT_FAILURE);

195

196 });

197

198 darma finalize();

199 return 0;

200

201 }//end main

102

Appendix B

Rules for Making Flows

To better illustrate when particular mak e_X_f l ow functions are called and which Uses they belong to, we provide an
illustrative set of code samples. We denote permissions as scheduling/immediate e.g. Modify/Read means scheduling
privileges of Modify, immediate privileges of Read. We also indicate the Use object associated with a handle as
Use(x,y) where x and y label the input and output Flow of the Use.

B.1 Modify Capture with Immediate-Modify Permissions

Consider the following code:

auto handle = initial_access<T>(...);

//handle has Use(a,b) and Modify/Modify privileges

create_work([=]{ //modify capture

//handle has Use(c,d)
})

//handle has Use (e, f)

In the code sample above, the Flow objects were created as follows:

c = make_forwarding_flow(a, ForwardingChanges);

d = make_next_flow(c, Output);

e = make_same_flow(d, Input);

f = make same flow(b, Output);

B.2 Modify Capture without Immediate Privileges

auto handle = initial access<T>(...);

//handle has Use(a,b) and Modify/None privileges

create_work([=]{ //modify capture

//handle has Use(c,d)
})

//handle has Use (e, f)

In the code sample above, the Flow objects were created as follows:

c make_same_flow (a, Input) ;

d = make_next_flow (c, Output) ;

e = make_same_flow (d, Input) ;

f make_same_flow (b, Output) ;

103

B.3 Read Capture with Immediate Modify Privileges

auto handle = initial_access<T>(...);

//handle has Use(a,b) and Modify/Modify privileges

create_work([=]{ //read capture

//handle has Use(c,d)

})

//handle has Use(e,f) and Modify/Read privileges

In the code sample above, the Flow objects were created as follows:

c make forwarding flow(a, ForwardingChanges);

d make_same_flow(c, OutputFlow0fReadOperation);

e make_same_flow(c, Input);

f make_same_flow(b, Output);

B.4 Read Capture with Immediate Read Privileges

auto handle = initial access<T>(...);

//handle has Use(a,b) and Read/Read privileges

create_work([=]{ //read capture

//handle has Use(c,d)
})

//handle has Use(a,b) and Read/Read privileges

In the code sample above, the Flow objects were created as follows:

c = make_same_flow(a, Input);

d = make_same_flow(c, OutputFlow0fReadOperation);

In contrast to previous cases, the newly created task does not create a new Use for the continuing context. The previous
Use is considered to have continued.

104

Glossary

abstract machine model A model of a computer system that is designed to allow application developers to focus on
the aspects of the machine that are important or relevant to performance and code structure pq.

access group An abstract (as of yet unspecified) concept. An access group is a group of tasks that may read a particular
piece of data. Until all tasks in the access group release read privileges on the data (or a copy is made), the data
can not be overwritten.

actor model An actor model covers both aspects of programming and Oxecution modelsl. In the actor model, applica-
tions are decomposed across objects called actors rather than processes or threads Message Passing Interfac0

ranks). The actor model shares similarities with active messages. Actors send messages to other actors,
but beyond simply exchanging data they can invoke remote procedure calls to create remote work or even spawn
new actors. The actor model mixes aspects of STIVIP in that many actors are usually created for a data-parallel
decomposition. It also mixes aspects of fork-join] in that actor messages can "fork" new parallel work; the forks
and joins, however, do not conform to any strict parent-child structure since usually any actor can send messages
to any other actor.

(MN)I

AMT See AIVIThnodell

AMT model Asynchronous many-task (AMT) is a categorization of programming and
from the dominant CSP or SPMP models. Different

execution models that break
lasynchronous many-task runtime system (AMT RTS)

implementations can share a common AMT model. An AMT Orogramming model decomposes applications into
small, inigratabk units of work (many tasks) with associated inputs (dependencies or data blocks) rather than
simply decomposing at the process level (MPI ranks). An AMT Oxecution model] can be viewed as the coarse-
grained, distributed memory analog of instruction-level parallelism, extending the concepts of data prefetching,
out-of-order task execution based on dependency analysis, and even branch prediction (speculative executioa
Rather than executing in a well-defined order, tasks execute when inputs become available. An AIVIT model aims
to leverage all available task parallelisml and Oipeline parallelisnt rather than rely solely on data parallelisml for

The term asynchronous encompasses the idea that 1) processes (threads) can diverge to different
tasks, rather than executing in the same order; and 2) Ooncurrency is maximized (minimum synchronization)
by leveraging multiple forms of parallelism. The term many-task encompasses the idea that the application is
decomposed into many inigratablel units of work, to enable the overlap of communication and computation as
well as 4synchronous load balancing strategies.

IconcurrencV

AMT RTS A runtime system based on AMT concepts. An AMT RTS provides a specific implementation of an

anti-dependency See Write-After-Read]

ANTI]

API An application programmer interface (API) is set of functions and tools provided by a library developer to allow
an application programmer to interact with a specific piece of software or allow a developer to utilize prebuilt
functionality.

archive In DARMA serialization, an object that performs either 1) packing operations, storing serialized values in the
archive or 2) unpacking operations, deserializing values stored in the archive..

ASC The Advanced Simulation and Computing (ASC) Program supports the Department of Energy's National Nu-
clear Security Administration (NNSA) Defense Programs' shift in emphasis from test-based confidence to
simulation-based confidence. Under ASC, computer simulation capabilities are developed to analyze and predict
the performance, safety, and reliability of nuclear weapons and to certify their functionality. ASC integrates the
work of three Defense programs laboratories (Los Alamos National Laboratory, Lawrence Livermore National

105

Laboratory, and Sandia National Laboratories) and university researchers nationally into a coordinated program
administered by NNSA.

associative array An abstract data type composed of a collection of key-value pairs, such that each possible key
appears just once in the collection [?, associative-array] Data is retrieved from an associative array via its key,
rather than its address in the array.

asynchronous Asynchronous indicates two operations can happen independently without requirizing synchroniza-
tion..

back end A software stack may comprise many layers, separating the user from the hardware. Each layer comprises a
and a back end. The front end provides a set of abstractions and the user interface for the functionality

implemented by the back end.
front enc1

barrier Generally a synonym for global barrier. A group of processes must reach a particular execution point before
any one process can continue.

bulk synchronous The bulk synchronous model of parallel computation (BSP) is defined as the combination of three
attributes: 1) A number of components, each performing processing and/or memory functions; 2) A router that
delivers messages point to point between pairs of components; and 3) Facilities for synchronizing all or a subset
of the components at regular intervals of L time units where L is the periodicity parameter. A computation
consists of a sequence of supersteps. In each superstep, each component is allocated a task consisting of some
combination of local computation steps, message transmissions and (implicitly) message arrivals from other
components. After each period of L time units, a global check is made to determine whether the superstep has
been completed by all the components. If it has, the machine proceeds to the next superstep. Otherwise, the
next period of L units is allocated to the unfinished superstep. See Reference [2-Z] and [2-3] for more details.

capture In C++ the capture list specifies which variables defined outside the lambda are available for use within the
lambda. Variables may be captured by value or reference. See [24] for more detail.

captured context See

captured work See

deferred worX

Ideferred work

chare The basic unit of computational work within the Charm++ framework. Chares are essentially C++ objects that
contain methods that carry out computations on an objects data asynchronously from the method's invocation.

child task A successor task in a task graph. Predecessor tasks are parent tasks. More rigorously, in a
representing task-order constraints, child task means there is a directed edge from parent to child

indicating a parent happens-before child relationship..

co-design Co-design refers to a computer system design process where scientific problem requirements influence
architecture design and technology and constraints inform formulation and design of algorithms and software.
Co-design methodology requires the combined expertise of vendors, hardware architects, system software devel-
opers, domain scientists, computer scientists, and applied mathematicians working together to make informed
decisions about features and tradeoffs in the design of the hardware, software and underlying algorithms [75].

concept A concept is a description of the supported operations on a type to be used in generic programming In C++,
there is no language level support for concepts (yet), but the idea can still be applied to C++ templates and
deduced types in the context of API specification. DARMA performs most of its concept checking using the
vo i d_t detection idiom gg

graph (DAG)
Oirected acycli0

concurrency A condition of a system in which multiple tasks are logically active at one time.

conservative execution The runtime systeml only spawns tasks in parallel that are guaranteed not to conflict. The
application exposes ead-After-Writ- (RAW) rite-After-Real (WAR) conflicts, allowing the
to decide which tasks can safely run in parallel. Independent threads do not need to explicitly synchronize.
Execution begins with zero OoncurrencY and grows conservatively to the maximum allowed

runtime systeml

106

Oncurrency

continuing context the code in the outer scope after a create_work

coordination semantics The operations to support communication between different computation activities. Inde-
pendent parallel workers never directly communicate, rather they "coordinate indirectly via a
or tuple spac0 1_,indal is a notable Programming languag0 with coordination semantics.

copy-on-write data-flow execution This is an intermediate between
with the additional constraint that the application guarantees no
write-once, read-many policy when necessary to avoid
areIRAW, ensuring that a value exists before a task can run. Similar to

conservative execution and
conflicts. Tasks are written to follow a

lanti-dependencies. The only synchronizations required

Icey-value stor0

phased execution
WAR

conservative execution tasks spawn once
all their TU-Wdependencies are met, forking new OncurrencY Once running, tasks do not synchronize because
there are no iwARIconflicts to avoid. This approach often has higher memory requirements, and the necessary
garbage collection adds complications.

CSP CSP (communicating sequential processes) is the most popular concurrency model for science and engineer-
ing applications, often being synonymous with SPMD. CSP covers execution models where a usually fixed
number of independent workers operate in parallel, occasionally synchronizing and exchanging data through
inter-process communication. Workers are disjoint processes, operating in separate address spaces. This also
makes it generally synonymous with message-passing in which data exchanges between parallel workers are
copy-on-read, creating disjoint data parallelism. The term sequential is historical and CSP is generally applied
even to cases in which each "sequential process" is composed of multiple parallel workers (usually threads).

DARMA DARMA is an AMT portability layer serving as a vehicle for community-based co-design activities. The
layer aims to 1) insulate applications from runtime system and hardware idiosyncrasies, 2) improve AMT run-
time programmability by co-designing an API directly with application developers, 3) synthesize application
co-design activities into meaningful requirements for runtimes, and 4) facilitate AMT design space characteri-
zation and definition, accelerating the development of AIVIT best practices.

data model A model capturing assumptions or restrictions on the structure of data.

data parallelism A type of parallelism that involves carrying out a single task and/or instruction on different segments
of data across many computational units. Data parallelism is best illustrated by vector processinA or

operations onjnstruction, multiple-data (SIMD)
Architecture (MIC)s or typicalIbulk synchronous

Ontral processing units (CPUs)
parallel applications.

and
singleH

Many Integrated Cor0

data-flow dependency A data dependency where a set of tasks or instructions require a certain sequence to complete
without causing race conditions. Data-flow dependency types include Write-After-Readl [Read-After-Writ0 and
Wnte-After-Writel

declarative A style of programming that focuses on using statements to define what a program should accomplish
rather than how it should accomplish the desired result.

deferred execution Execution of work is not performed until all dependencies are met.

deferred task See tleferred work. A taslc instantiated in the application code which, instead of executing immediately
as would be done in a sequential C++ code, is delayed while other tasks execute and are created. The term is
applied to tasks that, even once created, immediately execute. A more precise term would be "deferrable tasr,
but without ambiguity we use the adjective deferred to match previous literature.

deferred work See tleferred tasX. Work performed by code inside the capturing lambda passed to the create work
construct (as well as other deferred constructs which may be added to future versions of the specification).

DEP The method by which changes are made to the [DARMA specification.

dependency See gead-After-Writ0

DHT An implementation of a key-value map (table) that relies a consistent hash of keys and a partition of the key
space to distribute storage of the table across a distributed system.

107

distributed memory model Each processor has its own private memory. Computational tasks can only operate on
their local data. When remote data is required, it is communicated between the remote and local tasks.

DSL Domain specific languages (DSL) are a subset of programming languages that have been specialized to a partic-
ular application domain. Typically, DSL code focuses on what a programmer wants to happen with respect to
their application and leaves the Mntime systeni to determine how the application is executed.

EDSL A Idomain specific language (DSL) that is defined as a library for a generic host programming language. The
embedded domain specific language inherits the generic language constructs of its host language - sequencing,
conditionals, iteration, functions, etc. - and adds domain-specific primitives that allow programmers to work at
a much higher level of abstraction.

elastic task a task with inherent parallelism, as opposed to a sequential task with no parallelism that will execute
serially. These parallel tasks are termed elastic since they usually involve a flexible amount of parallelism,
executing faster as more processors are allocated to running the task.

event-based The term event-based covers both Programming mocleN and Oxecution moideN in which an application is
expressed and managed as a set of events with precedence constraints, often taking the form of a directed graph
of event dependencies.

execution model A parallel execution model specifies how an application creates and manages Ooncurrency. This
execution. Theseincludes, e.g., C,S11 (communicating sequential processes), strict fork-join, or Ovent-based

classifications distinguish whether many parallel workers begin simultaneously (e.g., CSP) and synchronize to
reduce IconcurrencY or if a single top-level worker forks new tasks to increase OoncurrencY. These classifica-
tions also distinguish how parallel hazards (WAR RAW1, Write-After-Writ0 (WAW)) are managed. Execution
models fall into the follwing broad categories:
flow execution, and Oeculative execution. In many cases, the programming modal and execution model are
closely tied and therefore not distinguished. In other cases, the way execution is managed is decoupled from

Conservative execution Phased execution Copy-on-write dataH

the programming model in Mntime systems
execution model is implemented in the

execution space A abstract machine modeI

with Oeclarativ0
Mntime systern

programming models like Legion or Uintah. The

abstraction used to describe where work is executed.

execution stream A top-level task (no predecessors) that is guaranteed to make forward progress. No other restric-
tions apply. An execution stream (being a tas1C) may communicate and may be interrupted. Execution streams
are often part of an SPMD launch and therefore automatically given a unique integer ID for each particular
stream. We use the term rank for this unique ID to match MPI terminology.

fetch A fetch operation reads values from the key-value store. Fetches are requests that must be satisfied with a
matching publish into the key-value store. In DARMA, fetches implicitly occur when read-only handles are
created through read_access

fork-join A model of concurrent execution in which child tasks are forked off a parent task. When child tasks
complete, they synchronize with join partners to signal execution is complete. 14ully stri0 execution requires
join edges be from parent to child while Iterminally stri0 requires child tasks to join with grandparent or other
ancestor tasks. This style of execution contrasts with 5PMP in which there are many parallel sibling tasks
running, but they did not fork from a common parent and do not join with ancestor tasks.

front end A software stack may comprise many layers, separating the user from the hardware. Each layer comprises a
front end and a back enc1. The front end provides a set of abstractions and the user interface for the functionality
implemented by the back end.

fully strict Fully strict fork-join execution requires join edges between parent and child tasks.

functional A style of programming that treats computation as the evaluation of mathematical functions and avoids
changing-state and mutable data.

108

handle In DARMA, types are wrapped in a lightweight wrapper we term handle. Handles replace conventional C++
variables as the means for accessing a data value. The handle wrapper provides a control block used by DARMA
in creating tasks..

immediate permissions The permissions for a handle that applies immediately at the current point in execution.
For immediate Read permissions, handle . get_value () can be called. For immediate Write permissions,
handle . set_value () and handle .get_reference () can also be called..

imperative A style of programming where statements change the state of a program to produce a specific result. This
contrasts to declarative programming that focuses on defining the desired result without specifying how the
result is to be accomplished.

interference test A test on two operations to see if they can safely run in parallel or if they conflict and must run in
sequence. Two operations on different data never interfere. For operations on the same data, if the operation is
read-only, there is no interference. Operations writing and reading the same data do interfere.

introspection The ability of a program to examine properties of an object at runtime.

key-value store A database that has an nssociative arraY as its underlying data model. In DARMA, a key-value store.

keyword argument An argument that is passed to a function as a keyword=value.

lambda In C++ a lambda is a mechanism for defining an unnamed function object at the location where it is invoked.
Lambdas are capable of capturing (see capture) variables in scope. See [2-4] for more detail.

leaf task A task with no direct successors, i.e. at the end of a task graph branch.

Linda Linda is a model of coordination and communication among several parallel processes operating upon objects
stored in and retrieved from shared, virtual, associative memory [271.

memory model Describes the interactions of processing entities (e.g., threads) with memory, including how they
store and retrieve data.

memory space An Ostract machine modei abstraction used to describe where data resides.

MIC Intel Many Integrated Core Architecture or Intel MIC is a coprocessor computer architecture developed by
Intel incorporating earlier work on the Larrabee many core architecture, the Teraflops Research Chip multicore
chip research project, and the Intel Single-chip Cloud Computer multicore microprocessor. Prototype products
codenamed Knights Ferry were announced and released to developers in 2010. The Knights Corner product was
announced in 2011 and uses a 22 nm process. A second generation product codenamed Knights Landing using
a 14 nm process was announced in June 2013. Xeon Phi is the brand name used for all products based on the
Many Integrated Core architecture.

migratable Migratable is used in DARMA to indicate that something can be serialized, transported or to a remote
process, deserialized, and used on that remote process..

operation The fundamental, indivisible (not-interruptible) work unit. Operations are closed, unable to communicate
with other operations and unable to add/release variables.

overdecomposition A problem which is decomposed into more tasks than compute units. i Usually applied to a data-
parallel overdecomposition in which, e.g., an array is broken in 4x times as many chunks as there are compute
units. Rather than have each compute unit execute one task of cost 4, each compute units 4 tasks of cost 1. The
increased granularity enables dynamic load balancing at the cost of increased scheduling overheads.

parent task A predecessor task in a task graph. Successors tasks arelchild tasksl. More rigorously, in a DAQ repre-
senting task-order constraints, parent task means there is a directed edge from parent to child indicating a parent
happens-before child relationship..

109

perfect forwarding A mechanism for forwarding arguments of one function to another in C++ that avoids copying
and maintains lvalue/rvalue nature of the arguments. See 128] for more detail.

phase barrier A fine-grained barrier used by a group of processes (potentially only two processes) to agree that a
particular phase of execution has completed. Phase barriers are not rigorously defined and may be non-blocking
and multiple phase barriers may be active at a given time.

phased execution The runtime systenr spawns many tasks in parallel. Where RAW or WAR conflicts may exist,
a phase barrier is executed to guarantee safe execution. The term phase barrier has previously been used in
Legion M and X10 r1. Barriers may be local operations or global collectives. Execution begins with maximum
parallelism and Concurrency decreases when necessary to satisfy synchronization constraints.

pipeline parallelism Pipeline parallelism is achieved by breaking up a task into a sequence of individual sub-tasks,
each of which represents a stage whose execution can be overlapped.

POD In C++, POD stands for Plain Old Data—that is, a class or struct without constructors, destructors and virtual
members functions and all data members of the class are also POD.

positional argument An argument passed to a function, whose corresponding parameter is inferred by the argument's
position within the function call.

precondition When applied to tasks, preconditions are the set of events that must occur before a task can safely run,
leading to the data the task operates on being in the correct state. Preconditions usually are either other tasks,
data staging or copying, or communication operations.

procedural A style of programming where developers define step by step instructions to complete a given func-
tion/task. A procedural program has a clearly defined structure with statements ordered specifically to define
program behavior.

process Used here as a process in the UNIX sense. Each process will have its own address space and global variables.
The process begins from a singly-defined int main(...) function.

programming language A programming language is a syntax and code constructs for implementing one or more
programming models1
jmperativ0

. For example, the C++ programming language supports both functional and
programming models

procedur4

programming model A parallel programming model is an abstract view of a machine and set of first-class constructs
for expressing algorithms. The programming model focuses on how problems are decomposed and expressed.
In MPI, programs are decomposed based on1VIPT ranks that coordinate via messages. This programming model
can be termed ISPMP, decomposing the problem into disjoint (non-conflicting) data regions. Charm++ decom-
poses problems via migratable objects called'qharesl that coordinate via remote procedure calls (entry methods).
Legion decomposes problems in a data-centric way with logical regions. All parallel coordination is implicitly
expressed via data dependencies. The parallel programming model covers how an application expresses

. In many cases, the lexecution model and programming model are closely tied and the same term has
been used to describe both an execution model and programming model, e.g. CSP (communicating sequential
processes).

lcurrency
OonH

rank A unique integer identifier for an Oxecution streaml created in an SPMD launch. The term rank matches the MPI
notion of a unique process ID in an MPI communicator.

RDMA Remote direct memory access (RDMA) is a direct memory access from the memory of one computer into
that of another without involving either one's operating system. This permits high-throughput, low-latency
networking, which is especially useful in massively parallel computing.

Read-After-Write Read after write (RAW) is a standard data dependency (or potential hazard) where one instruction
or task requires, as an input, a data value that is computed by some other instruction or task.

110

reference counted pointer An abstract data type that stores a traditional pointer, along with the number of shared
references to that pointers memory location. Objects referenced by the contained raw pointer are only destroyed
when all copies of the reference counted pointer are destroyed.

remote procedure invocation See RPC.

runtime system A parallel runtime system primarily implements portions of an execution model, managing how and
where concurrency is managed and created. Runtime systems therefore control the order in which parallel work
(decomposed and expressed via the programming model) is actually performed and executed. Runtime systems
can range greatly in complexity. A runtime could only provide point-to-point message-passing, for which the
runtime only manages message order and tag matching. A full NIPI1 implementation automatically manages
collectives and global synchronization mechanisms. Legion handles not only data movement but task placement
and out-of-order task execution, handling almost all aspects of execution in the runtime. Generally, parallel
execution requires managing task placement, data placement, concurrency creation, concurrency managed, task
ordering, and data movement. A runtime comprises all aspects of parallel execution that are not explicitly
managed by the application.

scheduling permissions The permissions for a handle when scheduling new tasks, but which may not apply im-
mediately. A task may schedule further tasks with read privileges in certain cases even if the data cannot be
immediately read..

semantics A mathematical model representing the intended computational behavior of program.

sequential semantics Computational behavior of code is equivalent to running it sequentially, in program order.

serialization The process of converting a C++ object into a sequence of bytes that can be transmitted over the network
or stored.

SIMD The term single-instruction multiple-data (SIMD) refers to a type of instruction level parallelism where an
individual instruction is synchronously executed on different segments of data. This type of data parallelisnl is
best illustrated by Ivector processing

slicing A subset of an array. The slice can either be across array indices or, if each array entry, a subset of the fields
within each class. Slices are defined only abstractly here, as slices may be in-place, referring to the original
array data or the slice may create a copy of values.

speculative execution Potential data hazards are ignored and, in some cases, work is performed prior to whether or
not it is known whether it will be required. By performing the work speculatively, the delay associated with
waiting to know whether or not the work was in fact required are avoided. Conflicts that are detected after the
fact lead to rollback or recovery.

SPMD The term single-program multiple-data (SPMD) refers to a parallel programming model where the same tasks
are carried out by multiple processing units but operate on different sets of input data. This is the most common
form of parallelization and often involves multithreading on a single compute node and/or distributed computing
using NIPI communication.

subtask Any task instantiated with Icreate_workl will be a subtask of the task running at the time create work
was invoked. For sequential semantics, a task cannot complete until all of its subtasks have completed..

task The work unit explicitly instantiated by the application developer through create work Currently a task has
no restrictions on behavior, other than a gurantee of forward progress. It can be interrupted and communicate
(indirectly through coordination) with other tasks. The fundamental (indivisible and interruptible) work unit
(operation) is not instantiated directly in the application. Thus tasks are the more fundamental concept in the
programming model.

task elasticity See elastic task

111

task parallelism A type of parallelism that focuses on completing multiple tasks simultaneously over different com-
putational units. These tasks may operate on the same segment of data or many different datasets.

task stealing See Iwork stealing

template metaprogramming In template metaprogramming templates are used by a compiler to generate additional
source code, (e.g., compile-time constants, data structures, funcitons), which is merged by the compiler with the
rest of the user-provided source code prior to compilation.

terminally strict Terminally strict fork-join execution requires child tasks to join with grandparent or other ancestor
tasks.

thread pool A preallocated (usually already spawned) group of threads used for implementing thread-parallel appli-
cations. Instead of allocating a new thread (with corresponding stack resources and initialization overheads), a
pool of ready and waiting threads are maintained. Threads are chosen from the thread pool to execute new tasks.

translation layer The C++ template metaprogramming layer between the DARMA
classes that must be implemented by an implementation of the k7oack end

front end and the set of abstract

Trilinos The Trilinos Project is an effort to develop algorithms and enabling technologies within an object-oriented
software framework for the solution of large-scale, complex multi-physics engineering and scientific prob-
lems [EV .

tuple A tuple is a finite ordered list of elements. See [30] for more detail.

tuple space A repository of fuplesl that can be accessed concurrently, used to relate input to output patterns. A
tuple space served as the underpinning to I.ind4 Programming languag0. Tuple spaces can be considered a
generalization of a key-value storesl. Implementations of tuple spaces have been developed for a number of
other programming models including Java and Python. See Li for more detail.

vector processing A vector processing is performed by a central processing unit (CPU) that implements an instruc-
tion set containing instructions that operate on one-dimensional arrays of data called vectors, compared to scalar
processors, whose instructions operate on single data items. Vector processing can greatly improve performance
on certain workloads, notably numerical simulation and similar tasks. Vector machines appeared in the early
1970s and dominated supercomputer design through the 1970s into the 1990s, notably the various Cray plat-
forms. As of 2015 most commodity',CPUsI implement architectures that feature instructions for a form of vector
processing on multiple (vectorized) data sets, typically known as 5IMD Common examples include MMX,
!Streaming SIMD Extensions (SSE), AltiVec and Advanced Vector Extensions (AVX)

work stealing The act of one computational unit (thread/process), which has completed it's workload, taking some
task/job from another computational unit. This is a basic method of distributed load balancing.

Write-After-Read Write after read (WAR), also known as an anti-dependency, is a potential data hazard where a task
or instruction has required input(s) that are later changed. An anti-dependency can be removed at instruction-
level through register renaming or a task-level through copy-on-read or copy-on-write.

Write-After-Write Write after write (WAWD, also known as an output dependency, is a potential data hazard where
data dependence is only written (not read) by two or more tasks. In a sequential execution, the value of the
data will be well defined, but in a parallel execution, the value is determined by the execution order of the tasks
writing the value.

zero-copy Zero-copy transfers are data transfers that occur directly from send to receive location without any addi-
tional buffering. Data is put immediately on the wire on the sender side and stored immediately in the final
receive buffer off the wire on the receiver side. This usually leverages RDMAI operations on pinned memory.

112

References

[1] R. Stevens, A. White, S. Dosanjh, A. Geist, B. Gorda, K. Yelick, J. Morrison, H. Simon, J. Shalf, J. Nichols, and
M. Seager, "Architectures and technology for extreme scale computing," U. S. Department of Energy, Tech.
Rep., 2009. [Online]. Available:
http://science.energy.gov/—/mecha/ascr/pdf/program-documents/docs/Arch_tech_grand_challenges_report.pdf 9

[2] S. Ahern, A. Shoshani, K.-L. Ma, A. Choudhary, T. Critchlow, S. Klasky, V. Pascucci, J. Ahrens, E. W. Bethel,
H. Childs, J. Huang, K. Joy, Q. Koziol, G. Lofstead, J. S. Meredith, K. Moreland, G. Ostrouchov, M. Papka,
V. Vishwanath, M. Wolf, N. Wright, and K. Wu, Scientific Discovery at the Exascale, a Report from the DOE
ASCR 2011 Workshop on Exascale Data Management, Analysis, and Visualization, 2011. [Online]. Available:
http://science.energy.gov/—/media/ascr/pdf/program-documents/docs/Exascale-ASCR-Analysis.pdfl 9

[3] H. C. Edwards, C. R. Trott, and D. Sunderland, "Kokkos: Enabling manycore performance portability through
polymorphic memory access patterns," Journal of Parallel and Distributed Computing, vol. 74, no. 12, pp. 3202
— 3216, 2014, domain-Specific Languages and High-Level Frameworks for High-Performance Computing.
[Online]. Available: http://www.sciencedirect.com/science/article/ph/S0743731514001257 9,1131

[4] R. D. Hornung and J. A. Keasler, "The RAJA portability layer: Overview and status," LLNL, Tech. Rep.
782261, September 2014. [Online]. Available: https://e-reports-ext.11nl.gov/pdf/782261.pdf 9,131

[5] T. Mattson, R. Cledat, Z. Budimlic, V. Cave, S. Chatterjee, B. Seshasayee, R. van der Wijngaart, and V. Sarkar,
"OCR: The Open Community Runtime Interface," Tech. Rep., June 2015. [Online]. Available:
haps ://xstack.exascale- tech.com/git/public?p=xstack.git;a=blob;f=ocr/spec/ocr- 1.0.0.pdf;hb=HEAP9

[6] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas, N. Amato, and L. Rauchwerger, "Stapl: an
adaptive, generic parallel c++ library," in Proceedings of the 14th international conference on Languages and
compilers for parallel computing, 2003, pp. 193-208. [Online]. Available:

[7]

https://parasol.tamu.edu/publications/download.php?file_id=663 9

M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, "Legion: expressing locality and independence with logical
regions," in SC ' 12: International Conference for High Performance Computing, Networking, Storage and
Analysis, 2012, pp. 1-11. [Online]. Available: http://dl.acm.org/citation.cfm?id=2389086 9

[8] S. Treichler, M. Bauer, and A. Aiken, "Realm: An event-based low-level runtime for distributed memory
architectures," in PACT 2014: 23rd International Conference on Parallel Architectures and Compilation, 2014,
pp. 263-276. 9

[9] T. Heller, H. Kaiser, and K. Iglberger, "Application of the parallex execution model to stencil-based problems,"
Comput. Sci., vol. 28, pp. 253-261, 2013. 9

[10] L. V. Kale and S. Krishnan, "Charm++: A portable concurrent object oriented system based on c++," in
OOPSLA 1993: 8th Annual Conference on Object-Oriented Programming Systems, Languages, and
Applications, 1993, pp. 91-108. 9

[11] J. D. D. S. Germain, S. G. Parker, C. R. Johnson, and J. McCorquodale, "Uintah: a massively parallel problem
solving environment," 2000. [Online]. Available: http://content.lib.utah.edu/u?/ir-main,295511 9

[12] E. A. Luke, "Loci: A deductive framework for graph-based algorithms," in Computing in Object-Oriented
Parallel Environments (3rd ISCOPE'99), ser. Lecture Notes in Computer Science (LNCS), S. Matsuoka, R. R.
Oldehoeft, and M. Tholburn, Eds. San Francisco, California, USA: Springer-Verlag (New York), Dec. 1999,
vol. 1732, pp. 142-153. 9

113

[13] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. J. Dongarra, "PaRSEC: Exploiting
Heterogeneity to Enhance Scalability," Computer Science and Engineering, vol. 15, pp. 36-45, 2013. 9

[14] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and J. Dongarra, "DAGuE: A Generic
Distributed DAG Engine for High Performance Computing," Parallel Comput., vol. 38, pp. 37-51, 2012. 9

[15] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou, "Cilk: An efficient
multithreaded runtime system," SIGPLAN Notices, vol. 30, pp. 207-216, 1995. 9

[16] J. Bennett, R. Clay et al.," ASC ATDM Level 2 milestone #5325: Asynchronous Many-Task runtime system
analysis and assessment for next generation platforms," Sandia National Laboratories, Tech. Rep.
SAND2015-8312, 2015. 101

[17] Y.-K. Kwok and I. Ahmad, "Static scheduling algorithms for allocating directed task graphs to
multiprocessors," ACM Comput. Surv., vol. 31, no. 4, pp. 406-471, Dec. 1999. [Online]. Available:
bttp://doi.acm.org/10.1145/344588.344618 11I

[18] N. Vydyanathan, S. Krishnamoorthy, G. M. Sabin, U. V. Catalyurek, T. Kurc, P. Sadayappan, and J. H. Saltz,
"An integrated approach to locality-conscious processor allocation and scheduling of mixed-parallel
applications," IEEE Trans. Parallel Distrib. Syst., vol. 20, no. 8, pp. 1158-1172, Aug. 2009. [Online]. Available:
bttp://dx.doi.org/10.1109/TPDS.2008.219

[19] N. Fauzia, V. Elango, M. Ravishankar, J. Ramanujam, E Rastello, A. Rountev, L.-N. Pouchet, and
P. Sadayappan, "Beyond reuse distance analysis: Dynamic analysis for characterization of data locality
potentiar ACM Trans. Archit. Code Optim., vol. 10, no. 4, pp. 53:1-53:29, Dec. 2013. [Online]. Available:
bttp://doi.acm.org/10.1145/2541228.2555309

[20] W. Zhang, A. Almgren, M. Day, T. Nguyen, J. Shalf, and D. Unat, "Boxlib with tiling: An AMR software
framework," Apr. 12 2016, comment: Accepted for publication in SIAM J. on Scientific Computing. [Online].
Available: bttp://arxiv.org/abs/1604.0357Q 131

[21] J. A. Ang, R. F. Barrett, R. E. Benner, D. Burke, C. Chan, J. Cook, D. Donofrio, S. D. Hammond, K. S.
Hemmert, S. M. Kelly, H. Le, V. J. Leung, D. R. Resnick, A. E Rodrigues, J. Shalf, D. T. Stark, D. Unat, and
N. J. Wright, "Abstract machine models and proxy architectures for exascale computing," in Co-HPC@SC.
IEEE, 2014, pp. 25-32. [Online]. Available: bttp://d1.acm.org/citation.cfm?id=2689669 1051

[22] L. G. Valiant, "A bridging model for parallel computation," Commun. ACM, vol. 33, no. 8, pp. 103-111, Aug.
1990. [Online]. Available: bttp://doi.acm.org/10.1145/79173.79181

[23] Bulk synchronous parallel. [Online]. Available:

[24] Lambda functions. [Online]. Available:

[25] DOE ASCR co-design. [Online]. Available: bttp://science.energy.gov/ascr/research/scidac/co-design/

[26] W. E. Brown. (2015) Proposing standard library support for the c++ detection idiom. [Online]. Available:

1061

https://en.wikipedia.org/wilu/Bulk_synchronous_parallei

bttp://en.cppreference.com/w/cpp/language/lambda

1061

bttp://www.open-std.org/jtcl/sc22/wg21/docs/papers/2015/n4436.pdf 1061

1061 1091

1061

[27] N. J. Carriero, D. Gelemter, T. G. Mattson, and A. H. Sherman, "The linda alternative to message-passing
systems," Parallel Comput., vol. 20, pp. 633-655, 1994.

[28] Perfect Forwarding. [Online]. Available:

[29] Trilinos. [Online]. Available:

[30] Tuple: Wikipedia. [Online]. Available:

[31] Tuple Space: Wikipedia. [Online]. Available:

1091

bttp://en.cppreference.com/w/cpp/utility/forward]

bttps://trilinos.orgi 112,1

bttps://en.wikipedia.org/wiki/Tup10 11Z

bttps://en.wikipedia.org/wiki/Tuple_spac0

114

11Z

DIS TRIBUTION:

1 MS 0899 Technical Library, 8944 (electronic copy)

115

116

v1.39

Sandia National Laboratories

