SANDIA REPORT

SAND2016-5397
Unlimited Release
Printed March 2016

DARMA 0.3.0-alpha Specification

Jeremiah J. Wilke, David S. Hollman, Nicole L. Slattengren, Jonathan Lifflander,
Hemanth Kolla, Francesco Rizzi, Keita Teranishi, Janine C. Bennett

Prepared by
Sandia National Laboratories
Albugquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2016-5397
Unlimited Release
Printed March 2016

DARMA 0.3.0-alpha Specification

Jeremiah J. Wilke, David S. Hollman, Nicole L. Slattengren, Jonathan Lifflander,
Hemanth Kolla, Francesco Rizzi, Keita Teranishi, Janine C. Bennett

Abstract

In this document, we provide the specification for istributed Asynchronous Resilient Models an
plications), a co-design research vehicle for asynchronous many-task (AMT)| programming models that serves to: 1)
insulate applications from and hardware idiosyncrasies, 2) improve runtime programmability
by co-designing an fapplication programmer interface (API) directly with application developers, 3) synthesize ap-

plication activities into meaningful requirements for funtime systems, and 4) facilitate AMT] design space

characterization and definition, accelerating the development of [AMT] best practices.

[DARMA|is a [translation layer between an application-facing [API and a facing
[API. The application-facing user-level [API is an embedded domain specific language in C+, inher-
iting the generic language constructs of C++ and adding that facilitate expressing distributed asynchronous
parallel programs. Though the implementation of the EDSL] uses C++ constructs unfamiliar to many programmers to
provide the front end semantics, it is nonetheless fully embedded in the C++ language and leverages a widely supported
subset of C++14 functionality (gcc >= 4.9, clang >= 3.5, icc >= 16). The leverages C++

imetaprogramming to map the user’s code onto the runtime [API. The [API is a set of abstract classes
and function signatures that developers must implement in accordance with the specification require-

ments in order to interface with application code written to the DARMA front end. Executable DARMA applications
must link to a that implements the abstract runtime [API. It is intended that these imple-
mentations will be external, drawing upon existing AMT] technologies. However, a reference implementation will be
provided in the DARMA| code distribution.

The front end [API, translation layer, and back end [API are detailed herein. We also include a list of application
requirements driving the specification (along with a list of the applications contributing to the requirements to date),
a brief history of changes between previous versions of the specification, and summary of the planned changes in up-
coming versions of the specification. Appendices walk the user through a more detailed set of examples of applications
written in the DARMA|ffront end//AP] and provide additional technical details for those the interested reader.

Acknowledgment

This work was supported by the [U. S. Department of Energy (DOE) National Nuclear Security Administration (NNSA)
[Advanced Simulation and Computing (ASC) program and the Office of Advanced Scientific Computing Re-
search. Sandia National Laboratories (SNL) is a multi-program laboratory managed and operated by Sandia Corpo-
ration, a wholly owned subsidiary of Lockheed Martin Corporation, for the DOE NNSA| under contract DE-AC04-
94AL85000.

Contents

1 Introduction 9
10

11

12

14

14

15

15

17

17

18

19

20

21

andle Usage Rules]ot e e e e 21

2.2.4 Access Handles with Compile-time Checking|, 23

2.3 Creating Deferred Work using FUNCtorsottt 23
2.3.1 Mixing Deferred and Immediate Arguments|uiiiinininiennenen... 25
R2.3.2 FunctorInterface PitfallS.o 26

A KEVWOT AT SUTICIIER 5 ;5 15415 5 5 16 63 5 7% 6 6 8 156 8 i3 5 MiS R A S A B SA S A3 WA M ERS @ ME @A SRR S WEEA &53 M 27
2.5 Serialization and Layout DesCription].ottt e et e 27
R.5.1 BasicIntrusive Interface 28
P52 SimplePackUnNpaCkBrCHIVE] o vs cosossvsas o5 ssiissaoisisosissnioiininsiniat 28

2 neric Archi T ATTZALIOT s ¢ v s 0 55 s 500w i o 0 o 908 606 9005 00500 (60508 W 8 8 08 4 29

29

5. eperate Methods for Seperate Modesttt e 30

2.5.6 Serializing Pointers and Ranges «: s s: s ssvs snsms ssswssmsmssnsanens suses sssns niws 31
... 32
2.5.8 Definition of “Serializable™. L e 33
2.5.9 Implementations for Builtin and Standard Library Types, 34
R2.5.10 PolymoOrphiSmy.ttt e e e e 34
RS5IT Serialization PitfallS 34

2.0 SPNDESUPEOIH v 5 v o o i 50 o 0 s 0 i 0 008 i1 5 863 505 st 2 2 5 8 15 s 5 0 o 5 & ko 5 0o £ o B 00 o i 5 @ 0 35

.91 emplace Valugl. « vttt et e e

292 ouBlILSH sivipamsmmin:soams a86s 8iHE cpiEs i8R i ims i oems asoms 0EHe sWIEs

2.9.3 et valug ot
2.9.4 = Y 1 =

U5 geb relereniCe] s imscminssmsns soisis isms b imasossssimissesssmsns s@amsswams

2.0.6 0P A O =] e

B3 Translation Layer

B.1 Separation of Responsibilities Across Layerst
B.2 Tmportant CH4 CONCEPLS v ot ettt et e et et e e e e e e e e e e e e
B3.2.1 Lambda Capture for Automatic Dependency Detection and Versioning
B.2.2 Keyword Arguments|o .u ittt e e
4 Backend

4.1 Tmportant Backend Concepts].ottt e e
B2 Class INdeXo ottt et e e e e e e e e e e
A2 Class Tisll:c coscosmiinimesns s dnsns 50705 69585 SMiahi @5 b Msdniss dnsns saias (avas

A3 Class DOCUMENTATION] 5w s s wisms o ws 53 8msds casms o8 ams a8 ss s Heswsmusssni@s susms 65593
4.3.1 darma runtime::abstract::backend::Flow Class Referencel
Detailed Deseripfion] : s s sssamimisnies sasas 6mias ot dhiaidmi @i atiasdnins saias 45504

4.3.2 darma runtime::abstract::frontend::Handle Class Referencel
Detailed DEeSCIIPHON oo vttt ettt e e e e e e e e e

Member Function Documentationttt

68
68
69
70
70
70
4.3.5 darma_runtime::abstract::frontend::SerializationManager Class Reference 74
Detailed DESCTIPEON « 1« 555w sis 58 s ssws s3sien swsimn amsiossssessasmasasasins sssns msns 74
Member Function Documentationttt 74
4.3.6 darma_runtime::abstract::frontend::Task Class Reference 75
Detailed DESCIIPHON o\ o et e ettt e e e e e et et e e e e e 76
Member Function Documentationt 76
4.377 darma_runtime::abstract::frontend::Use Class Referencel 77
Detailed DesCription]o vttt ettt e e e 78
Member Enumeration Documentationiuiuinmrninenenneneneneen... 78
Member Function Documentationc.ouiuiineninninenenennnneneneennn. 78
5 Requirements 81
5.1 High-level PhiloSOpRy| oot e e 81
5.2 Application Requirements for the frontend API 81
5.3 Back end runtime syStem reqUITEMENES| ottt v ettt ettt e e e e e e 82
5.4 Co-design CONLIIDULOTS|. . . . o oottt et e e e e e e e e e e e e 82
6 Evolution of the Specification 83
83
83
83
Appendix
A p 85
85
85
85
86
A.1.4 Creatinghandles 1]. e 86
ALY Creating handleS 2 i . s sasvswmsvsamsns sosws snsma epsmpinsassesasissasiassesos a5 sa 86
A.1.6 Arrow operator for handles|. 87
A.1.7 Deferred work and constraining privileges i 88

A.3 Key-Value Example

IA.3.1 Publishing and read access|

/A.4 Publishing, versioning and lifetime of handles

ES 1D Poisson Equatlon

A.6 TD Heat EQUAtion].ottt et e e e et e

ules 10r viaking ¥1ows

B.1 Modify Capture with Immediate-Modify Permissions|

B.2 Modify Capture without Immediate Privileges

ead Capture wit

mmediate Modity Privileges

ead Capture wit!

mmediate Rea

T1V1IEZECS

103
103
103
104
104

105

113

Chapter 1

Introduction

As we look ahead to next generation platforms and exascale computing, hardware will be characterized by dynamic
behavior, increased heterogeneity, decreased reliability, deep memory hierarchies, and a marked increase in system
(both on-node and system-wide) [[I,2]. These architectural shifts are posing significant programming
challenges for application developers as they seek solutions for: effective management of hybrid parallelism at an
unprecedented scale, efficient load-balancing and work-stealing strategies that mitigate both application and system
load imbalance, and effective management and staging of data across deep memory hierarchies. To further complicate
matters, application codes must be made performance portable across a variety of planned system architectures and be
made resilient to the increased number of anticipated faults.

[AMT) programming models and runtime systems show promise to mitigate the challenges associated with the changes
in high-performance computing (HPC) system architectures. models are a shift away from the current
imunicating sequential processes (CSP) programming model as they strive to exploit all available and
pipeline parallelism|, rather than rely solely on |[data parallelism| for concurrency. The term encompasses
the idea that 1) processes (threads) can diverge to different tasks, rather than execute the same tasks in the same order;
and 2) is maximized (the minimal amount of synchronization is performed) by leveraging multiple forms
of parallelism. The term many-task encompasses the idea that the application is decomposed into many
units of work, to enable the overlap of communication and computation as well as asynchronous load balancing strate-
gies. A key design goal of AMT models is to enable performance-based optimizations of code dynamically at runtime.
We note that performance-based code transformations are ubiquitous at the compiler-level. Compilers will add, delete,
swap, or reorder instructions to avoid unnecessary operations, improve data locality, or improve pipelining. Further-
more, there are a number of compile-time optimization tools being developed [3, 4], that provide the ability to map a
single code kernel onto high-performance execution across diverse compute platforms. However, many optimizations
that benefit performance are unknowable until the program actually runs — as these decisions may be based on current
system performance, or the data needs of the application itself. Such dynamic runtime optimizations are much more
expensive than compile-time optimizations, thus the use of as a basis for dynamic runtime transformations.

The [AMT community is currently very active (e.g., [5—15]), representing a range of different design points within the
design space of AMT models. While the technologies show significant potential to address challenges, the community
has not yet identified best practices and existing systems still represent a variety of different programming model,
execution model, memory model, and data model design choices.

Programming model: From a programming model perspective, models all have some notion of decomposing
applications into small, units of work. can be expressed in a fashion, with
users managing control-flow explicitly themselves. In other [AMT) programming models, the user expresses
a algorithm step-by-step and, under some simplifying assumptions, the runtime derives the synchronizations
required. This often takes the form of read/write data access annotations under the assumption of
enabling runtime dependency analysis. Models leveraging runtime analysis are best suited for coarse-
grained [task parallelism), as funtime system overheads must be amortized.

Execution model: Execution models broadly cover how the algorithm and corresponding correctness and perfor-
mance constraints specified in the programming model are translated to actual execution. For example, AMT
runtimes implement a variety of execution models|, including fevent-based, fork-join (either ffully strict or termi-
nally strict), actor model, or ubiquitous [CSP model. More subtle details include whether a constant number of
threads are always executing (e.g. pure MPI codes), new tasks are allocated to a thread pool, or if new threads
are allocated (forked) for new tasks. These details will also affect the synchronizations required in an execution
model. For example, fully strict models will generally not require between sibling tasks. In

contrast, models will require to synchronize parallel workers.

Memory model: HPC memory models will have several properties including distributed or shared and coherent or
incoherent. Distributed memory modelg include message-passing models like MPI. Partitioned Global Address
models have distinct address regions, but are “shared” in the sense that any memory location can
be accessed across the system by specifying both a pointer address AND process ID. In[DARMA|, computational
tasks by default can only operate on their local data. When remote data is required, it is communicated between
the remote and local tasks. Across the spectrum of memory models, memory locations are usually accessed via
address (put/get or send/recv), but key-value store| (tuple space) models identify data regions by key identifiers
(coordination). In coordination, parallel workers never directly communicate, instead ‘coordinating” indirectly
via a key-value store or [fuple spacel.

Data model: In order for data-flow AMT) models to make effective data management decisions (e.g., the data
and making copies to increase parallelism), they must have some knowledge of the structure of the data. One
option for providing structural information regarding data is to impose a data model. Another option is to require
application developers to define serialization, slicing), and finterference tests for their data blocks.

1.1 Scope

Although the AMT model community is quite active, the lack of standards impedes adoption of these technologies
by the application community. Although it is premature to standardize, there is sufficient breadth and depth in the
[AMT] research community to begin developing community best practices. Towards this end, this document provides
the specification for DARMA|, a research vehicle for AMT) programming model co-design. DARMA| aims to serve
four primary purposes:

Insulate applications from runtime system and hardware idiosyncrasies: As part of its design, DARMA| sepa-
rates its application-facing front end and fruntime systemi-facing back end [APIs. This separation of concerns
enables an application team to explore the impact of design space decisions. For example, ap-
plication developers can build their code using different DARMA}compliant implementations, without
having to deal with the combinatorial complexity of implementing their application in many different
[APIS. It should be noted that DARMAV's front end /AP] is not fixed — it will evolve based on feedback
from both application and developers.

Improve AMT runtime programmability by co-designing a front end API directly with application developers:
Recent work [16] highlighted gaps with respect to productivity in some existing AMT] runtime systems, in par-
ticular noting requirements gaps and deficiencies in existing [API§. Co-designing DARMA/’s ffront end AP]
directly with application developers provides a mechanism for capturing different application’s
requirements— giving them a voice in the design of an asynchronous tasking [API. Experimenting with the AP]
provides an agile method for application developers to reason about the AP and better articulate their
execution requirements.

Synthesize application co-design activities into meaningful requirements for runtimes: The specification provides
a mechanism for tracking the provenance of design decisions and requirements as they evolve throughout the
co-design process. Chapter [provides a list of the application requirements gathered, and Chapter [6 tracks the
evolution of the specification, highlighting which requirements motivated changes to the specification.
software stack developers benefit from 1) DARMA'’s application-informed requirements, and 2) access
to code kernels and proxy applications developed via the front end co-design| process.

Facilitate AMT design space characterization, accelerating the development of AMT best practices: In the dis-
cussion above we summarize a range of high-level design decisions for AMT programming, execution, memory,
and data models. DARMA’s separation of front end and back end [APIg seeks to facilitate this design space
characterization and exploration. There is a notable tension between the design of 1) a [APT that is
expressive, simple, and easy to incorporate within existing application code bases, and 2) a [APIT that
is simple enough to support multiple DARMA-compliant implementations that leverage existing
technologies. Consequently, DARMA|/APIs (both front end and back end) are intended to evolve based on
iterative feedback from application, programming model, and runtime system| teams.

The rest of this chapter provides a high-level description of DARMAs structural design along with a brief summary of
DARMA/'s programming, memory, data, and (compatible) execution models. We note that throughout the

10

process, decisions are first and foremost, made to best support application requirements. Furthermore, we target a

[API specification that is general enough to support AMT) runtime system| design space exploration, via build

out of DARMAFcompliant back ends using existing [AMT] fruntime system| technologies. Lastly, we note that the
features detailed in Chapters 2] and H| are not entirely comprehensive — meaning they do not yet capture all of the

application requirements driving DARMA| co-design. This is because we are formalizing the specification process
from the inception of DARMA|, layering-in features incrementally to provide the community opportunity for input,
and active engagement in the process. Suggested enhancements and changes to the DARMA specification
are welcome and can be made via a DARMA| Enhancement Plan (DEP).

1.2 High-level Design

DARMAJis a translation layer between an application-facing [API and a facing [API.
DARMAJ's front end//AP] is an EDSL]in C++, inheriting the generic language constructs of C++ and adding

that facilitate distributed, deferred, asynchronous, parallel programming. Though the EDSL uses C++ constructs
unfamiliar to many programmers to implement these semantics, it is nonetheless fully embedded in the C++ language
and requires a widely supported subset of C++14 functionality (gcc >= 4.9, clang >= 3.5, icc >= 16). The
[API is the center of programming model co-design activities, which seek to involve a wide variety of both application

and runtime system| developers.

DARMA’s ftranslation layer leverages C++ template metaprogramming| to map the user’s calls onto
the runtime JAPI, bridging the programming model and actual program execution. We note however that

the DARMA translation layer itself does not perform any performance optimizations — these are left entirely to the
back end fruntime system implementations. Rather, the translation layer converts the application code specified with
DARMAJ's ffront end [AP] into an “intermediate representation” that enables a to make intelligent,
dynamic decisions (e.g., about order and locality or possibly even deletion and replication when
appropriate).

The [APIis a set of abstract classes and function signatures that developers must implement in

accordance with the specification requirements in order to interface with application code written to the DARMA| front
end. Strictly speaking, the [AP] calls only generate a stream of deferred tasks (tasks with corresponding data
inputs/outputs) that implicitly capture the program’s data-flow. The information passed through the to
the is sufficient to (and intended to) support a computational directed acyclic graph (CDAG) representation
of the application. In a representation, are vertices V' in a graph G with directed edges . An edge
from vertex v; to vertex v, indicates a precedence constraint. A representation describes task-data precedence
constraints, rather than just task-task precedence constraints. In a there are two types of vertices - T and
data D that compose the complete set of vertices V. Edges never directly connect two and instead edges are
only ever described between a vertex, t, and a data vertex, d indicating that (depending on direction of the edge)
data is either consumed or produced by a ftask. The indicating task-task precedence constraints can always
be obtained from the CDAG, which captures the data-flow task graph. The [CDAG is thus more general, capturing
additional information to enable runtime code transformations."

Finally, we highlight that a DARMA| executable application must link to a that implements the ab-
stract runtime [API. It is intended that these implementations will be external, drawing upon existing AMT

technologies. However, a reference implementation will be provided in the DARMA| code distribution.

There ar a number of terms, such as rank|, ftask], and that are loaded with many definitions across the literature.
Here we give special attention to define rigorous and limited definitions for such terms used throughout the document.
We use in the usual UNIX sense. Other terms are:

Task: The work unit instantiated directly by the application developer. are also the smallest granularity of
migratable work unit. In the current specification, cannot migrate after beginning execution. are
guaranteed to make forward progress, but are interruptible.

! Although beyond the scope of this specification document, the interested reader will find numerous works discussing heuristics and order-
preserving transformations of task graphs that demonstrate the utility of a coarse-grained for enabling dynamic runtime optimization of an
algorithm [17-19]. We reiterate that the is only a concept guiding the design of the /AP] and not strictly part of the

specification.

11

Execution stream: An lexecution stream will consist of a sequence of many tasks, and, like ftasks|, is guaranteed

to make forward progress. All execution streams are ftasks, but gxecution streams specifically have no parent
and are the root of an independent task graph. Each is guaranteed to have a unique
stack and, any point time, will have a local context of variables. A physical (in the UNIX sense) can
be running many parallel execution streams. Allowing multiple fexecution streams| per physical is the
basis for overdecomposition. Since several fexecution streams can exist in the same address space,
this introduces a strict requirement of no global variables. An fexecution stream is the DARMA| generalization
of a thread, except that extra privatization of variables is necessary since no assumption of shared memory
between independent execution streams can be made (even if execution streams happen to be executing in the
same process). Just as must perform special operations to exchange data between them (message-
passing, mmap), independent execution streams must perform special operations to exchange
data between them. Execution streams| are always assigned a unique identifier by the funtime system|.
Operation: Used synonymously with work unit. This is a unit of execution that is guaranteed to be non-interruptible.

An is not equivalent to a since are interruptible. are the smallest, schedulable
units of work. A consists of a sequence of pperations. While are explicitly instantiated by the
application developer, (individual portions of a task)) can be implicitly instantiated by the
system|. can yield at the beginning/end of its component pperations, allowing the to

schedule new work units for execution.
Rank: A unique integer ID for an execution stream. This matches the MPI notion of as an integer identifying a
process within an MPI communicator. The term will often be used in the specification as a synonym for

(more precisely, a metonymy for execution stream)). Generally speaking, IV parallel
are created in an [single-program multiple-data (SPMD)| launch (more in Section 2.7.2). The
then assigns unique identifiers (rank| IDs) O through N — 1 to each jexecution stream|. Referring to “rank
0” will therefore function as shorthand for “the that has been assigned ID 0 by the runtime
in an launch.” Similarly, referring generically to a “rank” is shorthand for “an created

by an SPMD launch with a particular ID”
Key-Value (KV) Store: A is an associative map from keys to values. In general, there are no restric-

tions on what keys or values are, although in many cases keys are strings. The only thing required is that keys
be comparable. For an unordered map implementation of a key-value store| keys must usually be hashable.

Tuple Space : A generalization of a in which keys are of individually comparable values.
When this specification refers to a tuple space, we are only referring to a particular type the use of at as

a key within a key-value store. Unlike other languages (e.g. Lindd) we do not require
to implement wildcard (or any other operations), only the comparison on fully-specified fuples. Implementation
of the key-value store as a tuple space] is not required. Even though variables must be constructed with a
unique ftuple, a particular backend implementation may choose to convert into string representations and
implement a simple string-based key-value storel.

distributed hash table (DHT) : A particular implementation of a for hashable key types. Intended to
be scalable for large systems, the hash space is partitioned across distributed workers. This automatically (and
predictably) scatters keys and corresponding values across the system. A [DHT] implementation of a
is not required by the specification, but recommended for scalable execution.

1.3 Programming Model

Programming models| provide application developers abstractions for expressing correct and performant algorithms.
As described earlier, a key design goal of AMT] models is to enable performance-based optimizations of code dynam-
ically at runtime. Runtime-based optimizations come with an associated runtime cost, which is what motiviates the
use of (rather than, e.g., instructions) as the basis for dynamic runtime transformations. Existing models
provide a variety of for capturing and expressing |data-flow dependencies and communicating these to the un-

derlying fruntime system. One of the adoption challenges many of these face is that they require a
significant shift away from what has become the defacto standard of distributed HPC programming: CSP,.

DARMA/'s programming model seeks to facilitate the expression of deferred, asysnchronous work, enabling a
to perform dynamic runtime optimizations, while making it as simple as possible for programmers to

12

reason about the correctness of their code. This motivates DARMAJ's combined use of successful programming model]
concepts from a variety of existing runtime systems. One of DARMA'’s programming model key design decisions is
rooted in the following observations: 1) all application developers can effectively reason about how to write correct
sequential codes, 2) all MPI programmers can effectively reason about how to write correct codes, and 3) most
applications written in or ported to DARMAI will likely have SPMD) as their dominant parallelism. To simplify the
implementation of SPMD-structured codes, the notion of a is maintained within the [API. By maintaining the
notion of a rank, DARMA provides application developers a convenience mechanism for creating the initial problem
decomposition and distribution. Immediately after launch, any user-specified is free to be migrated by
the runtime system, if it will result in better performance. Because maintains the notion of a[rank, it is also
possible for DARMA to maintain [CSP-like semantics (in particular, within an initial implementation or port of a code
prior to the introduction of [deferred work)). This grants developers the ability to express correctness constraints through
a familiar and intuitive programming model. DARMA facilitates the expression of hybrid parallelism by supporting
sequential semantics, within a rank. This means that application developers can reason about code as though it were

being deployed sequentially within the rank| even in the presence of user-specified [deferred work].
DARMA employs C++-embedded task annotations for the specification of deferred workl. Each block of

can be considered a task (coarse-grained blocks of procedural imperative code), which is not necessarily performed
in program order. Instead, is performed asynchronously when all of its data-flow dependencieg are
satisfied. is primarily achieved through permissions/access qualifiers on data that enable a runtime to
reason about which tasks can run in parallel and which tasks are strictly ordered. Task granularity is determined by
the user and annotations are translated by DARMA['s translation layer through standard C++ constructs (e.g., lambdasg,
reference counted pointers)) and template metaprogramming to expose inherent in the code. We note
here that DARMAJ's runtime optimizations are complementary to compile-time optimizations performed by perfor-
mance portability tools, e.g. [3,4,20]. Compile-time performance portability tools provide the ability to map a single
code onto high-performance execution across diverse compute platforms.

One of the major differences between DARMA| and a traditional programming model is the manner in which
communication is performed. Communication between is not performed via direct messaging. Instead,
coordination semantics| are used. Processes coordinate by putting/getting data associated with a unique ina
(key] are general ffuples). Coordination semantics enables out-of-order message arrival, deferred execution,
task migration, and resilience strategies since the application declares or describes the data it needs/produces rather
than enforcing an explicit delivery mechanism. The coordination semantics in the specification are intended to support
the use of mechanisms and caching, generally producing execution equivalent to an MPI send/recv
code.

Together, these features make DARMA| a mixed imperative/declarative] programming model. As much as possible, se-
quential semantics are used to produce intuitive, maintainable code. However, the “procedural imperative]”’
function calls and code blocks do not necessarily execute immediately. Rather than explicitly perform all work in pro-
gram order and block on data requests, they wait for all|[data-flow dependencies|to be satisfied. Such deferred execution|
makes DARMA declarativel, leaving the exact control-flow up to the funtime system. Furthermore, it is this ability
to defer work and advance ahead that gives the pack end runtime system| the ability to make performance-improving
transformations.

Although not yet supported in version 0.3.0-alpha of the specification, several important features will play a role in
the DARMA programming model:

Expressive Underlying Abstract Machine Model: Notions of [execution spaces| and memory spaceg will be in-
troduced formally in later versions of the specification. These abstractions (or similar ones) appear in other
runtime solutions, e.g. [3,4]. Using such abstractions 1) facilitates performance portable application develop-
ment across a variety of execution spaces|, and 2) provides finer-grained control and additional flexibility in the
communication of policies regarding data locality and data movement.

Runtime performance introspection In future versions of the specification will specify hooks for the
application developer to express, guide, and leverage the use of runtime-level performance fintrospection. An
important activity will include determining whether performance needs to factor into
the application-level programming model on the or whether it belongs only in the

APL
Expression of fine-grained deferred parallel patterns. In future versions of the specification, DARMA will specify

13

deferred fine-grained parallel patterns, e.g., deferred parallel-for, parallel-scan, etc.

Instantiating tasks in class member functions Due to idiosyncracies in Ct++ lambdalcapture, inline create_work
calls cannot operate on member variables within a class member function. Mechanisms for circumventing this
C++ limitation will be introduced in later versions.

Subsetting/slicing handles Certain may only require access to a subset of the data owned by a handle created
withinitial_access| Using the in such a therefore overexpresses contraints, which is contrary
to the philosophy of DARMA for avoiding unnecessary synchronizations and preconditions] Expressing
subsets of classes/slices of arrays will be an important part of future specifications.

Data Staging: The memory and execution space concepts introduced above enable 1) performance portable tasks that
can run in multiple environments through a single code and 2) user-directed (or runtime-directed) asynchronous
data movement to move data to compute devices.

Collectives: Some collectives will be supported by in version 0.3.1 of the specification, including a11-
reduce, reduce-scatter, and barrier collectives. Collectives will be data-centric rather -centric,
as done in MPL

Programmer-directed optimization While an abstract algorithm may make more information available to the com-
piler or runtime for performance-tuning transformations, compilers and runtime schedulers may not always
understand the global nature of the problem. As such, they may not make performance-improving optimizations
that are apparent to an application developer. A critically important part of future co-design activities will be the
development of the interface by which developers can steer the runtime towards a desired set of optimizations
that compilers or runtime schedulers might fail to perform.

1.4 Execution Models

The main focus of DARMA is the programming model and corresponding that maps a program
expressed via a combination of semantics, lcoordination semantics, and additional C++-embedded task annotations

into a generic data-flow based description of an algorithm based on deferred tasks. DARMA| therefore prescribes very
little about execution. For example, DARMA) prescribes nothing about the scheduling of nor the implementation
of the data structures (e.g., key-value store], [fuple space) required to support coordination semantics. A back end
scheduler is therefore free to use, for example, either depth-first or breadth-first priorities in deferred
tasks (as captured in a[CDAG). Similarly, a scheduler may use with work queues to manage tasks or it may
use a model that creates new threads for each task. In this way, codes are execution model-agnostic,

only requiring that a back end runtime system preserve the data-flow dependencies expressed in the application and

derived by the ranslation layer.

furthermore prescribes nothing about the internals of each fask. is fully compatible with parallel
- with flexible fine-grained parallelism, usually [data parallelism. For example, depending on dynamic
conditions, more or fewer threads may be requested for a GPU kernel. Although the DARMA front end AP currently

only allows expressing task granularity and task data-flow, we plan for the [API to also express fask elasticity| in future
versions.

DARMA-compliant back end runtime systems| are required to enable an efficient SPMD] launch of their program,
similar to an MPI launch. This is based off application developer feedback, which has indicated that two of the most
critical challenges for scientific applications with massive in a task-based model include initial prob-
lem decomposition and distribution. DARMAJ's efficient SPMD) runtime-based launch requirement will be modified if
solutions are developed to support massive launches through compiler-based transformations.

1.5 Memory Model

The memory model for DARMA|encompasses how variables are accessed and when updates become visible to parallel
threads (concurrency). Within a[DARMAexecution stream, memory is local or private, and the standard C++ memory
model applies. To share data between xecution streams, DARMA| uses a flat global in which data is
identified by unique identifiers, i.e. a in which keys exist in a tuple space. Any object published

14

into the can be read/written by any thread/process.

In adata is conceptually a reference counted pointerjinto the key-value store. Data handles are used to
manage the complexities associated with and inter-rankl communication. When data needs to be made
accessible off-rank], the application developer [pub1li shies the handle. Each handlel has a globally unique handle ID

(i.e, a that is an arbitrary of values into the key-value store). Before a can begin, identifiers are
resolved by the to a specific local address. Within the task, the standard C++ memory model applies.

When publishing, the user must specify an for that data. Declaring an informs the
that other currently need or will need the data, allowing the runtime to manage garbage collection and

resolution. In most cases, the will be declared as the number of readers (1, in the case
of simple point-to-point send). Once all read are released (go out of scope in C++ terms), garbage collection
or resolution can occur.

In addition to facilitating coordination between franks, data structures support sequential semantics (see Chap-
ter 3 for details). Here concurrency is critical to the and when/how updates data are made visible to
parallel threads. Again, within [tasks, the C++ applies. At the task-level (coarse-grained),
ensures atomicity of all tasks. The DARMA translation layer enforces the C++ sequential consistency model at the
level of in the same way that C++ ensures sequential consistency at the level of instructions. DARMA| understands
read/write usages of and ensures that writes are always visible to subsequent reads - and reads always complete

before subsequent writes. The use of enables this to happen automatically within an execution stream

1.6 Data Model

DARMA only implements a through its interface. The notion of data structure, data layout,

and data type only exist in the application and (see Chapter 3). Thus, a implementing
the DARMA specification is only aware of or identifiers for a coarse-grained data block of a given size. To

actually migrate data, a back end runtime system/invokes hooks implemented by the application. In future
versions, an [API similar to the interface will support the definition of data subsets and data slices. Again,
the pack end fruntime system| will only understand data and dependencies, requiring the type-aware application
and to define the details of subsetting and slicing operations. This leaves the application developer
free to use arbitrary data structures, but puts more responsibility on the application developer to articulate the structure
of the data.

1.7 Document organization

This document is organized as follows. In Chapter J we introduce the [API. In Chapter 3 we provide a
description of the ftranslation layer, and in Chapter 4 we provide the specifics regarding what must be supported by
each of the abstract classes in order to implement the DARMA| specification. In Chapter [5 we include
a list of application requirements driving the specification (along with a list of the applications contributing to the
requirements to date). We conclude this document with Chapter [f, which includes a brief history of changes between
previous versions of the specification, along with a list of the planned changes in upcoming versions. Appendix A
provides a suite of examples that illustrate the features.

15

16

Chapter 2

DARMA Front End API

2.1 Deferred Work Creation

In DARMA like other AMT fruntime systems), the application developer creates blocks of work (a task)and defines the
for the to begin executing. Rather than require application developers to explicitly define vertices
and edges in a or use explicit constructs, in DARMA], preconditions are implicit in either
the sequential order of or the data-flow inherent in the coordination (more below).

is instantiated (but not necessarily executed) via the function. For inline (as compared to
functor-based tasks, more below), this utilizes the C++ mechanism to yield the following syntax:

//outer task
create_work ([=] {

// <-—- deferred work in captured context
1) i

//continuing context in outer task

In DARMA| deferred work and are generic terms we use for work performed by code inside the capturing [ambda.
This does not necessarily imply that the continuing contex{ (after the will be executed before the

(note that “captured workl” and “captured context” are two other generic terms we use interchangeably
with deferred work). We highlight here that does not need to be deferred. A more precise term may
therefore be deferrable work, but we use deferred to match previous literature. If aftask’s are all satisfied
(data is available with correct permissions), the may execute it immediately. In fact, the runtime may
execute the outer continuing context, the inner deferred context, or another context entirely if there are pending tasks.

While this syntax leverages C++ 11 [ambdas| the user does not need to understand C++ 11 standard features to use
(this complexity is managed by DARMAs ftranslation layer, as summarized in Chapter 3)). All
the work specified within a is queued for [deferred execution. The does not need to execute
immediately and may be executed by the pack end runtime system| any time after all of its are satisfied.
are either (waiting for data to be produced) or (waiting for data to be
released so it can be overwritten). fora are never given explicitly, but are instead derived implicitly

based on sequential usage of objects, discussed in detail below. For example, to satisfy
the following code should print “first: 42, second: 84"

auto my_handle = initial_access ("some_data_key");
create_work ([=]{

my_handle.set_value (42);
1)
create_work ([=] {

cout << "first: " << my_handle.get_value();
1) i
create_work ([=]{

my_handle.set_value (my_handle.get_value () *2) ;
1)
create_work ([=] {

cout << ", second: " << my_handle.get_value();

17

});

The code produces results equivalent to a C++ code in which is removed and is
just replaced with the underlying type. These sequential semanticg are pivotal to the DARMA| programming model.

Sequential semantics provide a simple and intuitive way of coding asynchronous work, by limiting programmer bur-
den, avoiding deadlock, and enabling runtime optimizations. However, in cases with massive SPMD) parallelism across
a distributed memory machine, it may be more scalable and natural to code in a [CSP-like framework involving parallel
execution streams. Rather than coding as if only operating within a single execution stream), the programmer must be
aware of multiple parallel execution streams|.

DARMA| uses coordination data between parallel execution streams), rather than exchanging data through send/recv
pairs. Two never explicitly exchange data. Instead they publ i shjand ffetch from a key-value store.
Coordinating (rather than communicating) abstracts physical data locations to better support migration. Addi-
tionally, it removes message-ordering requirements to better support data transfers. While the
appears to be a centralized, global data store that copies data in/out, the can be implemented as
a DHT] that supports transfers. Thus both sequential semantics and coordination semantics| follow the same
principle in DARMA!: intuitive programming model concepts that simplify reasoning about algorithms are transformed
to a parallel, scalable execution by the translation layer and back end funtime system.

In the example here, variables are not passed down from a [parent task to child tasks. Instead, one
produces a value and publishes it to a key-value storel Another reads the value by fetching it from
a key-value storel. The processes coordinate with publish/fetch pairs similar to send/recv pairs in the
model of MPL.

Execution Stream 0:

Execution Stream 1:
auto sender =

initial_access<int> ("counter"); auto recver =
sender.set_value (42) ; read_access<int> ("counter") ;
sender.publish (n_readers=1);

Instead of defining implicitly via sequential order, are specified more explicitly
by requiring that a particular block of data be fetched from the key-value store. More on SPMD) programs and parallel
are given in Section 2.6,

2.2 Data Access Handles

AccessHandle<T> objects are lightweight wrappers around the actual data structure of interest having type T. The
add a control block (metadata) that tracks uses of the and enforces sequential semantics, analogous
to smart pointers that wrap pointer types and provide a reference counting control block. Critically, this interface is
non-intrusive, wrapping any type T without requiring that type to be modified.

Most critically, an AccessHandle enables deferred access since RccessHandle can exist in ready or pending
states. Ready and pending are not rigorously defined in the state table for AccessHandle]in Section 2.2.3, but rather
guiding concepts. Ready can be dereferenced (have their underlying values ffetched) and be used immediately
to perform work. Pending cannot be dereferenced, but can still be used to schedule or instantiate work. Thus
even if a is carrying pending or unresolved data, execution can advance thereby unrolling more of the task
graph.

This lookahead is the key element that enables runtime optimizations. Lookahead gives the more
complete knowledge of the task graph instead of locally executing step-by-step. By looking ahead, the
can reorder or migrate to maximize data locality and improve load balance. The most critical conceptual change
from standard C++ to DARMA are pending variables that enable lookahead, unlike conventional C++ variables that
must always be “ready”.

can be created three different ways.

18

l. a to data that does not yet exist in the system but needs to be created, or
2. a to data produced by another process that needs to be read, or

3. a to data produced by another process that needs to be overwritten or modified. Note that this type of
does not exist in the current version of the specification.

Type 1 is denoted as [initial_access|in DARMA| which informs the that the data with the
specified does not yet exist, and the user intends to create this data.Hence, an[initial_access|data handle

is usually followed by a memory allocation, and a value assignment. Remark: Although we could explicitly write
out AccessHandle<T>|in the code below, we strongly encourage programmers to use the C++ auto keyword. It
will greatly increase code portability for future (potentially backwards-incompatible) versions of DARMA|, with the
additional benefit of decreasing code verbosity.

auto float_handle = initial_access<float> ("float_key");
create_work ([=] {

float_handle.set_value(3.14);
P

As stated above, DARMA provides two methods for expressing preconditions} sequential semantics and [coor
dination semantics. [initial_access| is necessary in both methods. Once created, a can be passed along

to within the same, sequential execution stream. A handle created by initial_access| can also be
published, making it available to other gxecution streamsg via key-value store coordination.

of Type 2 above request read-only access to data produced via external through s
| (which causes a to be performed). As such, read_acccess is only relevant for applications that use coordi-

nation to express data flow.

auto float_handle = read_access<float>("another float_key");
create_work ([=]{

float val = float_handle.get_value();
std::cout << "Value read with key another_ float_key is " << val;

1)

Immediately following the function, the AccessHandle] will be pending instead of ready. To
enable to be called (put the in a ready state), the must be used inside of a
| defers execution of the code block until the key-value store| resolves the value of f1oat_handle

and converts it to a ready state. This might involve moving data if the £1loat is on a remote node. Remark: future
versions of DARMA) will enable to begin optimistically with some still in a pending state, but this is not
supported in the current version of the specification.

In general, any calls to should occur within a scoped code block to avoid dangling references to stale
physical memory locations. Calls to get_value should go inside a create_work block when possible to guaran-
tee availability of the data.

2.2.1 Publish

By default, unless explicitly published, data are visible only to within the same scope that have a
copy of the actual AccessHandle<T>] object, created as discussed in Section 2.2)). For data to be globally visible
in the global memory space (key-value store)), the application developer must explicitly data. Unpublished
data will be reclaimed once the last referencing it goes out of scope (i.e refcount goes to zero), freeing the
memory and resolving any anti-dependencies analogous to the destructor invocation in Ct++ when a class goes out of
scope.

Published data, however, is globally visible to all execution streams and requires more “permanence.” In order to
resolve anti-dependencies associated with the publish or garbage collect the memory, published data must know its

access group. When all read within an have been deleted or released globally, the memory

19

holding the published data can be reclaimed. The easiest way to declare an (and currently the only
supported method) is to simply give the total number of additional read RccessHandle<T>| objects that will be
created referring to it (recall that read AccessHand1e<T> objects cause a to be performed). In future versions,
hints will be supported about which specific will need to read data. This mechanism replaces an
analogous MPI_Send/Recv or, for a publish with many readers, replaces an MPI_Bcast. In MPI, these function
calls force an MPI_Send or MPI_Wait to block until the guarantees that the data has been delivered.

An jaccess group/in DARMA provides a similar guarantee. Until all readers in an faccess group have received or released

their data, cannot garbage collect or clear anti-dependencies.
auto float_handle = initial_access<float>("float_key");

create_work ([=]{
float_handle.set_value(3.14);

1)
float_handle.publish(n_readers=1);

The specification in the publishcall is a keyword argument (see Section 2.4) that informs the
that the data (associated with £1oat_key) will only ever be read once, and hence can be safely garbage

collected soon after. This code provides similar functionality to an MPI send/receive.

As discussed above, can either be ready or pending. In reality, the distinction is more subtle. The “readiness”
and “pendingness” can be different for read usages and write usages. Thus a handle can be read-ready, but modify-
pending. This will be the case after operations. operations are treated as asynchronous read
operations — that is, h.publish (.. .) is equivalent to

create_work (reads (h), [=]1{...});

This means that the same precautions should be taken as with asynchronous reads. In particular, even if the handle

was ready for modifying before publish it is no longer valid to call h.set_value () after the publish. The
asynchronous read done by the publish may or may not have occurred yet. In this scenario, one should use instead

create_work ([=]{ h.set_value(...); });

to force the from a pending state to a ready state.

Publication Versions

Ifa is going to be published multiple times (or, more specifically, if the with which the was created
is going to be published multiple times), it needs to be published with a different each time. A
is just like a — an arbitrary of values (see Section 2.2.2)). For instance:

/x* Execution stream 0 =/
auto float_h =
initial_access<float> ("float_key");

. /* Execution stream 1%/
auto int_h =

C e . . auto my_int = read_access<int>
initial access<int>("int_ key"); " Y— " L (
/* Execution stream 1 =*/ Lot _key'y version=iji;
auto my_float = read_access<float>(

int_h.publish (n_readers=3, version=77);
//Use version() for multiple parts
float_ha.publish (n_readers=1,

version ("alpha",42));

"float_key", version ("alpha",42));

A has similarities with an MPI tag, as they both ensure the uniqueness of data. However, unlike MPI
which uses a combination of message order and tag to uniquely identify messages and match send/recv pairs, the

DARMA asynchronous model does not allow implicit publication order to be used in matching fetch pairs.
Instead, all publications must uniquely identify each publication with a specific version|

20

2.2.2 Keys

In the examples in this section, the key to the AccessHandle<T>| has always been a single string. A in
DARMA| can be an arbitrary of values. This makes it very easy for the application developer to create an
expressive and descriptive for each piece of data. can comprise different bit-wise copiable data types. The
example at the end of Section [2.6] illustrates the use of the within the key]. The following example shows

the use of an aribitrary as akeyl

int neighbor_id
double other_identifier;

// some code that sets neighborID and other_ identifier

auto float_handle = initial_access<float>("float_key",
neighbor_ id,
other_identifier);

2.2.3 Handle Usage Rules

As alluded to above, are assigned states, and these states change based on the operations applied to them.
The state of a encompasses both its read/write permissions and its “readiness.” Pending can only be
used for scheduling while ready can be immediately used to do work. Here we more rigorously divide
permissions into two main categories:

a Scheduling: Permissions a may use when instantiating tasks with [create_work. These permissions
apply independent of readiness (immediate permissions). Generally, this will be Read (handle/ may only

used in read-only ftasks) or Modify (handlel may be used in read-only or read-write tasks)).
b Immediate: Permissions that apply immediately, indicating the “readiness” of the handle. Immediate permis

can never be greater than scheduling permissions. A handle within a can never have greater permis-
sions doing immediate work than it can for instantiating deferred work.

For the two methods of creating handles, we have the following initializations.

e initial_access<T>: Initialized with scheduling modify, immediate none. The can be used in any
mode when instantiating deferred work. However, the is not necessarily initialized and as such cannot
be used immediately for reads or writes.

* read_access<T>: Initialized with scheduling read, immediate none. The can only be used for reads
when instantiating deferred work. However, the is not necessarily initialized and as such cannot be used
immediately.

To clarify, consider the following code:

//Predecessor outer state
create_work ([=] {

//Capture (inner) state
})

//Continuing outer state

In the outer fask, a will have an initial pair of scheduling/immediate permissions (predecessor state). After the
call to create_work], the handle/s state will have changed, potentially losing some immediate permissions within
the continuing outer state block. As specified currently, execution does not begin inside the block until
the it uses becomes ready. Inside the (capture state), the handlels immediate and scheduling

permisssions will therefore remain the same as they were in the predecessor outer state block.

21

Predecessor State get_value
Sche.dul.mg Imm}a d{ate Allowed? Continuing as Allowed? Continuing as
permissions permissions

None None No - No -

Read None No - No -

Read Read Yes Read/Read No -
Modify None No - No -
Modify Read Yes Modify/Read No -
Modify Modify Yes Modify/Modify Yes Modify/Modify

Table 2.1 Operations on the various states

Predecessor State read-only capture and publish modify capture
Scheduling Immediate Capture Continuing Capture Continuing
permissions permissions Allowed? Handle Handle Allowed? Handle Handle

None None No - - No - -

Read None Yes Read/Read Read/None No - -

Read Read Yes Read/Read Read/Read No - -
Modify None Yes Read/Read Modify/None Yes Modify/Modify ~ Modify/None
Modify Read Yes Read/Read Modify/Read Yes Modify/Modify Modify/None
Modify Modify Yes Read/Read Modify/Read Yes Modify/Modify ~ Modify/None

Table 2.2 Deferred (capturing) operations on the various states.

Table 2.1 summarizes the state transitions involving these three following create_work]

To illustrate the importance of requesting the minimum permissions a requires, consider the following:

auto float_handle = initial_access<float> ("yet_another_float_key");
create_work (reads (float_handle), [=] {

std::cout << "Value read with key yet_another_float_key is "

<< float_handle.get_value() << std::endl;

)
create_work (reads (float_handle), [=] {

float val = float_handle.get_value();

if (val > 0) std::out << "Value is positive" << std::end;
})

//read-write work down here

In this case, are created that only need read access. Without the qualifier, these could not run
in parallel (or out-of-order) since they would by default request read-write permissions. Sequential semantics would
then require them to write in-order sequentially. This example highlights the importance that only ever request

the permissionsthey need. Over-requesting permissions will limit the amount of available parallelism in the code.

The distinction between immediate permissions and scheduling permissions|is generally not explicit in the application.

When a is created with initial_acces or read_acces, it is implicitly given immediate permissions of

None. When a is used inside a instantiated in the application with create_work, the
system| (and translation layer) implicitly guarantees immediate permissions of Read or Write equal to the

permissions. For simple cases, the application developer only needs to think of a single permission (not distinguishing
scheduling/immediate). More more advances uses of DARMA| (and features in future versions of the specification),

an application developer will need to understand both [scheduling permissions and immediate permissions|.

To further illustrate, below is an incorrect usage of modify permissions

22

AW =

~N N R W =

wn AW D=

WRONG CORRECT

initial_access<int> a 1 initial_access<int> a
//a is in Modify/None 2 //a is in Modify/None
a.set_value(l) X 3 create_work([=]{ //modify capture
a.get_value () X 4 a.emplace_value (1) v

5 a.set value (1) v

6 a.get_reference ()=1 v

T B

Additionally, we demonstrate an incorrect usage of read permissions

WRONG CORRECT

read_access<int> b 1 read_access<int> b
//b is in Read/None 2 //b is in Read/None
b.get_value () X 3 create_work ([=]{ // capture
b.set_value(l) X 4 b.get_value()
create_work ([=]{ //capture 5) A

b.set_value (1) X

1)

2.2.4 Access Handles with Compile-time Checking

The AccessHandle<T>| class actually has a second template argument, traits, that the translation layer uses
to propagate static information about permissions, so that it can do as many compile-time checks as possible. The
user should never directly specify traits for an AccessHandle<T>|. Rather, DARMA returns a type with the
correct compile-time traits from initial_access|and read_access. DARMA also uses traits to implement
the ReadAccessHandle<T> type alias used as a formal parameter to functors that need read-only permissions on
a handle]| (see § 2.3/ for details of the DARMA functor interface). DARMA can take advantage of this to, for instance,
raise a compile-time error if the user attempts to call on a handle returned by read_access. Note
that this will only work if the user gives the auto type specifier for the left-hand side of the assignment. The type
RAccessHandle<T>]itself (i.e., with default traits template parameter) has completely unrestricted compile-
time permissions, and thus implies no compile-time checking. However, unlike its more restricted analogs, it can hold
handles with any permissions.

2.3 Creating Deferred Work using Functors

Thus far, the only method we’ve introduced for creating is using C++ lambdas|. For instance,

auto h = initial_access<int> ("my_key");
create_work ([=]{ h.set_value (42); 1});
create_work (reads (h), [=]{

cout << h.get_value() << endl; // prints "42"
1)

While this is a useful shorthand that makes it easy to get simple programs up and running quickly, DARMA also
provides a far more powerful and flexible mechanism for describing and creating [deferred work: functors. While
functors are significantly more verbose than the in-line syntax, they are also much more feature rich and allow

INote that ReadAccessHandle<T>|is not the same as the return value of [read_access|. The former specifies requirements for a functor
parameter, while the latter specifies bounds on the available permissions for a handle. The traits template parameter is different for these two,
though the latter can be cast to the former.

23

O 0 1 O W AW =

L e e S T e T S S S
O 0 N AN LAWY = O

[S S

[N e Y

DARMA to perform some additional optimizations that aren’t available to because of the limitations inherent
to the C++ language itself. The same piece of code from above can be written with functors:

struct SetTo42 {
void operator () (AccessHandle<int> h) const {
h.set_value (42);
}
}i

struct PrintIntValue {
void operator () (int v) const {
cout << v << endl;
}
bi

int darma_main(...) {
/* ... x/
auto my_handle = initial_access<int> ("my_key");

create_work<SetTo42> (my_handle) ;
create_work<PrintIntValue> (my_handle) ;

N oo il

Even though this code snippet is substantially more verbose than the version, it provides some useful advan-
tages. Most noticeably, the functors SetTo42 and Print IntValue are reusable, just like normal functions. They
can be implemented in different files or even different translation units for code cleanliness and modularization.

There are some more subtle differences too, though. Notice thatinPrint IntValue, AccessHandle: :get_value
() never needs to be called. As long as the type to which the V-\ccessHandl e‘ refers is convertible to the formal
parameter given in the functor call operator, DARMA will call automatically. Also, since the formal
parameter is a value (as opposed to a reference), DARMAI can deduce at compile time that this Print IntValue
makes a read-only usage of its argument. (This would work the same way if the formal parameter had been int
const &, a const lvalue reference). Even more subtly, the fact that the formal parameter for Print IntValue isn’t
anAccessHandle communicates to[DARMA]at compile time that Print IntValue won’t schedule any that
depend on my_handle inside of Print IntValue (we call this a with respect to my_handle), which is
useful information that the back endruntime system| can utilize to make informed scheduling decisions. To accomplish
the same effect for a modify usage, we can give a formal parameter that is a non-const lvalue (e.g., int&). The
SetTo42 functor could then be rewritten:

struct SetTo4d2 {
void operator () (int& wval) const {
val = 42;
}
}i

As you can see, the functor code starts to look very much like regular C++ code.
The interface can still be mixed with the functor interface. For instance,

struct Computed2 {
void operator () (AccessHandle<int> h) const ({
create_work ([=]{
h.set_value (21);
1)
create_work ([=] {
h.set_value(h.get_value() * 2);
}) i

24

O 00 N N W R W N =

—_—
- o

}
}i

As you can see, if we want to be able to schedule more deferred uses of a handle|, we have to take an

as a formal parameter.? If we want to pass on a read-only AccessHand1e, we can do so by giving ReadAccessHandle

ﬂ and the formal parameter type:

struct PrintIntReadHandle {
void operator () (ReadAccessHandle<int> h) const {

}
}i

create_work ([=] {

std: sofistreamn £(N42.Exc");

f << h.get_value() << endl;
1)
create_work ([=]{

cout << h.get_value () << endl;
}) i

The nested will request read permissions on h, just as if they had been created with create_work (reads (
h), ...). Moreover, any attempts to call h.set_value () inside of Print IntReadHandle will result in a

compile-time error (unlike in the pure case), since DARMA| knows at compile time that the ReadAccessHandle
<T> is read-only.

2.3.1 Mixing Deferred and Immediate Arguments

In DARMA,, deferred functor invocations can also take normal, value arguments. These can, of course, be mixed (i.e.,
an invocation can take some [AccessHandle]arguments and some value arguments in the same call). However, since
deferred execution can be tricky, there are some special rules involved with value arguments tocreate_work.

* When the formal parameter to the functor is a non-const lvalue reference, deferred invocation of the functor can
only be made with anAccessHand1e|as that argument. For instance,

imt

auto j = initial_access<int>("mykey");;
create_work<SetTo42S>(i); // X compile-error!
create_work<SetTo42>(3); // V

AW =

* When the formal parameter is a const lvalue reference, the deferred invocation must also take
as argument. References cannot be made to regular C++ variables for }deferred execution\ since, by deferring,
the referred to variable may no longer exist. An implicit copy would be required that isn’t apparent from the
syntax to make the variable permanent. To do this, you need to either use a value formal parameter or explicitly
use darma_runtime: :darma_copy:

struct PrintIntRef {

1

2 void operator () (const inté& wval) const { cout << wval << endl; }
3 };

4 1int darma_main(...) {

5 U oo S

2Equivalently, an lvalue reference or a const Ivalue reference to an can be given. objects ignore const,

and the copy overhead is negligible (though giving a reference parameter will be slightly more efficient)

3Note that is identical to in every way except that it is known to be read-only at compile time, whereas
has unknown compile-time permissions. All compile-time qualified variants are castable to (and to any other
variant with greater compile-time permissions)

25

int i = 42;
auto j
create_work ([=] {
create_work<PrintIntRef>
create_work<PrintIntRef>
create_work<PrintIntRef>
create_work<PrintIntRef>
create_work<PrintIntRef>
/ * */

This isn’t a matter of constness, but one of reference-ness; even if i had been declared as const int i =

read_access<int> ("mykey");
Jj.set_value (42);

})i
// X compile error,
// ¥ 42 is an rvalue

(a)y
42) ;
3)

darma_copy (1)) ;
std: :move (1)) ;

(
(
(
(

(prvalue)

; // ¢ 7 is an AccessHandle<int>
// ¢ explicit darma_copy used
// ¥ 1 is an rvalue

implicit copy of i

(xvalue)

42;, line @ would still be a compile-time error, since the reference may have expired by the time the
actually runs and a copy needs to be made.

* Normal arguments by default can not be implicitly converted to AccessHand1e]formal parameters (whereas
the reverse is allowed, and even encouraged when appropriate).

2.3.2 Functor Interface Pitfalls

O 0 9 N R W =

—_ e e e
B W N = O

* Rvalue references (T&&) can’t be given as formal parameters to DARMA| functors, and doing so may lead to
unexpected and/or undefined compile-time and/or runtime behavior. This is related to how [DARMA| detects
attributes of the formal parameters for functors, but it’s also redundant — you can just use a regular value
parameter. Because of the way deferred execution works, rvalues must be moved into storage until the actual
invocation occurs anyway, so there is no savings from using an rvalue reference over a value parameter.

The DARMA functor interface doesn’t currently support deferred invocation of functors with templated call
operators (the detection idiom we use woudn’t work here, and besides, we wouldn’t even know if the deduced

type is supposed to be an or not!). Limited support for this may be available in the future.
Note that the functor class itself can still be templated, as long as the functor’s template parameters are given

explicitly at the invocation site:

struct CantBeUsed {
template <typename T>
operator () (T val) const;

i

template <typename T>

struct ThisIsFine {

operator () (T val) const;
bi
int darma_main(...) {

/ * */

auto h =

initial_access<int>("hello");

create_work<ThisIsFine<int>> (h);

/% */

Functors don’t have state in DARMAL (Even if they did, there is no access to the functor instance at the call site,

so that state wouldn’t be useful).

26

2.4 Keyword arguments

Similar to higher-level languages like Python, the DARMA C++ interface allows the user to specify arguments to
many of the [API functions and constructs using either [positional arguments| or keyword arguments. In addition, many
optional arguments may only be specified using keyword arguments. The syntax for specifying a keyword argument
is identical to that of Python: keyword=value. For instance, if there is a function some_function in the
DARMA that accepts positional or keyword argumentg arg_a, count, and £1ag, that function can be invoked
equivalently in any of the following ways:

/* some_function signature:

* void some_function (std::string arg_a, int count, bool flag);
*/

// All of the following are equivalent:

some_function ("hello", 42, true);

some_function (arg_a="hello", count=42, flag=true);

some_function (count=42, flag=true, arg_a="hello");

some_function ("hello", flag=true, count=42);

— e~ —~ o~

Note that [positional arguments may not be specified after the first keyword argument, and an argument cannot be
specified more than once, even as a positional and keyword argument. Both of these lead to compile-time errors.
Omitting a required argument is also a compile-time error, as is giving an argument of the incorrect type:

// Error: arg_a specified more than once
some_function ("hello", 42, true, arg_a="whoops!");

// Error: missing required argument flag
some_function ("hello", count=42);

// Error: cannot convert bool to std::string
some_function (arg_a=false, flag=true, count=42);
some_function (false, 42, true);

// Error: positional argument given after first keyword argument
some_function (arg_a="hello", 42, flag=true);

The enabling of Python-like keyword arguments| introduces no runtime overhead. For those interested in C++ details,
keyword arguments are accomplished using constexpr class instances with overloaded assignment operator, with
arguments passed to the callable using perfect forwarding. More implementation details are given in Section [3.2.2,

2.5 Serialization and Layout Description

Any data that is migrated or moved across the network bewteen must be first be serialized. The
DARMA front end programming model provides an extremely flexible and extensible interface for describing se-
rialization and/or layout of C++ types. In spite of this flexibility, the vast majority of use cases only require the
understanding and use of one or two very basic abstractions. However, the DARMA| serialization interface provides
a wide variety of features to handle complex and corner cases, as well as features to tune and optimize performance-
critical cases. The following section describes the serialization interface, beginning with abstractions that
handle the vast majority of use cases and expanding to progressively more niche features later in the section.

Note that this section is entitled “Serialization and Layout Description” rather than just “Serialization” because the
interface provides ways to specify movement of data in ways that aren’t traditionally considered serialization, such as
describing a type as a series of remote direct memory access (RDMA) pointers with associated sizes. More details to
follow.

27

O 0 N N R W N =

—_ o s e e
W AW NN = O

[IEN e NV I S I SR

2.5.1 Basic Intrusive Interface

The most basic and straightforward way to specify serialization of a user type in DARMA]|, and the method that
should be used in the vast majority of cases (with, perhaps, one simple extension discussed below), is providing
a publicly accessible| serialize method in the user class. The serialize method provided for this purpose
should be non-const and should take a single argument, which in the simplest case will be an lvalue reference to
a darma_runtime::serialization::SimplePackUnpackArchive object. For instance, consider the
following (somewhat contrived) user-defined class:

class MyClass {
private:
double a_, b_;
std::string label_;
double prod_sqgrt_;
public:
static constexpr const char unlabeled_string[] = "<unlabeled>";
MyClass (int a, int b)
MyClass (unlabeled_string, a, b)
{1
MyClass (std::string const& label, int a, int b)
a_(a), b_(b), label_(label),

prod_sqgrt_(a_ == b_ ? a_ : std::sqgrt(a_xb_))
}i

The simplest way to allow DARMA to interact with MyClass is to provide a serialize method in the class
definition:

using Archive = darma_runtime::serialization::SimplePackUnpackArchive;
class MyClass {
public:
757 son il
void serialize (Archive& ar) {
ar | a_ | b_ | label_ | prod_sqgrt_;

}i

As you can see, the type SimplePackUnpackArchive has an overload for operator| (), takes a serializable
type, and returns itself (more on what constitues a “serializable type” later).

2.5.2 SimplePackUnpackArchive

DARMA encapsulates advanced serialization behaviors in the concept. The only type fully imple-

mented in the current specification is SimplePackUnpackArchive, which performs serialization in the most
basic and traditional way. On the sender side, DARMA performs two serialization passes: one in sizing mode and
one in packing mode. The receiver only requires one pass: unpacking. These modes can be queried using the archive
object methods is_sizing (), is_packing (), and is_unpacking (), only one of which will return true at
any given time. All types implement these methods.

#later versions of the specification may allow private implementations with a £riend specification

28

(e N e Y

© 0 O U AW N —

—
==

O 00 9 O W R W =

I e T S SRS
AN R W= O

2.5.3 Generic Archive Serialization

As DARMA evolves and as more performance considerations are addressed, the DARMAI team and our collaborators
plan to provide other types which take more advanced serialization strategies, such as enabling RDMA access
to pieces of a type. In order to write code that can take advantage of these features when they become available, the
vast majority of user types can simply provide a templated serialize method:

class MyClass {
jenbioilalialo
[. %/
template <typename Archive>
volid serialize (Archiveé& ar) {
ar | a_ | b_ | label_ | prod_sqgrt_;

}i

2.5.4 Different Behaviors in Different Modes

Consider again the MyClass example above. Since prod_sqgrt_ can be recomputed on the fly, it may be desirable
to avoid including it in the data to be moved and instead just recompute it on the receiving side. To do this, however,
we need the serialize method to perform different actions in unpacking mode than in the other modes. The
is_unpacking () method makes this easy:

class MyClass {
public:
i o ao B
template <typename Archive>
void serialize (Archive& ar) {

ar | a_ | b_ | label_;
if (ar.is_unpacking())
prod_sqrt_ = a_ == b_ ? a_ : std::sqgrt(a_xb_);

}i

Notice also that the 1abel_ field of MyClass has the same static value if a label is ungiven every time. If MyClass
often does not have a 1abel_, it may be advantagous to pack a boolean indicating whether the label exists, followed
by the label itself only if the label is given. We can do this using the same approach:

class MyClass {
publiie:
R T/
template <typename Archive>
void serialize (Archive& ar) {
ar | el [N
bool has_label;
if(lar.is_unpacking()) {
has_label = label_ != unlabeled_string;
ar | has_label;
if (has_label) ar | label_;
}
else { // ar.is_unpacking/()
ar | has_label;
if (has_label) ar | label_;
else label_ = unlabeled_string;

29

17
18
19
20
21

Mol IS e LT, T~ U R (S

—_ e e e
W NN = O

O 00 N N W R W N =

—_ = e e
B W N = O

// From before:
prod_sqrt_ = a_ == ? a_ : std::sgrt(a *xb.);

i

2.5.5 Seperate Methods for Seperate Modes

If the logic for packing is significantly different from the logic for unpacking, the serialization of a MyClass object
may involve a significant number of if statements. For this and other reasons, DARMA| allows the user to specify
seperate pack, unpack, and compute_size methods as needed. Each takes an object as an argument, and
the pack and compute_size methods must be const. The first example that recomputes prod_sqgrt_ could
then be rewritten as:

class MyClass {
publice:

HE S

template <typename Archive>

void serialize (Archive& ar) {
ar | a_ | b_ | label_;

}

template <typename Archive>

void unpack (Archive& ar) {
ar | a_ | b_ | label_;
prod_sqrt_ = a_ == b_ ? a_ : std::sgrt(a_xb_);

}i

The more specialized pack, unpack, and compute_size methods always have higher priority than serialize,
so in this case DARMA] will invoke unpack during the unpacking pass while still calling serialize in the sizing
and packing passes.

The performance-concious reader may have further noticed that since the operator| () implementation must func-
tion in all three modes, there will be branches or switches based on the mode. Thus, in a performance-critical context,
the user may want operators that are specific to the phase in question. This could also be accomplished (and may be
in the future) by passing in different types for the sizing, packing, and unpacking phases, which is yet another reason
to use the templated versions of these methods instead. This can also be done using operator<< () for packing,
operator>> () for unpacking, and operator% for sizing. The final serialize with both the prod_sqgrt_
and label_ optimizations could then be rewritten as:

class MyClass {
jenbisilaliclg

VE S

template <typename Archive>

void compute_size (Archive& ar) const {
ar % a_ % b_;
if(label_ == unlabeled_string) ar % false;
else ar % true % label_;

}

template <typename Archive>

void pack (Archive& ar) const {
ar <="all < bill-
if(label_ == unlabeled_string) ar << false;
else ar << true << label_;

30

15
16
17
18
19
20
21
22
23
24
25

O 00 N N W R W N =

—_ e
W N = O

N S e Y T S O R S

—_
(=]

}
template <typename Archive>
void unpack (Archive& ar) {
ar =gl >R B
bool has_label;
ar >> has_label;
if (has_label) ar >> label_;
else label_ = unlabeled_string;
prod sgrt. = a == bi 2?2 a : std::sgrti(a.*b);

}i

Unless absolutely performance critical, these optimizations should be avoided. Besides being significantly more ver-
bose, these optimizations affect code maintainability. If another member variable c_ were added to MyClass, the
serialization implementation in the final example would have to be modified in three places, whereas the earlier ex-
amples, while potentially less performant, only have to be updated in one place. Also, failure to ensure that the order
of member variable serialization is identical in multiple places can lead to hard-to-detect bugs. Thus, we recommend
using the single serialize method except in performance-critical, inner-loop-like code.

2.5.6 Serializing Pointers and Ranges

DARMA also provides a convenient way to serialize iterables of serializable objects using darma_runtime: :
serialization::range. As asimple example:

template <typename T>
class MyData ({
private:
T+ data_;
size_t n_items;
public:
MyData (T constx copy_from, size_t n)
n_items (n) {
data_ = new T[n];
std: :copy (copy_from, copy_from+n, data_);
}
“"MyData () { delete[] data_; }
}i

If we restrict ourselves to only making MyData<T> instances that hold serializable types T, we can write the
serialize method for this class as

using darma_runtime::serialization::range;
template <typename T>
class MyData {
public:

Vi oan il

template <typename Archive>

void serialize (Archive& ar) {

ar | range(data_, data_ + n_items);

}i

31

2.5.7 Non-intrusive Interface

Classes for which the user cannot define an intrusive serialize method (or any of the other intrusive methods),
for one reason or another, can still be made serializable by defining a specialization (partial or full) of the class
darma_runtime::serialization::Serializer<T> forthe type in question.” Like the intrusive interface,
these classes can define a serialize method; individual compute_size, pack, and unpack methods; or some
combination of these, with the specific versions having higher priority. All of these methods must be const (the
Serializer object itself isn’t allowed to have state anyways; it’s just a convenient mechanism for grouping functions for
a class non-intrusively). Their signatures are a bit different from the intrusive analogues. Consider a slightly different
version of MyClass from above, the public interface of which is specified as:

1 class YourClass ({
2 publiic:
3 double get_a () const;
4 void set_a (double val);
5 double get_b () const;
6 void set_b (double val);
7 std::string consté& get_label () const;
8 void set label (std::string consté& wval);
9 double get_product_sqgrt () const;
10 };
Assuming YourClass is default constructible, a way to specify a serialization for YourClass non-intrusively is:
1 namespace darma_runtime { namespace serialization ({
2 template <>
3 struct Serializer<YourClass> ({
4 template <typename Archive>
5 void serialize (YourClass& yc, Archive& ar) const {
6 if(!ar.is_unpacking()) {
7 double a = yc.get_a();
8 double b = yc.get_b();
9 std::string label = yc.get_label();
10 ar | a | b | label;
11 }
12 else {
13 double a, b;
14 std::string label;
15 ar | a | b | label;
16 yc.set_al(a);
17 vc.set _bi(b);
18 yc.set_label (label);
19 }
20 }
21 i
22 }} // end namespace darma_runtime::serialization

As before, we can split this into serialize and unpack methods. However, the unpack method requires a
slightly different signature:

1 template <typename Archive>
2 darma_runtime::serialization::Serializer<YourClass>::unpack (
3 void+ allocated, Archiveé& ar

5Generic implementations requiring partial specialization with an enable_i f clause should use darma_runtime: :serialization::
detail::Serializer_enabled_if<T, Enable>. Consultsource code for more details.

32

4

O 0 N O kW -

[N I (ST ST S I S R S i e e e e
N hr W RN = O O X 30 L A LN~ O

[N e Y

) caonst;

Rather than being a reference to an instance of the class itself, the first argument to the non-intrusive unpack method
is a pointer to the beginning of a chunk of memory of size sizeof (YourClass) allocated by the backend, but not
constructed. This allows for the unpacking of non-default-constructible classes. The unpack method must construct
the object at that memory location using the C++ placement new. The syntax of placement new might be a little strange
if you’ve never seen it before, but once you see it, its use is pretty straightforward. The non-intrusive Serializer
for YourClass can then be written as:

namespace darma_runtime { namespace serialization {
template <>
struct Serializer<YourClass> {
template <typename Archive>
void serialize(YourClassé& yc, Archive& ar) const {
assert (!'ar.is_unpacking()) // just in case
double a = yc.get_al();
double b = yc.get_b();
std::string label = yc.get_label();
ar | a | b | label;
}
template <typename Archive>
void unpack (voidx allocated, Archive& ar) const {
double a, b;
std::string label;
ar |a | b | label;
// Since YourClass is default-constructible, the placement new
// that we want looks like this:
YourClass* yc = new (allocated) YourClass();
yc—>set_a(a);
yc—>set_b (b) ;
yc—>set_label (label) ;
}
}i

}} // end namespace darma_runtime::serialization

The non-intrusive interface versions of pack and compute_size have similar signatures to that of serialize,
except they take a const lvalue reference as their first argument:

template <typename Archive>

darma_runtime::serialization::Serializer<YourClass>::compute_size (
YourClass const& val, Archive& ar

) censt;

template <typename Archive>

darma_runtime::serialization::Serializer<YourClass>: :pack (
YourClass consté& val, Archive& ar

) consik;

The non-intrusive serialization interface has higher priority than the intrusive one, but in general the user should not
define both or mixed intrusive and non-intrusive serializations.

2.5.8 Definition of ‘“‘Serializable”

Having introduced the oncept, the intrusive interface, and the non-intrusive interface, we’re finally ready to
formally define “serializable” as DARMA sees it. DARMA| views the serializability of a given type as a property

33

0 N AN R W N -

associated with that type and a given type — a type T can be described as “serializable with type A”.
We’ve been sloppy about this up to this point because it’s usually clear from context which type we’re referring
to (or if we’re referring to a generic type given as a template parameter). This allows for the development of
types that, for instance, only handle performance sensative types, but do so very efficiently.

2.5.9 Implementations for Builtin and Standard Library Types

The DARMAlftranslation layer has default Serializer implementations for many builtin and standard library types.
Currently this includes anything that meets the standard container (for which the value types are also serial-
izable), plain old data (POD) types, std: :pair of serializable types, and compile-time sized arrays of serializable
types. Many of the implementations in the current backend are with respect to a generic type, but since
SimplePackUnpackArchive is the only type currently implemented, the code is only tested with this
archive thus far.

You can define a serialization for any bitwise copyable, type simply by specializing darma_runtime: :
serialization::serialize_as_pod<T> toinherit from std: :true_type:

class MyPlainOldData {
stgie by gl IKp
double x, vy, z;
bi
namespace darma_runtime { namespace serialization {
template <>
struct serialize as_pod<MyPlainOldData> : std::true_type { };
}} // end namespace darma_runtime::serialization

2.5.10 Polymorphism

Deserialization into polymorphic base class pointers is currently not supported by the DARMA serialization interface.
If a type is to be used in a context that requires to deserialize it (most importantly, as wrapped by an
AccessHandle<T>|or the type of an argument passed to a functor-style that could be migrated),
the concrete type must be known at compile time. Support for this will be forthcoming, but will likely require an
intrusive interface. There are a number of other patterns in the programming literature that can be used to mimic
run-time polymorphism, and we suggest the user consider these if necessary.

2.5.11 Serialization Pitfalls

e Because detects the various intrusive and non-intrusive serialize, pack, unpack, etc. methods,
const-incorrectness or an otherwise incorrect signature can cause these methods to go undetected and lead to
unexpected behavior. For instance,

1 class MyClass {

a2 public:

3 s ine il

4 template <typename Archive>

5 void serialize (Archive& ar) {

6 ar | a_ | b_ | label_;

7 }

8 template <typename Archive>

9 void unpack (Archive ar) { // X missing lvalue reference in parameter!
10 ar | a_ | b_ | label_;

11 prod_sqrt_ = a_ == b_ ? a_ : std::sgrt(a_xb_);

—_
9
—~

34

13 };

would fail to ever define prod_sqrt_ because the unpack method would not be detected and DARMA|
would fall back on serialize for the unpacking process. Most of the common mistakes we anticipate are
checked with static_asserts, but it is impossible to check all possible mistakes. Care should be taken
when this issue could arise. Note that if only serialize had been defined incorrectly, for instance:

class MyClass {
publie:
/*x ... x/

template <typename Archive>
void serialize (Archive& ar) const { // X should not be const!
ar | a_ | b label_ | prod_sqgrt_;

[IR - AR R RSO S S

bi

then the code that uses MyClass would simply fail to compile, since MyClass isn’t serializable with any
archive types.

2.6 SPMD support

Most applications written in or ported to DARMA| will likely have SPMD] as the dominant form of parallelism. To
simplify the implementation of SPMD-structured codes, the notion of a is maintained within the [API. Again,
rather than rely entirely on sequential semanticg in cases of massive data parallelism, many independent parallel
can begin simultaneously and coordinate via the key-value store. Each [execution strean is assigned
a unique ID, analogous to the MPI rank assigned to processes in a MPI communicator. The initialization and
termination of the runtime in each is via the callsdarma_initland[darma finalizel The total
number of SPMD) fexecution streamg are queried with the call darma_spmd_s1ize€], and the ID of a particular
is queried with [darma_spmd_rank|. A typical user written main program will look as follows:

int darma_main (int argc, charxxargv) {
darma_init (argc, argv);
size_t n_ranks = darma_spmd_size();
size_t me = darma_spmd_rank () ;

darma_finalize () ;
return 0;

The is a very useful concept to orchestrate dependencies in a model since data pertaining to a can be
associated with keyls that utilize the for uniqueness. The example below illustrates this concept, where the
is integral to the associated with data originating on that rank.

size_t me = darma_spmd_rank () ;
auto data_handle = initial_access<double> ("data_key", me);

Note that in DARMA|, [SPMD) ranks| are actually just a special kind of that happens to have a name containing
the rank], and can be treated as such. In most cases, these named tasks (ranks) will be execution streams, independent
tasks with no parent. However, the similarity to traditional, MPI-style upon launch should improve the ease of
porting and scalability significantly.

We emphasize again that within DARMAJ's supprot for SPMD), coordinating (rather than communicating) abstracts
physical data locations to better support task migration. Additionally, it removes message-ordering requirements to
better support asynchronous data transfers. We further reiterate that even though the appears to the
application developer to be a traditional data store, it can be implemented in a scalable distributed fashion.

35

[N O R S

2.7 API: Creating and Managing Work

In this section we provide details regarding the DARMAJ-0.3.0-alpha [API.

2.7.1 darmamain

Summary
darma_main is the entry point DARMA uses to launch the user’s code.

Syntax

int darma_main (int argc, charx* argv)

Details

The signature of mimics the signature of int main (), which Ctt uses as the entry point to user
code.

Code Snippet

#include <darma.h>
int darma_main (int argc, charxx argv)
{

return 0;

}

Figure 2.1 Basic usage of darma_main.

36

2.7.2 darma_init

Summary
darma_init initializes the DARMA| execution environment for a rank.

Syntax

void darma_runtime::darma_init (int& argc, charxx& argv);

Positional Arguments

 argc: command line arguments count.

e argv: array arguments.

The input parameters are the command line argument count and array arguments provided to main. Note that the back
end will process and remove any DARMA| back end-specific arguments from these, leaving any application-specific
arguments untouched.

Details

Must be called exactly once per (“exactly once” may change in later spec versions) before any other DARMA]|
function is called. Together with darma_finalize|(see § [2.7.3), this creates an that defines a
DARMA frank.

Code Snippet
See code for in Figure 2.2].

27.3 darma_finalize

Summary
darma_finalize the DARMAexecution environment for a rankl.

Syntax

void darma_runtime::darma_finalize () ;

Positional Arguments
None.

Details Called to signify the end of the that defines a DARMA| rank. At least by the time this
function returns, the back end guarantees that all work (tasks) created between the corresponding call

and this invocation, as well as all of the decendents of that work, must be completed. No user-level DARMA| operations
are allowed after this call, though the implicit invocation of the destructors of AccessHandl1€] objects (at, e.g., the

final closing brace of darma_main)) is allowed. Must be called exactly once for each call of (which,

in turn must be called exactly once per in the current version of the specification).

37

O 0 N O W R W =

e T e
B W N = O

Code Snippet

#include <darma.h>
int darma_main(int argc, charxx argv)
{

using namespace darma_runtime;

darma_init (argc, argv);
std::cout << "DARMA initialized" << std::endl;

// code goes here
std::cout << "Finalizing DARMA..." << std::endl;

darma_finalize () ;
return 0;

Figure 2.2 Basic usage of darma_init and darma_£inalize to initialize and finalize environment.

Restrictions and Pitfalls

e [darma_finalize|should be called at the outermost depth on afrank. In other words, it should never be
called from within a or other asynchronous context.

38

N S e Y B N N N

—_ = =
N o= O

274 darma spmd size

Summary
darma_spmd_size the number of ranks| (or xecution streams) in the DARMA] environment.

Syntax

/+ unspecified %/ darma_runtime::darma_spmd_size () ;

Positional Arguments
None.

Return
An object of unspecified type that may be treated as a std: : size_t giving the number of ranks in the DARMA]
environment.

Details

This function gives the number of ranks| or execution streams DARMA is executing the program with. Specifically, it
is the number of times the back end has invoked anywhere in the system for this particular run of the
program (and thus, it is also the number of times the back end expects the user to invoke [darma_init]).

Code Snippet

#include <darma.h>
int darma_main (int argc, charxx argv)
{
using namespace darma_runtime;
darma_init (argc, argv);

const size_t size

1/

darma_spmd_size () ;

darma_finalize () ;
return 0;

Figure 2.3 Basic usage of \darma_spmd_size.

Restrictions and Pitfalls

* The value returned by this function will always return t rue for greater-than comparison with 0, and will always
be convertible to a std: : size_t with a value greater than 0.

* The return type is unspecified to allow future expansion to generalized ranks. For instance, future versions of the
specification may allow the user to request the asan {x, vy, z} of indices in a structured lattice.

39

275 darma spmd rank
Summary

darma_spmd_rank returns the index associated with the from which this function was in-
voked.

Syntax

/* unspecified */ darma_runtime::darma_spmd_rank () ;

Positional Arguments
None.

Output
An object of unspecified type that may be treated as a std: :size_t which is less than the value returned by
darma_spmd_sizel.

Details

This function returns the index of the callingDARMA|execution stream|. If the value returned by ize
is convertible to a std: : size_t with the value NV, then the value returned by this function will be convertible to a
std: :size_t with the value 7, which will always satisfy 0 <= r < N. Furthermore, the type of the value returned

by this function will always be directly comparable to the type returned by darma_spmd_sizel and to O such that

this previous condition is met. The value returned is also equality comparable with 0, the value returned will be true

for equality comparison with 0 on exactly one rank. The value returned by this function will be unique on every

(in the equality sense), and will be the same across multiple invocations of the function within a given rank. The value
returned will also be the same at any asynchronous work invocation depth within a fank’s execution stream, regardless

of whether that work gets stolen or migrated.

Code Snippet

#include <darma.h>
int darma_main (int argc, charxx argv)
{
using namespace darma_runtime;
darma_init (argc, argv);

// get my rank
const size_t myRank = darma_spmd_rank();

O 0 N N W AW =

e e e e et
AN AW = O

// get size
const size_t size = darma_spmd_size();

std::cout << "Rank " << myRank << "/" <<

darma_finalize();
return 0;

size << std::endl;

Figure 2.4 Basic usage of \darma_spmd_rank.

40

2.7.6 create_work

Summary

create_work instantiates to be executed by the funtime system.
Syntax

// Functionally:
create_work ([=] {
// Code expressing deferred work goes here
1)
i eney
create_work (
ConstraintExpressions...,
=14
// Code expressing deferred work goes here
}
)
i ees

create_work<FunctorType> (ArgumentsToFunctor...);

// Formally:
/* unspecified x/ create_work (Arguments..., LambdaExpression);
/* unspecified x/ create_work<Functor> (Arguments...);

Positional Arguments

* LambdaExpression A C++11 expression with a copy default{capture (i.e., [=]) and taking no
arguments. More details below.

* ConstraintExpressions. .. (optional) If given, these arguments can be used to express modifications
in the default behavior of AccessHandle<T>] objects captured by the LambdaExpression given
as the final argument. In the 0.3.0-alpha-specification, the only valid permission modification expression is the
return value of the modifier (see § 2.10.1), which indicates that only read operations are performed
on a given or within the LambdaExpression that follows.

e ArgumentsToFunctor. .. Inthe deferred functor invocation version, these arguments are pattern-matched
with the formal parameters of the functor, causing the deferred invocation to invoke the call operator of FunctorType

with arguments derived from these as described in § . Constraint expressions may also be used in the
corresponding positional argument spots for a given AccessHandle<T>|argument.

Return
Currently void in the 0.3.0-alpha-specification, but may be an object of unspecified type in future implementations.

Details
This function expresses work to be executed by the runtime system. Any RccessHandle| variables used in the
LambdaExpression or given in ArgumentsToFunctor. .. will be captured and made available inside the

capturing context or FunctorType call operator as if they were used in sequence with previous capture opera-
tions or deferred functor invocations with the same handlg. Depending on the scheduling permissions available to
the AccessHandle<T> at the time of [create_work| invocation and on the ConstraintExpressions...
given as arguments, this function call expresses either a read-only capture or a modify capture operation on a given
(see § 2.2.3). If a handleg h has Read scheduling permissions when it is captured or if the explicit constraint

41

expression reads (h) is given in the ConstraintExpressions. .. arguments, functions as
a read-only capture operation on that handle. Otherwise, it functions as a modify capture. Formal parameters to the
FunctorType call operator can also affect the type of capture operation that is performed, as discussed in § 2.3

Additional general discussion on use of can be found in § 2.1

Code Snippet

create_work ([=] {
std::cout << " Hello world! " << std::endl;
P

Figure 2.5 Basic usage of create_work.

Restrictions and Pitfalls
Most of the general restrictions and pitfalls related to are discussed in § 2.1 Some more technical
restrictions are given here.

* Because of the way in which is implemented, placement of multiple opera-

tions on the same line of code will not compile. For instance:

// X does not compile, gives cryptic error message
create_work ([=]{}); create_work([=]{});

This is particularly easy to accidentally do when defining preprocessor macros:

// X does not compile, gives even more cryptic error message

#define foo(...) __ VA ARGS_
foo (
create_work ([=]1{});
create_work ([=1{1});

)

Note that this is not a problem when using nested calls:

// ¢ not a problem
create_work ([=]{ create_work ([=1{}); }); // works fine

Other than the obvious solution of putting the invocations on multiple lines, this issue can be
worked around by putting any of the later calls within their own scopes:

// ¥ works fine
create_work ([=]1{}); { create_work([=]1{}); }
// ¢ also fine
foo (

create_work ([=]{});

{ create_work ([=

{ create_work ([=]1{}); }

42

2.8 API: Data Access Handles

In this section, we discuss the functions that create handles in the DARMAK0.3.0-alpha [API.

2.8.1 initial _access

Summary

initial_access creates a to data that does not yet exist in the but needs to be created.

Syntax

AccessHandle<T> darma_runtime::initial_access<T> (argl, arg2, ...);

Positional Arguments
argl, arg2, ...: arbitrary of values defining the of the data.

Return
An object of unspecified type that may be treated as an AccessHandle<T> with the given by the arguments.

Details

This construct creates a to data that does not yet exist but needs to be created. The is created with
Modify scheduling permissions and None immediate permissions. The function takes as input an arbitrary of
values. Note that this has to be unique (see Section 2.2.2). One cannot define two with the same key),
even if they are created by different ranks. One basic way to ensure this is the case is to always use the ID as one

component of the key|.

Code Snippet

auto my_handlel initial_access<double> ("data_key_1", myRank);
auto my_handle2 = initial_access<int>("data_key_2", myRank, "_online");

Figure 2.6 Basic usage of \initial_access.

Restrictions and Pitfalls

* Because the actual type returned by initial access<T> is unspecified, you should generally use auto
instead of naming the type on the left hand side of the assignment (this is generally a good idea in modern C++).
In other words,

// ¢ good, preferred

auto my_handlel = initial_access<double> ("good") ;

// X still compiles, but not preferred (may miss out
// on some future optimizations and compile-time checks)
AccessHandle<double> my_handlel = initial_ access<double> ("bad");

43

For more, see §2.2.4

44

O 00 N N W R W N =

—_ = e e
B W N = O

2.8.2 read._access

Summary
read_access<T> creates a with read-only access to data that has been or will be published elsewhere in the
system.

Syntax

/* unspecified, convertible to AccessHandle<T> x/
darma_runtime::read_access<T> (KeyParts..., version=KeyExpression);

Positional Arguments

e KeyParts. . .: tuple of values identifying the key of the data to be read.

Keyword Arguments

e version=KeyExpression (orversion (KeyExpression. . .),see § 2.4 for multiple-right-hand-side
keyword argument usage): the version used to publish the data to be accessed. The value can be an arbitrary
KeyExpression.

Return

An object of unspecified type that may be treated as an AccessHand1e<T> with the key given by the arguments.

Details

This function creates a to data that already exists and needs to be accessed with read-only privileges. It takes
as input the of values uniquely identifying the data that needs to be read. Immediately following this function,
the will have Read [scheduling permissions| and None immediate permissions. The key-Hversion| requested

must eventually match that of a keyl{version that was published.

In general, read_access data is migratable and potentially stored off-node.

Code Snippet

/* on one rank: x/
auto my_handlel = initial_access<double> ("key_ 1");
create_work ([=] {
my_handlel.emplace_value (5.3);
Fo
my_handlel.publish (n_readers=1, version="final");

1l ..
/* potentially on another rank: =/
auto readHandle = read_access<double> ("key_1", version="final");
create_work ([=] {
std::cout << readHandle.get_value () << std::endl;

)i

45

Restrictions and Pitfalls

* Because the actual type returned by read_access<T> is unspecified, you should generally use auto instead
of naming the type on the left hand side of the assignment (this is generally a good idea in modern C++). In
other words,

// ¢ good, preferred
auto my_handlel = read_access<double>("good", version=17);

// X still compiles, but not preferred (may miss out

// on some future optimizations and compile-time checks)
AccessHandle<double> my_handlel = read_access<double> ("bad", version="oops");

For more, see § 2.2.4.

46

~N O BN~

2.9 API: AccessHandle methods

In this section, we describe the methods that can be called on AccessHand1e<T>| objects (i.e., the objects returned
by the initial_access|and read_access| functions).

29.1 emplace value

Summary
emplace_value constructs an object of the type pointed to by an AccessHandle<T> object (that is, T) in place
by forwarding the arguments to the constructor for T.

Syntax

// functional:

some_handle.emplace_value (argl, arg2, ...);
// Formal:
void AccessHandle<T>::emplace_value (Args&é&... args);

Positional Arguments

* args. .. (deduced types): Arguments to forward to the constructor of T.
Details
AccessHandle<T>::emplace_value (...) mimics the syntax for in-place construction in standard library
containers. See, for instance, std: :vector<T>::emplace_back (...). If in-place construction is unnec-

essary or undesired, can be used instead. Note that calling emplace_value] on a handlg requires
Modify immediate permissions| (see § 2.2.3)). If a previously constructed value exists (or a default constructed value, if
possible) for the value held by the AccessHand1e<T>| it will be destroyed via T: : "T ().

Code Snippet

struct LoudMouth ({

LoudMouth (int i, double j) { cout << "Ctor: " << i << ", " << j << endl; }
}i
auto h = initial_access<LoudMouth> ("key");
create_work ([=]{

h.emplace_value (42, 3.14); // prints "Ctor: 42, 3.14"
)i

Figure 2.7 Basic usage of \emplace_value.

47

Restrictions and Pitfalls

* In the current version of the specification, types that are default constructible will always be default constructed
before first use. For non-default-constructible types, however, memory of the correct size (i.e., sizeof (T))
will only be allocated, but no constructor will be called. The user must call emplace_value (...) before
performing any operations on the data (or risk undefined behavior).

48

O 00 N O W R W -

29.2 publish

Summary
publish the data pointed to by a given so that it can be retrieved on other DARMA| ranks.

Syntax

void
AccessHandle<T>::publish (n_readers=..., version=...)

Positional Arguments
None.

Keyword Arguments

* n_readers=size_t (optional): informs the how many times will be called

in order to access this data. If omitted, it defaults to 1.

* version=KeyExpression (orversion (KeyExpression...),see § 2.4 for multiple-right-hand-side
keyword argument usage) (optional): informs the what version to associate with the data being
published. The value can be an arbitrary KeyExpression. If omitted, the version defaults to an empty
(ie.,a with zero components). Omitting this keyword implicitly indicates to the that
the (or any with the same name [key]) will not be published again in the remaining lifetime of the
program.

Details
Publish the data associated with a given h such that it can be retrieved times anywhere via a

invocation that gives the same name key as h and the same as the one given to the
keyword argument/ to jpublish|. A publishlis a read-only capture operation (see § 2.2.3)).

Code Snippet

auto me = darma_spmd_rank () ;

assert (darma_spmd_size () >= 2);

if (me == 0) {
auto my_handle = initial_access<double> ("key_1");
create_work ([=]{

my_handle.emplace_value (5.3);
1)
nmy_handle.publish (n_readers=1, version="only");

}

else if(me == 1) {
auto my_handle = read_access<double>("key 1", version="only");
create_work ([=] {

cout << my_handle.get_value() << endl; // prints "5.3"
1)

Figure 2.8 Basic usage of publish.

49

Restrictions and Pitfalls

puts more burden on the programmer to avoid race conditions and deadlock, which are automatically
avoided when relying entirely on sequential semantics. This is similar to deadlock situations with sends and
receives in MPI in which communicating processes block on a receive before sending to each other. For instance,
the following snippet deadlocks:

// This code deadlocks!
auto me = darma_spmd_rank () ;

assert (darma_spmd_size () >= 2);

if (me == 0) {
auto hl = initial_access<int>("key", 0);
auto h2 = read_access<int> ("key", 1);

create_work ([=] {
hl.set_value (42);
hl.publish{();
cout << h2.get_value() << endl;
}) i
}

else if (me == 1) {
auto h3 = initial_access<int>("key", 1);
auto h4 = read_access<int> ("key", 0);
create_work ([=] {

h3.set_value (73);
h3.publish();
cout << h4d.get_wvalue() << endl;
b) i
¥

// Deadlock! (eventually, at the latest when darma_finalize() is
// called): neither of the above create_work()s can ever run

This snippet deadlocks because a dependency loop has been created between two publishlread_access|
‘ pairs. While the deadlock is relatively obvious here, it can be much more difficult to decipher in a more
complex code, especially if, for instance, h1l and h2 are arguments to a function, or if the parts of the keyis
used to construct the are variables with values dependent on some previous computation.

It is particularly easy to create deadlock scenarios by publishing a and fetching it within the same frank.
For this reason, we recommend extreme caution when this scenario could arise, and in general we suggest that
the user should avoid doing so if at all possible.

Since is a read-only capture operation, it must have scheduling permissions| of Read or Modify;
calling publishlon ahandle with other scheduling permissions is a runtime error. Also, as with all read-only
capture operations, calling publish|on ahandlg with Modify immediate permissiong results in a with
Readimmediate permissions in the [continuing context. See § 2.2.3|for more details. For example, the following
code results in a runtime error at the marked line:

auto h = initial_ access<int>("key");
create_work ([=]{
h.set _wvalue(9) ;
h.publish();
h.set_value(10); // X h does not have Modify immediate permissions

)i

It is an error to call publish on ahandle with the same codlinkkey and more than once.
Ifpublishliscalled on a given without the ver s ion|keyword argument, it is an error to call publish

again on that or any other with the same name for the remaining lifetime of the program.
Note that because of the default behavior of the version/keyword argument, giving an explicit that

50

is the empty (e.g., h.publish (version()) or h.publish (version=make_key ())) will lead
to this same behavior.

51

~N N R WD =

293 get value

Summary get_value accesses the data pointed to by a in a read-only manner.

Syntax

const T& AccessHandle<T>::get_value();

Positional Arguments
None.

Return
A const reference to the data associated with the handlel.

Details
Calling [get_value€]on ahandle requires Read or Modify immediate permissions (see § 2.2.3)).

Code Snippet
AccessHandle<double> my_handle = initial_ access<double> ("key_1", myRank);
create_work ([=] {

my_handle.set_value (3.14);

1)
create_work (reads (my_handle), [=]{
cout << my_handle.get_value() << endl; // prints "3.14"

1)
Figure 2.9 Basic usage of get_value.
Restrictions and Pitfalls

* Do not hold the reference returned by this method across an asyncronous operation on the source handle. For
example, the following results in undefined behavior:

auto h = initial_access<int> ("my_key");
create_work ([=]{ h.set_value(5); });
create_work ([=] {
auto const& v = h.get_value();
create_work ([=]{ h.set_value(10); 1});

cout << v << endl; // X undefined behavior!!

})s

Instead, to be safe, we recommend that when mixing synchronous and asynchronous code, enclose assignments
and their corresponding uses in their own scope:

52

auto h = initial_ access<int> ("my_key");
create_work ([=]{ h.set_value(5); });
create_work ([=] {
{ // begin scope for v
auto const& v = h.get_value();
cout << v << endl;
} // ¢/ prevent accidental usage of v after the create_work using h
create_work ([=]{ h.set_value(10); 1});
// uses of v here are now a compile-time error rather
// than undefined behavior

)i

53

B W N =

2.9.4 set_value

Summary
set_value sets the value of the data pointed to by a handle|

Syntax

template <typename U>
vold AccessHandle<T>::set_value (U&& value)

Positional Arguments

* value (type convertible to T): The new value for the data.

Details

This invokes T: :operator= (U&&) (T’s assignment operator to a universal reference to U) with the argument
value. If the type T has no assignment operator for this type, calling will be a compile-time error. If
you need to invoke an in-place constructor instead, use lemplace_valuel

Code Snippet

auto h = initial_access<double> ("key 1");
create_work ([=]{

h.set_value (55.343);
1)

Figure 2.10 Basic usage of set_valuel

Restrictions and Pitfalls

 The specification of the method is likely to change in the future to be analogous to the behavior of, e.g., std: :
vector<T>: :push_back () (asitrelates to std: :vector<T>: :emplace_back ()). If this could be
a problem for T, you should probably use emplace_value|for now.

54

S S

2.9.5 get reference

Summary
get_reference gets a non-constant reference to the data pointed to by the handlel.

Syntax

T& AccessHandle<T>::get_reference ()

Positional Arguments
None.

Return
A non-constant reference to the data.

Details
This method requires Modify immediate permissions. See § 2.2.3| for more information on immediate permissions.

Code Snippet
AccessHandle<double> my_handlel = read access<double>("key 1", myRank);
create_work ([=] {

my_handlel.get_reference () = 242.343;

)i

Figure 2.11 Basic usage of \get_reference.

Restrictions and Pitfalls

* Do not hold the reference returned by this method across an asyncronous operation on the source handle. For
example, the following results in undefined behavior:

auto h = initial_access<int> ("my_key");

create_work ([=]{ h.set_value(5); 1});
create_work ([=] {
auto& v = h.get_reference();
create_work ([=]{ h.set_value(10); 1});

cout << v << endl; // X undefined behavior!!
}) i

See recommendations in § 2.9.3| for more.

55

O 0 N N R W =

2.9.6 operator->

Summary
operator—> is a dereference operator to directly access the object pointed to by the handle.

Syntax

Tx AccessHandle<T>::operator->();

Input Parameters
None.

Return
Returns a reference to the data pointed to by the handle].

Details

Just like [set_valueland [get_reference] this operator requires Modify immediate permissions| to invoke safely.
Unlike set_value]and [get_reference] however, the can also be invoked on that only
have Read immediate permissions. In that case, it is up to the user to ensure that only const methods are called on
the resulting object. In other words, AccessHandle<T>: :operator—> () lets you “shoot yourself in the foot.”
If more safety is desired, use the more verbose forms with[set_value|/and|get_referencel

Code Snippet

1l

typedef std::vector<double> vec;

AccessHandle<vec> my_handle2 = initial_access<vec> ("key_2", myRank);

create_work ([=]{
my_handle2.emplace_value (0.0);
my_handle2->resize (4);
double * vecPtr = my_handle2->data();
1)

Figure 2.12 Basic usage of : operator—->|

56

O 0 9 L AW —

—_
(=]

2.9.7 get key

Summary
get_key gets the identifying the data pointed to by the handlel.

Syntax

darma_runtime: :types::key_t const& AccessHandle<T>::get_key () ;

Positional Arguments
None.

Return
The identifying the data.

Details
This method can be called at any time after the is created. It does not require any scheduling permissions| nor
immediate permissions.

Code Snippet

Ll ..

auto myRank = darma_spmd_rank () ;

AccessHandle<double> my_handlel = read_access<double> ("key_1", myRank) ;

auto myK = my handlel.get_key();

create_work ([=] {
my_handlel.get_reference () = 242.343;
auto myK = my_handlel.get_key () ;
assert (myRank == myK.get_key () .component<l>().as<int>());

1)

Figure 2.13 Basic usage of get_key.

57

~N N R W=

2.9.8 =0or release

Summary
release or =0 releases the reference to the data held by the handlel.

Syntax
These two are equivalent.

// Functional:
some_handle = 0;
some_handle.release ()

// Formal
void AccessHandle<T>::operator=(std::nullptr_t);
volid AccessHandle<T>::release();

Positional Arguments
None.

Return
None.

Details

Release the reference to the underlying data held by a given handlel Note that this effectively only decrements the
reference count; the data itself will not be deleted unless there are no other existing referring to it. Releasing
at the earliest possible time can help avoid some deadlock situations, particularly with published data, and potentially

increase [concurrencyl.

Code Snippet
)
AccessHandle<double> my_handlel = initial_access<double> ("key_ 1", myRank);
create_work ([=] {
my_handlel.get_reference() = 242.343;

)i

my_handlel.release();

//

Figure 2.14 Basic usage of =0 or release.

58

O ® N N R W N =

—_
=]

2.10 API: Keywords

In this section, we describe the keywords of the DARMAF0.3.0-alpha [API.

2.10.1 reads

Summary
reads is a keyword argument for [create_work that constrains permissions of a set of to be read-only
within that taskl.

Syntax

create_work (reads (handles...), [=]{
// code
P

Positional Arguments

* handles...: list of AccessHandle<T> objects to constrain to read-only privileges.

Details
Used as a keyword argument to ajcreate_work|to constrain permissions for a list of to be read-only within

that taskl. It can contain a single or a list of handles|

Code Snippet

o/
auto my_handle = initial_access<double> ("data", myRank);
create_work ([=] {
my_handle.emplace_value (0.55) ;
1)
create_work (reads (my_handle), [=]{
std::cout << " " << my_handle.get_value() << std::endl;
my_handle.set_value(3.14); // X runtime error
F)v
o

Figure 2.15 Basic usage of reads.

Restrictions and Pitfalls

* This can only be called as keyword argumentto create_work]. Use in other contexts will lead to compile-time
errors, run-time errors, or undefined behavior.

59

2.10.2 n_readers

Summary
n_readers is akeyword argument to publishl|

In namespace darma_runtime: :keyword_arguments_for_publication.

2.10.3 wversion

Summary
version is akeyword argument to publish|land [read_access<T>|

In namespace darma_runtime: :keyword_arguments_for_publication.

60

Chapter 3

Translation Layer

A key design principle of is the ability to explore the design space of back end [AMT] runtime system] im-
plementations without requiring changes in the application code. Since the [API is essentially an EDSL]
and most back end runtime systems with which we want to interface use traditional C or C++ constructs, a layer is
needed that translates EDSI}based application code into C*++ constructs that the back end|fruntime systems| can easily
implement and interact with. Given that DARMA is strictly embedded in C++, this layer makes heavy use of newer
C+ motifs and features from C++11 and C++14, such as template metaprogramming], [perfect forwarding, constant
expressions (constexpr), and capture. Many of the additions to C++ in recent years have centered around
making it easier for the user to express compile-time optimizations and transformations that the compiler can make to
reduce runtime overhead. As such, much of the translation DARMA does between the and the
[APT happens at compile time, and should result in minimal runtime overhead with most modern
compilers.

3.1 Separation of Responsibilities Across Layers

DARMA separates responsibilities across the three different layers: application, translation, and
system|. The list below describes the most important quantities and concepts that are required for writing and running

DARMA applications. Each layer will either read, write, or never use each quantity. Some of these quantities are parts
of the specification while certain other quantities are introduced for illustrating concepts, and are not strictly part of
the specification. Some quantities are repeated from previous sections.

* AccessHandle: a variable (templated on data type) that is used in the application as arguments to and for
reading/writing values in a data block. Each has its own unique copy of AccessHandle. AccessHandles are
never shared across tasks.

 Data Type: the type of a variable, e.g., int, vector<double>.

e Data Layout: the layout or internal structure of a data type, usually telling whether a type is contiguous in
memory and whether a type holds only data (e.g., double) or has lookup pointers.

 Data Size: the total size a data block occupies in memory (number of bytes).

» Task Dependencies: a relationship between a and data indicating the depends on the data being avail-
able before the task can run.

* Task Precedence Constraints: a relationship between indicating that an ordering constraint exists between
tasks.

* Access Permissions: access permissions (read, read-write, etc.) for an AccessHandle within a fask.

e Address: a pointer through which data is accessed. The pointer provides no information on the size or type of
memory being accessed. It merely provides a means of accessing data at a particular memory location.

The following items are not strictly part of the specification, but are useful for having a rigorous vocabulary to explain
and understand the ftranslation layed. These are quantities that are likely to be used in a pack end runtime system|
implementation, but are not required. As will be discussed in the section, all of these quantities (if used by a
back end fruntime system)), exist in an abstract class Instance that the interacts with.

e Handle ID: the generalization of a variable in C++. A globally unique ID identifying a block of data that
represents the “same” quantity across time. This corresponds to, e.g., values mesh that are updated iteratively.
This is NOT synonymous with an actual physical location.

* Generation: an ID that distinguishes logically distinct generations of the same Handle ID. Updating the values in

61

Quantity App Translation Layer Backend

Data Type Creates Reads DNE
Data Layout Modifies Reads DNE
Data Size Modifies Reads Reads
Task Dependencies Modifies Reads Reads
Task Order Constraints DNE Creates Modifies
Address Reads DNE Modifies
Access Permissions Modifies Reads Reads
Handle ID DNE Opaque Create Creates
Generation DNE Opaque Modify Creates
Logical ID DNE Opaque Pass Creates
Physical ID DNE Opaque Pass Modifies

Table 3.1 Which concepts are modified by a given layer, which exist opaquely, and finally which concepts do

not exist (DNE).

a Data Handle changes the data and therefore progresses the generation. Two data blocks with the same Handle
ID that contain different logical times (usually different iterations) will be different generations.

Data Blocks: the actual physical memory allocations where data lives. Data blocks comprise not just an address,
but potentially size and location information such as whether memory is DRAM, HBM, GPU, or remote.
Logical ID: a tuple of Generation and Handle ID. Two Data Handles with the same logical ID must access
exactly the same values, but potentially different physical locations, and thus are logically the same. All objects
with the same Logical ID are required to have the same Handle ID. Thus, Logical ID equivalence is a stronger
condition than Handle ID equivalence.

Physical ID: a tuple of Address, Generation, and Handle ID (although not required to be implemented as a
tuple). Two Data Handles with the same Physical ID not only access exactly the same values, but must also
access exactly the same memory location. Two logically distinct blocks that happen to access the same memory
location at different times do NOT share a Physical ID. All data with the same Physical ID must have
the same Logical ID and therefore the same Handle ID. Physical ID equivalence is then a stronger condition
than Logical ID or Handle ID.

The way in which quantities are used in each layer of the software stack can have several possibilities:

Modifies: The layer both reads and manipulates the given quantity.

Creates: A subset of Modifies. The layer creates the initial version of something, but is not allowed to modify
the quantity thereafter.

Reads: The layer reads and understand a quantity, but is not allowed to manipulate it.

Opaque Modify: The caller layer understands operations that need to be performed that will modify a struct, but
the implementation details are hidden by an interface. For example, a caller can pass a forward-declared struct
by pointer to a function. The function (callee) can modify integer members within the struct. Even though the
caller initiates the modification, the internal details of the struct are opaque to the caller and are only known to
the callee (function).

Opaque Pass: A caller provides values in a struct to be read by a callee function, but the values are opaque to
the caller function. Similar to Opaque Modify, but the callee function cannot modify the struct.

DNE: The concept does not exist - it is neither manipulated nor read by a layer.

We now summarize where quantities are created, modified, and read in Table 3.1].

A critical part of the DARMA| design avoids potential interference between layers that can read/modify the same

quantity. Operations occurring in the must have guarantees that the application and are not
creating conflicts. We must therefore define a life cycle for each [taski:

Precursor: Dependencies are modified during the execution of a precursor ftask.

Initialization: The is created and initialized before being passed to a scheduler or queue.
Waiting: The has been created is waiting in a queue to be scheduled or run.

Running: The has been popped from the queue and is actively running.

Deletion: The has finished running and is releasing its resources.

62

Quantity Precursor Initializing Waiting Running Deletion
Data Type App Creates TL Reads TL Reads App Reads TL Reads
Data Size App Creates ~ TL,BE Reads BE Reads App Modifies TL,BE Reads
Access Permissions App Modifies TL,BE Reads BE Reads n/a TL,BE Reads
Task Dependencies App Creates TL,BE Reads BE Reads n/a TL,BE Reads
Task Order Constraints n/a TL Creates BE Modifies n/a BE Reads
Address n/a BE Modifies BE Modifies App Reads BE Reads

Table 3.2 Usage of different quantities throughout a single ’s life cycle

Critically, Table 3.2 ensures that each layer has no conflicts. No two layers simultaneously have modify permissions
during the life cycle of a ftask, nor can one layer read simultaneously as another layer modifies. Two layers can
simultaneously read, although even that rarely happens.

3.2 Important C++ Concepts

Even though neither the [AP] application programmers nor the implementation developers need
to understand the implementation details of the franslation layer, it is useful to document several of the idioms and

“tricks” used in the for those wishing to have a thorough understanding of all DARMA layers, and
particularly for those who wish to contribute to the expansion and adaptation of the EDSL] that is the API.
Thus, a few of the basic techniques and concepts used by the translation layer are documented below.

3.2.1 Lambda Capture for Automatic Dependency Detection and Versioning

The most pivotal trick to document here is (semi-)automatic dependency detection through the C+t 11 mecha-
nism and the copy capture-default (that is, [=]1). The C+t standard specifies that if the copy capture-default is given,
any variables that are ODR-used] inside of the lambdal’s scope but defined outside of it? are copied by value into that
lambda’s scope. Furthermore, if a with a copy capture-default is moved’, the move constructors of the inner
scope copies will be invoked (or, if no user-defined move constructor is given but a user-defined copy constructor is,
the copy constructor is invoked). We can leverage this fact along with a thread-safe (and thread-specific) global context
object to associate captured AccessHandle<T> objects with the capturing create_work (. ..) invocation as
dependencies. Furthermore, if we make the relevant members of AccessHandle<T> mutable, we can modify the
that has been copied from to increment the version, so that later tasks will depend on the completion of earlier

create_work calls that the same handle. Thus, the mechanism can be used for both dependency
detection and [sequential semantics|.

3.2.2 Keyword Arguments

The tricks used to emulate keyword arguments in C++ are well-known and have been exploited elsewhere| to similar
effect. The addition of perfect forwarding and constant expression semantics to C++ 11 and C++ 14 allow this to be
done with rigorously zero runtime overhead — all transformations used to interpret keyword arguments as traditional,
positional arguments can occur at compile time.

“one definition rule”-used. See http://en.cppreference.com/w/cpp/lanquage/definition#ODR-use for details. As this

source states, “Informally, an object is odr-used if its address is taken, or a reference is bound to it, and a function is odr-used if a function call to it
is made or its address is taken.”

2technically, defined in the ’s “reaching scope,” which is also formally defined

3e.g., with std: :move (); have a deleted copy constructor

4e.g., the Boost::Parameter library

63

64

Chapter 4

Backend

The is organized into two namespaces:

1. darma_runtime: :abstract::frontend
2. darma_runtime: :abstract: :backend

The first contains abstraction base classes of entities that are implemented in the and are the only
constructs in that layer that the pack end runtime systemlis allowed to interact with. The second contains abstract base
classes that must be concretely implemented in the pack end/runtime system and are the only abstractions the
is allowed to interact with. Below is a summary of the requirements to implement these abstractions,
the documentation for which is taken from the Doxygen-style comments in the source code itself. As such, the source
code may be a better resource for those interested in this part of the document, but we have included it here for
completeness.

4.1 Important Backend Concepts

Although some of this terminology was given in the introduction, we repeat definitions here. Some of the terms here
have C++ classes that directly represent them. Other terms are only concepts, useful in illustrating the use of other C++
classes.

Task: The work unit instantiated directly by the application developer. Tasks are guaranteed to make forward
progress, but are interruptible.

Execution stream: An execution stream will consist of a sequence of many ftasks, and, like tasks|, is guaranteed to

make forward progress. All execution streamsg are fasks, but execution streams specifically have no parent
and are the root of an independent task-DAG. There is no class corresponding uniquely to an
since all streams are [tasks.

Operation: This is a unit of execution that is guaranteed to be non-interruptible. An is not equivalent to
a since are interruptible. are the smallest, schedulable units of work. A consists
of a sequence of pperations. While are explicitly instantiated by the application developer,
(individual portions of ffask)) can be implicitly instantiated by the runtime system|. There is no class provided
corresponding directly to an pperation. Since only one component ofa may be active at any given
time, a always corresponds uniquely to an operation.

Handle: The generalization of a variable. Handle encapsulates both a unique immutable name (key) and an
immutable type.

Logical Time: An abstract notion of time progressing as are performed on the values encapsulated by a
Handle. There is no class corresponding to logical time. The progression of logical time for Use objects is
encapsulated in the input and output Flows (see below).

Use: A Use corresponds to a Handle at a particular moment in logical time. Uses are always unique to an [operation.
Operations cannot add or remove uses from its context. Tasks, being interruptible, can add and remove Use
instances. Uses carry particular permissions and therefore have some intent of Read, Write, or Modity.

Flow: A Flow encapsulates a data-task relationship. An input Flow indicates that a Use requires a particular value
before its corresponding begins. An output Flow indicates that a Use produces a particular value after
being released at the end of its corresponding pperation. All Use objects have exactly two Flow objects — one
input and one output — and each Flow is associated with exactly one Use. A Modify Use will have an input
Flow indicating the value consumed and an output Flow indicating the value produced. A Read Use is will also

65

have an output Flow even though it produces no data since the “output” indicates the release of data and clearing
of an anti-dependence.

Dependency: Although Dependency is not a class in[DARMA], a will always have an initial set of Uses that must
become available for the to begin. This initial set of uses are the “dependencies” of a ftask.

4.2 Class Index

4.2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

A backend-allocated object representing the input/output state of a Handle at the beginning/end of
ATASK L L e 66
Encapsulates a named, mutable chunk of data which may be accessed by one or more tasks that

use that data (or the privilege to schedule permissions on thatdata) 67
e Tontine abstract-Tronfend= PiblicafionDerils

A class encapsulating the attributes of a particular publish operation 68

Abstract class implemented by the backend containing much of the runtime 69

darma_runtime::abstract::frontend::SerializationManager
An immutable object allowing the backend to query various serialization sizes, offsets, behaviors,
and data, for a given handle and its associated datablock 74
A piece of work that acts on (accesses) zero or more objects at a particular point in the
apparently sequential uses of these ODJECES oot 73
Encapsulates the state, permissions, and data reference for a given use of a ata given time . [77

4.3 Class Documentation

4.3.1 darma_runtime::abstract::backend::Flow Class Reference

A backend-allocated object representing the input/output state of a Handle at the beginning/end of a task.
#include <flow.h>

Detailed Description

A backend-allocated object representing the input/output state of a Handle at the beginning/end of a task.

When executing tasks, data "flows” from one task to the next. A precursor task produces data that will be consumed
by a successor task. Each task carries a unique Use variable for each Handle it uses. Each Use has an input flow
and output flow. This is true even of a read-only Use, with the output indicating the release of anti-dependence. An
equivalence relationship between two Flows a and b is indicated by allocating the Flow a with a call to Runt ime«
: :make_same_flow (b) or vice versa. Equivalence must be defined within the backend. The translation layer will
never make an equivalence test itself.

The life-cycle of a consists of 4 strictly ordered phases. For some instance flw,

e Creation — &flw is a pointer returned by any of make_initial _flow (), make_fetching_flow(),
makenull_flow (), make_same_flow(),make_forwarding_flow (), ormake next_flow ()

66

* Registration — Each flow is owned by a Use as either input or output. Each Use will be registered through
Runtime: :register_use ()] before being used in a task or publication. All flows have exactly one Use
association in their lifetime; that is, & £ 1w is either a return value of Use: :get_in_flow () or Use: :get+«
—out_flow () for some Use object that is an argument to register_use () at some time after £1w was
created but before it is released. To ensure this strict ordering of the life-cycle, the runtime must en-

force atomicity among register_use (&u), make_next_flow (&flw, ...)/make_forwarding «
flow(&flw, ...)/make_same_flow(&flw, ...),release_use (&u) forany[Flow| flw thatcould

be returned by u.get_in_flow () oru.get_out_flow () for some Use u.

* Release — Each is owned by a Use as either input or output. [F Lowjs are released through to
[: :release_use ()|onthe owning Use. The will never be used directly (or indirectly) by the translation

after calling release_use ().

* At most one call to runtime.make next _flow (&flw, ...) can happen anytime after creation, but
before release. Any number of calls to runtime.make_same_flow(&flw, ...) can happen anytime
after creation, but before release. At most one call to runt ime.make_forwarding_flow (&flw, ...)
can be made in the lifetime of a (and this call does not preclude a make _next_flow (&flw, ...)
call also being made)

Two objects, a and b, are considered to consume or produce the same version of the same data if a was con-
structed using make_same (b) or if b was constructed using make_same (a). The flow returned by make_«
same (a) , however, is a different object and is therefore has an independent life cycle and is independently modifiable
by the backend.

The documentation for this class was generated from the following file:

e flow.h

4.3.2 darma_runtime::abstract::frontend::Handle Class Reference

Encapsulates a named, mutable chunk of data which may be accessed by one or more tasks that use that data (or the
privilege to schedule permissions on that data).

#include <handle.h>

Public Member Functions

* virtual types::key_t const & () const =0

get_key Returns a unique key. Multiple calls to this function on the same key object must always return the same value
« virtual SerializationManager const * [get_serialization_manager () const =0

get_serialization_manager Returns a type-specific serialization manager. The object returned will be persistent as long
as the Handlé exists

Detailed Description

Encapsulates a named, mutable chunk of data which may be accessed by one or more tasks that use that data (or the
privilege to schedule permissions on that data).

A represents an entity conceptually similar to a variable in a serial program.
Member Function Documentation
virtual types::key_t const& darma_runtime::abstract::frontend::Handle::get key () const [pure vir-

tual] getkey Returns a unique key. Multiple calls to this function on the same key object must always return the
same value

67

Returns

A unique key identifying the tuple.

virtual SerializationManager const+ darma_runtime::abstract::frontend::Handle::get_serialization_manager (
) const [pure virtual] get serialization_manager Returns a type-specific serialization manager. The object
returned will be persistent as long as the exists

Returns

A type-specific serialization manager

The documentation for this class was generated from the following file:

e handle.h

4.3.3 darma_runtime::abstract::frontend::PublicationDetails Class Reference

A class encapsulating the attributes of a particular publish operation.

#include <publication_details.h>

Public Member Functions

* virtual types::key_t const & () const =0

Get the unique version (as a key) of the item being published. The combination of h.get_key() and
must be globally unique for a h returned by Use:: get_handle()|for the use given as the first argument to Runtime«—

::publish_use() for which this object is the second object.
* virtual size_t () const =0

Get the number of unique fetches that will be performed. All N fetches must be complete before the backend can declare
a publication to be finished.

Detailed Description

A class encapsulating the attributes of a particular publish operation.

Member Function Documentation

virtual types::Kkey_t const& darma_runtime::abstract::frontend::PublicationDetails::get_version_name () const
[pure virtual] Get the unique version (as a key) of the item being published. The combination of h.get_key()

and [get_version_name() must be globally unique for a h returned by for the use given as the

first argument to Runtime::publish_use() for which this object is the second object.

Returns

A unique version name for the current publication of a given Handle

virtual size_t darma_runtime::abstract::frontend::PublicationDetails::get n_fetchers () const [pure vir-
tual] Get the number of unique fetches that will be performed. All N fetches must be complete before the backend
can declare a publication to be finished.

68

Returns

The number of Runtime::make_fetching_flow() calls that will fetch the combination of key and version given in
the publish_use() call associated with this object

The documentation for this class was generated from the following file:

e publication_details.h

4.3.4 darma_runtime::abstract::backend::Runtime Class Reference

Abstract class implemented by the backend containing much of the runtime.

#include <runtime.h>

Public Types

* enum [FlowPropagationPurpose| { [[nput, Output, [ForwardingChanges, OutputFlowOfReadOperatior }

A set of enums identifying the relationship between two flows.

* typedef task t

* typedef enum darma_runtime::abstract::backend::Runtime::FlowPropagationPurpose|flow_propagation_purpose}—
i

A set of enums identifying the relationship between two flows.

Public Member Functions

e virtual void (types::unique_ptr_template < > &&task)=0
Register a task to be run at some future time by the runtime system.
* virtual [frontend::Task! * [get_running_taskl () const =0
Get a pointer to the [frontend::Task object currently running on the thread from which was invoked.
* virtual void fregister_use] (frontend::Use] su)=0
Register a [frontend: : Use| object.
e virtual [Flow * make_initial_flow] (frontend::Handle| x*handle)=0

Make an initial Flow to be associated with the handle given as an argument.

« virtual [Flow * [make_fetching_flow| (frontend::Handle xhandle, types::key_t const &version_key)=0

Make an fetching to be associated with the handle given as an argument.
e virtual [Flow * make_null_flow] (frontend::Handl¢ xhandle)=0
Make a null to be associated with the handle given as an argument.
* virtual [Flow * make_same_flow (Flow] «from, [flow_propagation_purpose_t purpose)=0
Make a flow that is logically identical to the input parameter.
« virtual [Flow * make_forwarding_flow] (Flow] «from, flow_propagation_purpose_{ purpose)=0

Make a new input that receives forwarded changes from another input [Flow, the latter of which is associated with
a Use on which Modify immediate permissions were requested.

* virtual [Flow * [make_next_flow| (Flow] xfrom, fflow_propagation_purpose_t purpose)=0
Make a flow that will be logically (not necessarily immediately) subsequent to another
e virtual void rrelease_use (frontend::Use *u)=0

Release a Use object previously registered with register_use.

« virtual void [publish_use| (frontend::Use «f, frontend::PublicationDetailg xdetails)=0

Indicate that the state of a Handle corresponding to a given Use should be accessible via a corresponding fetching usage
with the same version_key.

69

Detailed Description
Abstract class implemented by the backend containing much of the runtime.

Note

Thread safety of all methods in this class should be handled by the backend implementaton; two threads must be
allowed to call any method in this class simultaneously.

Member Enumeration Documentation

enum darma_runtime::abstract::backend::Runtime::FlowPropagationPurpose A set of enums identifying the
relationship between two flows.

Enumerator

Input The new flow will be used as the input to another logical Use of the data
Output The new flow will be used as the output for another logical Use of the data

ForwardingChanges The new flow will be used as an input to another logical Use of the data that incorporates
changes made to data associated with an input [Flow for which Modify immediate permissions were re-
quested, thus “forwarding” the modifications to a new logical Use. Only ever used with [make_forwarding_§
flow()

OutputFlowOfReadOperation The new flow will be used as the corresponding return of get_out_flow() for a
read-only Use that returns a given flow for get_in_flow().

Member Function Documentation

virtual void darma_runtime::abstract::backend::Runtime::register_task (types::unique_ptr_template< frontend:—
i:'Task > && task) [pure virtual] Register a task to be run at some future time by the runtime system.

See frontend::Taskl for details

Parameters

task | A unique_ptr to a task object. Task is moved as rvalue reference, indicating transfer of ownership to the
backend.

See also

rontend::Tas

virtual frontend::Taskx darma_runtime::abstract::backend::Runtime::get running task () const [pure

virtual] Get a pointer to the object currently running on the thread from which
was invoked.

Returns

A non-owning pointer to the frontend::Task object running on the invoking thread. The returned pointer must be
castable to the same concrete type as was passed to Runtime::register_task() when the task was registered.

70

Remarks

—

If the runtime implements context switching, it must ensure that the behavior of Runtime::get_running_task()
consistent and correct for a given running thread as though the switching never occurred.

The pointer returned here is guaranteed to be valid until Task::run() returns for the returned task. However,
to allow context switching, it is not guaranteed to be valid in the context of any other task's run() invocation,
including child tasks, and thus it should not be dereferenced in any other context.

S

See also

rontend::Tas

virtual void darma_runtime::abstract::backend::Runtime::register_use (frontend::Use xu) [pure vir-
tual] Registera object.

This method registers a Use object that can be accesses through the the iterator returned by t.get_dependencies()
for some task t. register_use will always be invoked before register_task for any task holding a Use u. Accessing
a frontend::Use u through a t is only valid between the time register_use (&u) is called and
release_use (&u) returns. No make_x functions may be invoked on either the input or output flows of a Use u
returned by Use::get_input_flow() and Use::get_output_flow() before calling register_use(). Additionally, no make_x
functions may be invoked on the input or output flows of a Use u after calling frelease_use().

virtual Flow* darma_runtime::abstract::backend::Runtime::make_initial_ flow (frontend::Handle * handle)
[pure virtual] Make an initial to be associated with the handle given as an argument.

The initial will be used as the return value of u->get_in_flow() for the first Usex u registered with write privileges
that returns handle for u->get_handle() (or any other handle with an equivalent return for get_key() to the one passed
in here). In most cases, this will derive from calls to initial_access in the application code.

Parameters

‘ handle ‘ A handle encapsulating a type and unique name (variable) for which the represents the initial state

virtual Flow+ darma_runtime::abstract::backend::Runtime::make fetching flow (frontend::Handle * handle,
types::key_t const & version key) [pure virtual] Make an fetching to be associated with the handle
given as an argument.

The fetching usage will be used as a return value of u->get_in_flow() for a Usex* u intended to fetch the data published
with a particular handle key and version_key.

Parameters

handle A handle object carrying the key identifer returned by get_key()

version_key | A unique version for the key returned by handle->get key()

virtual Flow+ darma_runtime::abstract::backend::Runtime::make_null_flow (frontend::Handle * handle)
[pure virtual] Make anull to be associated with the handle given as an argument.

A null usage as a return value of u->get_out_flow() for some Usex u is intended to indicate that the data associated
with that Use has no subsequent consumers and can safely be deleted. See frelease_use().

71

Parameters

| handle | The handle variable associate with the flow

virtual Flowx darma_runtime::abstract::backend::Runtime::make_same_flow (Flow * from, flow_propagation—
_purpose_t purpose) [pure virtual] Make aflow that is logically identical to the input parameter.

Calls to jmake_same_flow() indicate a logical identity between Flows in different Use instances. make_same_flow()
may not return the original pointer passed in. objects must be unique to a Use. Flows are registered and released
indirectly through calls to fregister_use()/release_use(). The input Flow to imake_same_flow() must have been registered
through a call, but not yet released through a call. There is no restriction on the number of

times make_same_flow() can be called with a given input.

Parameters

from An already initialized flow returned from make_x_flow

purpose | An enum indicating the relationship between logically identical flows (purpose of the function). For
example, this indicates whether the two flows are both inputs to different tasks or whether the new flow
is the sequential continuation of a previous write (forwarding changes)

A new object that is equivalent to the input flow

virtual Flow+ darma_runtime::abstract::backend::Runtime::make_forwarding flow (Flow x from, flow_—
propagation_purpose_t purpose) [pure virtual] Make a new input that receives forwarded changes
from another input Flow, the latter of which is associated with a Use on which Modify immediate permissions were
requested.

Parameters

from An already initialized flow returned from make_x_flow

purpose | An enum indicating the relationship between logically identical flows (purpose of the function). In the
current specification, this enum will always be ForwardingChanges

virtual Flow* darma_runtime::abstract::backend::Runtime::make next_flow (Flow x from, flow_propagation«
_purpose_t purpose) [pure virtual] Make a flow that will be logically (not necessarily immediately) sub-

sequent to another Flow].
Calls to indicate a producer-consumer relationship between Flows. indicates that

an operation consumes Flowx from and produces the returned Flow*. Flows are registered and released indirectly
through calls to register_use()/release_use(). instances cannot be shared across Use instances. The input to
must have been registered with register_use()), but not yet released through rrelease_use().

Parameters

from The flow consumed by an operation to produce the returned by

purpose | An enum indicating the purpose of the next flow

72

Returns

A new [Flow object indicating that new data will be produced by the data incoming from the [Flow given as a
parameter

virtual void darma_runtime::abstract::backend::Runtime::release_ use (frontend::Use x #) [pure vir-
tual] Release a Use object previously registered with register_use.

Upon release, if the Usex u has immediate_permissions() of at least Write, the release allows the runtime to match the
producer flow to pending Use instances where u->get_out_flow() is equivalent to the consumer pending->get_in_«
flow() (with equivalence for defined in [flow.h). The location provided by u->get_data_pointer_reference() holds
the data that satisfies the pending->get_in_flow()

If the return value of u->get_out_flow() is the same as or aliases a created with at the time
is invoked, the data at this location may be safely deleted.

If the Usex u has scheduling_permissions() of at least Write, but has no immediate permissions the Usex is an “alias”
use. As such, u->get_out_flow() only provides an alias for u->get_in_flow(). u->get_in_flow() is the actual producer
flow that satisfies all tasks/uses dependeing on u->get_out_flow(). There will be some other task t2 with Usex u2 such
that u2->get_out_flow() and u->get_in_flow() are equivalent. release_use(u2) may have already been called, may be in
process, or may not have been called when release_use(u) is invoked. The backend runtime is responsible for ensuring
correct satisfaction of pending flows and thread safety (atomicity) of release_use(...) with aliases. An alias use can
correspond to another alias use, creating a chain of aliases that the backend runtime must resolve.

Alias resolution should be implemented in constant time. That is, if a aliases b and b aliases c, the fact that
a aliases ¢ should be discernible without linear cost in the size of the set {a, b, c}.

If the Usex u has immediate_permissions() of Read, the release allows the runtime to clear anti-dependencies. For a
task t2 with Write privileges on Usex u2 such that u2->get_in_flow() is equivalent to u->get_in_flow() (or u->get_«+»
out_flow(), depending on backend implementation) If u is the last use (there are no other Usex objects registered with
u->get_in_flow() equivalent to u2->get_in_flow()) then task t2 has its preconditions on u2 satisfied.

Parameters

‘ u ‘ The Use being released, which consequently releases an in and out flow with particular permissions.

virtual void darma_runtime::abstract::backend::Runtime::publish_use (frontend::Use * f, frontend::Publication«
Details * details) [pure virtual] Indicate that the state of a Handle corresponding to a given Use should be
accessible via a corresponding fetching usage with the same version_key.

See PublicationDetails for more information

Parameters

u The particular use being published

details | This encapsulates at least a version_key and an n_readers

See also

PublicationDetails

The documentation for this class was generated from the following file:

e runtime.h

73

4.3.5 darma_runtime::abstract::frontend::SerializationManager Class Reference
An immutable object allowing the backend to query various serialization sizes, offsets, behaviors, and data, for a given
handle and its associated data block.

#include <serialization_.manager.h>

Public Member Functions

e virtual size_t () const =0

returns the size of the data as a contiguous C++ object in memory (i.e., sizeof(T))
* virtual size_t [get_packed_data_size| (const void *const object_data) const =0

Get the size of the buffer that the function needs for serialization.
e virtual void (const void xconst object_data, void *const serialization_buffer) const =0

Packs the object data into the serialization buffer.

e virtual void (void xconst object_dest, const void xconst serialized_data) const =0
Unpacks the object data from the serialization buffer into object_dest.
Detailed Description

An immutable object allowing the backend to query various serialization sizes, offsets, behaviors, and data, for a given
handle and its associated data block.

Remarks

The only method that is valid to invoke for the 0.2.0 spec implementation is get_metadata_size()

Member Function Documentation

virtual size_t darma_runtime::abstract::frontend::SerializationManager::get_packed_data_size (const void xconst
object data) const [pure virtual] Get the size of the buffer that the function needs for serial-
ization.

Parameters

object_data | pointer to the start of the C++ object to be serialized. The object must be fully constructed and valid
for use in any context where it could be used when unpacked (“could be used” is a user-defined
concept here, but basically means that operations performed on the object must yield results and
side-effects "as-if” the serialization had never happened).

virtual void darma_runtime::abstract::frontend::SerializationManager::pack _data (const void xconst object -
data, void xconst serialization _buffer) const [pure virtual] Packs the object data into the serialization
buffer.

Parameters

object_data pointer to the start of the C++ object to be serialized. Must be in the exact same state as
when get_packed_data_size() was invoked with the same object.

serialization_buffer | the buffer into which the data should be packed. The backend must preallocate this buffer to
be the size returned by [get_packed_data_size()) when invoked immediately prior to

with the same object_data pointer

74

Remarks

The backend must ensure that no running task has write access to the object_data between the time |get_packed_-

is called and returns, such that the state of object_data does not change in this time frame
(under, of course, the allowed assumptions that the user has correctly specified aliasing characteristics of the

handle or handles pointing to object_data).

virtual void darma_runtime::abstract::frontend::SerializationManager::unpack_data (void xconst object dest,
const void xconst serialized data) const [pure virtual] Unpacks the object data from the serialization
buffer into object_dest.

Upon invocation, object_dest must be allocated (by the backend) to have size jget_metadata_size(), but the
method is responsible for construction of the object itself into this buffer. Upon return, object_dest should point
to the beginning of a C++ object that is fully constructed and valid for use in any context where it could have been
used before it was packed (see [get_packed_data_size() for clarification of ’could have been used”)

Parameters

object_dest backend-allocated buffer of size jget_metadata_size() into which the object should be constructed
and deserialized
serialized_data | a pointer to the beginning of a buffer of the same size and state as the second argument to

upon return of for the corresponding object to be unpacked.

The documentation for this class was generated from the following file:

* serialization_manager.h

4.3.6 darma_runtime::abstract::frontend::Task Class Reference

A piece of work that acts on (accesses) zero or more objects at a particular point in the apparently sequential
uses of these objects.
#include <task.h>

Public Member Functions

« virtual types::handle_container_template < const x > const & () const =0
Return an Iterable of objects whose permission requests must be satisfied before the task can run.
e virtual void 0=0
Invoked by the backend to start the execution phase of the task's life cycle.
* virtual const types::key_t & () const =0
returns the name of the task if one has been assigned with or a reference to a default-constructed Key if not.

e virtual void (const types::key_t &name _key)=0
sets the unique name of the task

* virtual bool () const =0

returns true iff the task can be migrated

e virtual size_t () const =0

Returns the number of bytes required to store the task object. Not relevant for current specification which does not
support task migration.

e virtual void (void xallocated) const =0

Pack a migratable serialization of the task object into the passed-in buffer.

75

Detailed Description

A piece of work that acts on (accesses) zero or more objects at a particular point in the apparently sequential
uses of these objects.

Life-cycle of a [Task], for some instance t:

* registration — register_task() is called by moving a unique_ptr to t into the first argument. At registration time,
all of the objects returned by the dereference of the iterator to the iterable returned by t.get_dependencies()
must be registered and must not be released at least until the backend invokes t.run() method.

* execution — the backend calls t.run() once all of the dependent Uses have their required permissions to their
data. By this point (and not necessarily sooner), the backend must have assigned the return of get_data_pointer_-
reference() to the beginning of the actual data for any dependencies requiring immediate permissions.

* release — when returns, the task is ready to be released. The backend may do this by deleting or
resetting the unique_ptr passed to it during registration, which will in turn trigger the ~Task() virtual method
invocation. At this point (in the task destructor), the frontend is responsible for calling release_handle_access()
on any instances requested by the task and not explicitly released in the task body by the user.

Member Function Documentation

virtual types::handle_container_template <Use const+> const& darma_runtime::abstract::frontend::Task::get—
_dependencies () const [pure virtual] Return an Iterable of objects whose permission requests must
be satisfied before the task can run.

See description in and life cycle discussions.

Returns

An iterable container of objects whose availability are preconditions for task execution

virtual const types::key_t& darma_runtime::abstract::frontend::Task::get name () const [pure vir-
tual] returns the name of the task if one has been assigned with set_name(), or a reference to a default-constructed
Key if not.

In the current spec this is only used with the outermost task, which is named with a key of two size_t values: the SPMD
rank and the SPMD size. See darma_backend_initialize() for more information
Returns

A key object giving a unique name to the task

virtual void darma_runtime::abstract::frontend::Task::set_name (const types::key_t & name key) [pure
virtual] sets the unique name of the task

In the current spec this is only used with the outermost task, which is named with a key of two size_t values: the SPMD
rank and the SPMD size. See darma_backend_initialize() for more information

Parameters

name_key | A key object containing a unique name for the task ’

virtual bool darma_runtime::abstract::frontend::Task::is_migratable () const [pure virtual] returns
true iff the task can be migrated

76

Remarks

always return false in the current spec implementation. Later specs will need additional hooks for migration

Returns

Whether the task is migratable.

virtual size_t darma_runtime::abstract::frontend::Task::get_packed size () const [pure virtual] Re-
turns the number of bytes required to store the task object. Not relevant for current specification which does not
support task migration.

Returns

The size in bytes need to pack the task into a serialization buffer

virtual void darma_runtime::abstract::frontend::Task::pack (void x allocated) const [pure virtual]
Pack a migratable serialization of the task object into the passed-in buffer.

Parameters

allocated | The pointer to region of memory guaranteed to be large enough to hold the serialization of the class

The documentation for this class was generated from the following file:

¢ task.h

4.3.7 darma_runtime::abstract::frontend::Use Class Reference

Encapsulates the state, permissions, and data reference for a given use of a at a given time.

#include <use.h>

Public Types

+ enum {
Nong =0, Read =1, [Write] =2, Modify =3,
—4}

An enumeration of the allowed values that fmmediate_permissions() and [scheduling_permissions() can return.

* typedef enum [darma_runtime::abstract::frontend::Use::Permissions|permissions._{

An enumeration of the allowed values that immediate_permissions() and scheduling_permissions() can return.

Public Member Functions

« virtual Handle| const * [get_handlel () const =0

Return a pointer to the handle that this object encapsulates a use of.

« virtual packend::Flow * iget_in_flow ()=0
Get the Flow that must be ready for use as a precondition for the t that depends on this
« virtual packend::Flow| * iget_out_flow] ()=0

Get the Flow that is produced or made available when this is released.

77

¢ virtual permissions_{ immediate_permissions () const =0

* virtual permissions_t scheduling_permissions| () const =0

* virtual void & [get_data_pointer_referencel ()=0

Detailed Description

Encapsulates the state, permissions, and data reference for a given use of a at a given time.

objects have a life cycle with 3 strictly ordered phases. For some instance u,

» Creation/registration — &u is passed as the argument to register_use(). At this time, u.get_in_flow() and u.get_«+
out_flow() must return unique, valid Flow objects.

. or Publish use (up to once in lifetime):

- use: For tasks, &u can be accessed through the iterable returned by t.get_dependencies() for some
object tpassed to register_task() after u is created and before u is released. At this time, u.immediate«
_permissions(), u.scheduling_permissions(), and u.get_data_pointer_reference() must return valid values,
and these values must remain valid until Runtime::release_use(u) is called (note that migration may change
this time frame in future versions of the spec).

— Publish use: A single call to Runtime::publish_use() may be made for any [Use. The frontend may imme-
diately call release_use() after publish_use(). If the publish is deferred and has not completed by the time
release_use() is called, the backend runtime must extract the necessary Flow and key fields from the [Usel.

» Release — Following a task use or a publish use, the translation layer will make a single call to Runtime::release_-
use. The instance may no longer be valid on return. The destructor of will NOT delete its input and
output flow. The backend runtime is responsible for deleting Flow allocations, which may occur during release.

Member Enumeration Documentation

enum darma_runtime::abstract::frontend::Use::Permissions An enumeration of the allowed values that immediate«
[permissions() and scheduling_permissions() can return.

Enumerator

None A may not perform any operations (read or write). Usually only immediate_permissions will be
None

Read An immediate (scheduling) may only perform read operations (create read-only tasks)
Write An immediate (scheduling) may perform write operations (create write tasks)

Reduce An immediate (scheduling) may perform reduce operations (create reduce tasks). This is not a
strict subset of Read/Write privileges

Member Function Documentation

virtual permissions_t darma_runtime::abstract::frontend::Use::immediate_permissions () const [pure vir-
tual] Get the immediate permissions needed for the Flow returned by to be ready as a precondition
for this Usel

virtual permissions_t darma_runtime::abstract::frontend::Use::scheduling_permissions () const [pure vir-
tual] Get the scheduling permissions needed for the Flow returned by to be ready as a precondition
for this

78

virtual void+«& darma_runtime::abstract::frontend::Use::get_data_pointer _reference () [pure virtual]
Get a reference to the data pointer on which the requested immediate permissions have been granted.

For a requesting immediate permissions, the runtime will set the value of the reference returned by this function
to the beginning of the data requested at least by the time the backend calls on the task requesting this

The documentation for this class was generated from the following file:

e use.h

79

80

Chapter 5

Requirements

5.1 High-level Philosophy

The [API requirements are informed by a few high-level design principles:

» Keep simple things simple

» Keep tractable things tractable

* Make difficult things tractable

¢ New jprogramming models should not complicate reasoning about code correctness

* New jprogramming models should simplify application-specific performance optimizations

e Pareto rule: 80% of the compute benefit from modest human effort preferred over 100% of compute benefit
from massive human effort

Essentially, code written in the DARMA| programming model| should be not be more difficult than existing

iming models. Additionally, the DARMA programming mode] should not pass off 100% of the responsibility for
high-performance to the runtime/compilers. Rather, DARMA| should enable application developers to express perfor-

mance improvements in ways not previously possible.

Our approach is informed by what we see as the “axiomatic” challenges facing high-performance computing:

* SPMD) (data parallelism)) will remain the dominant parallelism and primary structure of application codes

* New architectures will have too much compute capacity for basic to fill

¢ [Task parallelism| and [pipeline parallelism| will help “fill” the compute capacity on machines

 The traditional abstract machine model (flat memory spaces, uniform compute elements) will get further from
actual system architecture as accelerators and deep memory hierarchies become more commonplace

» Applications with dynamic load balance or dynamic sparsity will require composable, migratable chunks of
work

5.2 Application Requirements for the front end API

Based on efforts with application and development teams, the following DARMA front end

[API requirments have been identified:

e The DARMA front end//AP] must enable the development and deployment of SPMD) algorithms in an intuitive
and simple way.

* The DARMA ffront end must not limit the ability of hte application developer to use their own data struc-
tures.

* The DARMA|[front end [API must support collective communication operations.

* The DARMA| front end [API must not limit the ability of the application developer to express and control the
initial problem decomposition.

* The DARMA front end [API must not limit the application developer’s ability to mix and express all forms of
parallelism.

81

5.3 Back end runtime system requirements

Althouth a primary purpose of the DARMA specification is to provide a back end runtime system| specification that is
relatively execution model agnostic, we will synthesize our application and runtime-system co-design activities into a
list of back end runtime system requirements. To date, the following requirements have been identified:

* A DARMAL-compliant must support an efficient SPMD] launch of an application code.

* A DARMAK-compliant must not limit the ability of the application developer to use their own
data structures.

* A DARMA}-compliant must efficiently implement distributed, key-value-style coordination be-
tween multiple streams of execution.

5.4 Co-design contributors

In addition to the authors listed on this document, the [API is being co-designed and vetted with application developers
and computer scientists whose knowledge spans the entire runtime software stack.

Applications affecting the design and requirements:

¢ Sandia [ASC/[Advanced Technology Development and Mitigation (ATDM))| electromagnetic plasma code (POC:
Matt Bettencourt)

» Sandia [ASC|[ATDM reentry code (POCs: Micah Howard, Steve Bova)

. Phalanx package for finite element matrix assembly (POC: Roger Pawlowski)

* Uncertainty quantification driver (POCs: Eric Phipps, Francesco Rizzi)

* Domain decomposition preconditioners for linear solvers (POCs: Ray Tuminaro, Clark Dohrman)

Computer Science Research Efforts

¢ Kokkos (POCs: Carter Edwards, Christian Trott)
e Data Management (POCs: Craig Ulmer, Gary Templet)
* Low-level operating systems requirements (POCs: Stephen Olivier, Ron Brightwell)

82

Chapter 6

Evolution of the Specification

6.1 Specification History

Version 0.1 of the specification existed in form only, and the documention of that version of the specification
differs substantially enough from the current one that it is not included in this work. In version 0.1 of the specification:

all input and output dependencies had to be explicitly enumerated by the application developer,
data was passed to all (even inline tasks)) via function parameters,

all inputs and outputs to each were declared using coordination semantics),

explicit versioning of inputs/outputs was required to keep data logically distinct, and

5. sequential ordering of statements within DARMA| had no significance for task ordering.

L=

Application developer concerns regarding version 0.1 of the specification centered around the 1) verbosity of the

approach, 2) the difficulty of reasoning about correct program order of tasks, and 3) the fact that
functioned poorly in the contexts of hierarchical data structures and dependencies, like classes with members that

were also classes. The first two of these issues are addressed in version 0.3.0-alpha of the specification, and the third
concern will be addressed in later releases of the specification.

6.2 New Features in 0.3.0-alpha

In version 0.3.0-alpha of the specification we:

1. leverage the C++ mechanism to minimize verbosity of the AP,
. introduce a functor interface that is more feature rich than the interface,

2
3. provide [sequential semantics within an to facilitate reasoning about program order,
4

. introduce the use of variables to access data in the to limit number of key-value operations
for often-used data,

5. require explicit publication of all data to the for data shared between fexecution streams|.

6.3 Planned Features in Future Releases

As part of the process, this specification will evolve quickly. Based on feedback thus far, there are already
many additional features planned for future incarnations of the specification that will be released this calendar year
(2016). These are summarized below:

0.3.1: * Hierarchical (e.g., classes that have dependencies as member variables) and containment
and aliasing management
 Task creation within class member functions
* Support for collectives
0.4: * Schedule-only for ”branch” that create many other ftasks|, but do not read data
* Include support for expression of execution space and memory space and assignment of work
among these abstract machine model concepts
» Custom data models supporting arbitrary data slicing/interference tests

83

 Data staging hooks to accompany custom slicing
* MPI interoperability, allowing DARMA to run within MPI programs
0.5: . optimizations for that create no
» Load balancing hooks and hints to expose existing backend load balancing algorithms and hints to the user
* Serialization of polymorphic classes
* MPI interoperability, allowing MPI to run within DARMA programs
0.6: * Distributed containers (vectors and maps distributed across execution streams)
* Serialization of polymorphic classes
* read_write_access fetching of published data

84

O 0 N O LR W =

—_ e e
AW N0 = O

O 0 N N R W N =

L T e T S S
AN R W N = O

Appendix A

Examples

A.1 Basic functionalities for lambda interface

A.1.1 DARMA environment

Example showing how to initialize and finalize the DARMA environment.

#include <darma.h>
int darma_main(int argc, charxx argv)

{

using namespace darma_runtime;

std::cout << "Initializing darma" << std::endl;
darma_init (argc, argv);

// empty, don’t do anything
std::cout << "Finalizing darma" << std::endl;

darma_finalize () ;
return 0;

A.1.2 DARMA rank and size

Example showing DARMA rank and size.

#include <darma.h>
int darma_main (int argc, charxx argv)

{

using namespace darma_runtime;
darma_init (argc, argv);

// get my rank

const size_t myRank = darma_spmd_rank () ;
// get size

const size_t size = darma_spmd_size();

std::cout << "Rank " << myRank << "/" << size << std

darma_finalize();
return 0;

85

::endl;

O 0 N N R W =

I e S S e
[Y B N N R S =)

oI e Y A S

[T e S e O el
0 NN Bl W N = O O

LS VS N S R

A.1.3 Deferred work creation

Example showing a very simple create_work with no dependencies.

#include <darma.h>

int darma_main (int argc, charxx argv)

{
using namespace darma_runtime;
darma_init (argc, argv);
const size_t myRank = darma_spmd_rank() ;
const size_t size = darma_spmd_size();

create_work ([=]

{

std::cout << "CW: Rank " << myRank << "/" << size << std:

I

darma_finalize();
return 0;

A.1.4 Creating handles 1

Example showing the use of initial_access.

#include <darma.h>

int darma_main (int argc, charxx argv)

{
using namespace darma_runtime;
darma_init (argc, argv);
const size_t myRank = darma_spmd_rank () ;
const size_t size = darma_spmd_size();

// this just creates different handles for different types
// NOTE: data does not exist yet, only handles!

:endl;

auto my_handlel = initial_access<double> ("data_key_1", myRank);

auto my_handle2 = initial_access<int>("data_key_ 2", myRank);

auto my_handle3
[ete. .

initial access<std::string>("data_key_3",

darma_finalize () ;
return 0;

A.1.5 Creating handles 2

Another example on initial_access handle and its use.

#include <darma.h>
int darma_main (int argc, charxx argv)

{

using namespace darma_runtime;

86

myRank) ;

42
43
44

O 00 N N W R W N =

darma_init (argc, argv);
const size_t myRank = darma_spmd_rank () ;
const size_t size = darma_spmd_size();

// this just creates different handles for different types

// NOTE: data does not exist yet, only handles!

auto handlel initial_access<double> ("data_key_1", myRank) ;

auto handle?2 initial_access<std::string> ("data_key_ 3", myRank);

I

create_work ([=]

{
// first, constructs data with default constructor
handlel.emplace_value (3.3);
handle2.emplace_value ("Sky is blue");

// get current values pointed to by the handles
auto hlVal = handlel.get_value () ;
auto h2vVal = handle2.get_value();

std::cout << "After construction: hlValue=" << hlVal << std::endl;
std::cout << "After construction: h2Value=" << h2Val << std::endl;

// reset values using set value function
handlel.set_value (6.6);

handle2.set_value ("Sky is green");

std::cout << "After reset: hlValue=" << handlel.get_value () <<
std::cout << "After reset: h2Value=" << handle2.get_value() <<

// reset values using reference
auto & hlr handlel.get_reference();
auto & h2r = handle2.get_reference();

nilie = g Sf
h2r = "Sky is yellow";
std::cout << "After reset: hlValue=" << handlel.get_value () <<

std::cout << "After reset: h2Value=" << handle2.get_value () <<
)i

darma_finalize () ;
return 0;

A.1.6 Arrow operator for handles

Example showing the arrow operator on an handle.

#include <darma.h>
int darma_main (int argc, charxx argv)

{

using namespace darma_runtime;
darma_init (argc, argv);

const size_t myRank = darma_spmd_rank () ;
const size_t size = darma_spmd_size();

// create handle to data

87

std:
std:

std:
sladt

:endl;
:endl;

rendl;
rendl;

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

O 0 9 O L RN -

RO N R = m s e s e e e e
N = O O 0 N N R W= O

A.1.7 Deferred work and constraining privileges

auto my_handlel = initial_access<std::vector<double>>("data",

create_work ([=]

{

// first, constructs data with default constructor

my_handlel.emplace_value (0.0); // set to zero

myRank) ;

// operator—-> : get access to methods of object pointed to by handle

my_handlel->resize (4);

// get the data and set values

double * vecPtr = my_handlel->data();

fgr (nne i =00k Al < Ay
vecPtr([i] = (double) i + 0.4;

// get the last element and check its value

std::cout << my_handlel->back () << std::endl;

if (my_handlel->back () != 3.4){

std::cerr << "Error: handle value

std:icerr << " " _ FILE << ":

exit (EXIT_FAILURE);
}
1) i

darma_finalize();
return 0;

3.4!"

<< std::endl;

<< TINE << "\n”%;

Example showing how to issue a create_work and constraining privileges on a handle to be read-only.

#include <darma.h>
int darma_main(int argc, charxx argv)

{

using namespace darma_runtime;
darma_init (argc, argv);

const size_t myRank = darma_spmd_rank();
const size_t size = darma_spmd_size();

// handle to data

auto my_handle = initial_access<double> ("data",

create_work ([=]{
my_handle.emplace_value (0.55);
}) i

myRank) ;

// downgrade my_handle to read_only inside following create_work

create_work (reads (my_handle), [=] {

1)

darma_finalize () ;
return 0;

88

std::cout << " " << my_handle.get_value() << std::endl;

O 0 9 O W AW N -

[N T N T N T N S N S N S T T S e S S N C St
L A WK = O O X 2 Bt b LW NN~ O

O 0 N O L R W =

—_ =
—_ o

A.2 Hello World

Example for one possible implementation of “hello world”. There are three main parts involved:

1. the DARMA environment is initialized,
2. each rank issues a task to store a greeting message into a string, and

3. each rank then creates a task to printing to standard output the message and its rank.

#include <darma.h>
int darma_main (int argc, charxx argv)
{

using namespace darma_runtime;

darma_init (argc, argv);
size_t me = darma_spmd_rank () ;
size_t n_ranks = darma_spmd_size();

// create handle to string variable

auto greeting = initial_access<std::string> ("myName", me) ;
// set the value

create_work ([=] {

greeting.set_value ("hello world!");

1)

// print the value
create_work ([=] {
std::cout << "DARMA rank " << me
<< " says: " << greeting.get_value() << std::endl;
1) i

darma_finalize();
return 0;

A.3 Key-Value Example

This example is to illustrate simple transactions with the key-value store, but in a distributed setting. We will ask each
rank to publish a float to be read by two readers, a rank on the left and one on the right. Then we will ask each rank to
get two floats, those published by the left and right neighbors and print to screen. We use periodic logic for neighbors.

#include <darma.h>
using namespace darma_runtime;
using namespace darma_runtime::keyword_arguments_for_publication;
int darma_main (int argc, charxx argv)
{
darma_init (argc, argv);
size_t me = darma_spmd_rank () ;
size_t n_ranks = darma_spmd_size();

// define neighbors with periodic arrangement
size_t left_nbr = (me == 0) ? n_ranks-1 : me-1 ;

89

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

O 00 N N W R W N =

[T i e
S O 0 NN R W= O

size_t right_nbr = (me == n_ranks-1) ? 0 : me+l ;

auto float_to_pub = initial_access<float>("floatKey", me);
create_work ([=]
{
//set_value could be replaced by the more verbose
//—>allocate, followed by, —->get() = value
float_to_pub.set_value (2692.0 + me); //a float I like
}) g

float_to_pub.publish(n_readers=2);
//n_readers=2: two read_access handles will be defined for this

// fetch the data
auto float_from left = read_access<float>("floatKey", left_nbr);
auto float_from right= read_access<float>("floatKey", right_nbr);
create_work ([=]
{
std::cout << "My rank is " << me
<< " values from my left/right are "
<< float_from left.get_value() << " "
<< float_from_ right.get_value () << std::endl;
}) i

darma_finalize () ;
return 0;

A.3.1 Publishing and read access

This example explains in more detail the use of publish and read_access. The example involves two DARMA

ranks, each creating data, publishing it, and then fetching the other rank’s data.

#include <darma.h>
int darma_main (int argc, charxx argv)

{

using namespace darma_runtime;
using namespace darma_runtime::keyword arguments_for_ publication;

darma_init (argc, argv);

const size_t myRank = darma_spmd_rank();
const size_t size = darma_spmd_size();

// only run with 2 ranks

if (size!=2){
std:ecerr << "# of ranks != 2, not supported!" << std::endl;
std:secerr << U ' EFILE << T oo T TINE. << S\l
exit (EXIT_FAILURE);

// rankO reads from source = rankl
// rankl reads from source = rankO0

90

21
22
23
24
25
26
27
28
29
30
31
2
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

size_t source = myRank==0 ? 1 : 0;
auto my_handle = initial_access<double> ("data", myRank)

create_work ([=]

{
my_handle.emplace_value (0.5 + (double) myRank) ;

// n_readers == 1 because:

// rank0O reads data of rankl
// rankl reads data of rankO
my_handle.publish (n_readers=1);
1) i

AccessHandle<double> readHandle = read_access<double> ("data",

create_work ([=]

{

¥

std::cout << myRank << " " << readHandle.get_value() << std::endl;
if (myRank==0) {
if (readHandle.get_value() != 1.5) {
std::cerr << "readHandle.get_value() != 1.5" << std::endl;
stds teerp << W " RBILE. << UsM oo LTENE. << f\nt;
exit (EXIT_FAILURE);
}
}
else
{
if (readHandle.get_value() != 0.5){
std::cerr << "readHandle.get_value() != 1.5" << std::endl;
std::cerr << T " FEILE << "M << [INE << “\n?’:

exit (EXIT_FAILURE);

1)
darma_finalize();

return 0;

source) ;

A.4 Publishing, versioning and lifetime of handles

Lifetime of handles is tricky, particularly for read_access type handles. In the following example, we initialize
data, publish it, fetch it from another rank, modify the data, publish it again under a new version, and then fetch the
new version from another rank. The create_work on lines 64 — 68 can’t execute until the back end knows the first
fetched version is no longer in use. We put an extra set of { } around the code in lines 40 — 61 to tell the back end
that the readHandle is no longer needed and can go out-of-scope and the fetching is done.

Without the scoping {}, the code would deadlock. darma_finalize () cannot return until after all the create -
works have completed. However, without the additional scoping, the backend would not know that the first fetched
version is no longer needed until darma_main () returns, which requires darma_finalize () to have already
returned.

91

O 0 N N R W N =

wh b A R B BS DB B B BB W W W W LW W W LW WD NN NDLDNNDNDIN = = = = = = = = = e
N — © 0 0 1 O L A WD = O OV X N N A WK ~OWOoKw IO Ui A WK — O OV oW i B W KN~ O

While scoping is necessary in this case, there will be other cases where it only helps to improve efficiency and concur-

rency in the scheduling and execution of tasks. Scoping is a good programming practice.

#include <darma.h>
int darma_main (int argc, charxx argv)
{
using namespace darma_runtime;
using namespace darma_runtime::keyword_ arguments_for_ publication;

darma_init (argc, argv);
const size_t myRank = darma_spmd_rank () ;
const size_t size = darma_spmd_size();

// only run with 2 ranks

if (size!=2)

{
std::cerr << "# of ranks != 2, not supported!" << std::endl;
stdssecerr << "' " RFILE << "' << TINE = << “\n’;
exit (EXIT_FAILURE);

// rank(O reads from source = rankl
// rankl reads from source = rank0
size_t source = myRank==0 ? 1 : 0;

// create data
auto my_handle = initial_access<double> ("data", myRank);
create_work ([=]
{
my_handle.emplace_value (0.5 + (double) myRank);

// n_readers == 1 because:

// rank0O reads data of rankl

// rankl reads data of rank0
my_handle.publish (n_readers=1,version=0);

1)

// first time reading

/* scopinh below {} is needed because it tells the backend that readHandle

will go outofscope and so backend has more detailed info.

Scoping is a good practice and in this case is needed to avoid deadlock.

*/

auto readHandle = read_access<double> ("data", source,version=0);
create_work ([=]

{

std::cout << myRank << " " << readHandle.get_value() << std::endl;
if (myRank==0) {
if (readHandle.get_value() != 1.5){
std::cerr << "readHandle.get_value() != 1.5" << std::endl;
std::cerr << " " PFILE << ":" << TLINE << "\n’;

exit (EXIT_FAILURE);

else

92

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82
83
84
85
86
87
88
89
90
91
92
93

if (readHandle.get_value() != 0.5){
std::cerr << "readHandle.get_value() != 0.5" << std::endl;
std::eerr << ' 0 BILE @ << Wi << LENE = << 4\n';

exit (EXIT_FAILURE) ;

s

// reset value and update version
create_work ([=]
{
my_handle.set_value (2.5 + (double) myRank);
my_handle.publish (n_readers=1,version=1);
1) i
// second time reading
auto readHandle2 = read_access<double> ("data", source,version=l);
create_work ([=]

{

std::cout << myRank << " " << readHandle2.get_value() << std::endl;
if (myRank==0) {
if (readHandle2.get_value() != 3.5){
std::cerr << "readHandle2.get_value() != 3.5" << std::endl;
std::cerr << U " FILE << ":" << LINE << “\n’:

exit (EXIT_FAILURE);

}

else
{
if (readHandle2.get_value() != 2.5){
std::cerr << "readHandle2Z.get_value() != 2.5" << std::endl;
std: scerr << " "™ _ FILE << ":" << LINE << "\n’;

exit (EXIT_FAILURE);

1)

darma_finalize () ;
return 0;

A.5 1D Poisson Equation

Boundary value problem:

8?91;(;) = f(z) inQ=(0,1), withu(0) =0, u(1) = exp (1) sin (1) (A1)

where f(x) = 2exp (x) sin (x). This problem is chosen because it has an exact solution, namely t¢zqc¢ = exp (1) sin (1).
The exact solution will be used for checking the correctness of the code.

93

oI e Y . R

L e e
0 NN A WD = O O

Discretize the domain with IV equally spaced points such that

1
w; = u(z;), fi=f(r) = =ilAz, Az = N1 i=0,1,..,.N—1 (A.2)

Use central difference approximation for the second derivative for all interior points:

Uitr1—2ui+ui—1 . N
EaE = %, fortc=1,...,.N —2 (A3)
up =0, uy_1 =exp (1) *sin (1) Dirichlet BC
This translates to a linear system of equations Au = f where A is an N — 2 x N — 2 tridiagonal matrix
-2 1
1 -2 1
A= 1 -2 1 . (Ad)
. . 1
1 -2

and w is the unknown, and f is the right-hand-side. Both w and f have size N — 2. Solving this linear system yields
the solution at all the inner points of the domain. For demonstration purposes, we solve this system using Thomas
algorithm, a method well-suited for tridiagonal systems. The solver needs these vectors:

1. a: contains all the sub-diagonal entries.
2. b: contains all the diagonal entries.
3. c: contains all the upper-diagonal entries.

4. d: contains all the right-hand-side entries. Also, our current version of the solver is such that on exit, the vector
d contains the solution.

How do we implement this in DARMA? For demonstration purposes, we limit our attention to the case of a single
rank. More complex examples involving multiple ranks will be shown later.

There are three main steps involved, namely initialization, solution of the linear system, and error checking. The
DARMA main file is as follows:

#include "../common_poissonld.h"

#include "../constants.h"

#include <darma.h>

using namespace darma_runtime; //here because headers below need this too
#include "initialize.h"

#include "solveTridiag.h"

#include "checkError.h"

int darma_main(int argc, charxx argv)
{
darma_init (argc, argv);
size_t me = darma_spmd_rank () ;
size_t n_spmd = darma_spmd_size();

// supposed to be run with 1 rank

if (n_spmd>1) {
std::cerr << "# of ranks != 1, not supported!" << std::endl;
std:scerr << ' ' EFILE << "0 << TINE = << “\n’;

94

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

O 0 N A W AW N =

—_
=]

oI e Y A S

[T = S Gy S
~N O R W= O O

exit (EXIT_FAILURE) ;

typedef std::vector<double> vecDbl;
// handles for data needed for matrix

auto subD = initial_access<vecDbl>("a",me); // subdiagonal

auto diag = initial_access<vecDbl> ("b",me); // diagonal

auto supD = initial_access<vecDbl> ("c",me); // superdiagonal
auto rhs = initial_access<vecDbl>("d",me); // rhs and solution
// initialize the handles

initialize (subD, diag, supD, rhs);

// solve tridiagonal system

solveTridiagonalSystem(subD, diag, supD, rhs);

// check solution L1 error
checkFinalLlError (rhs);

darma_finalize () ;
return 0;

The header file constants.h contains:

#ifndef EXAMPLES_POISSON1D_CONSTS_H
#define EXAMPLES_POISSON1D_CONSTS_H_

Vi
g
g
B
/ (double) (nx-1);

int nx = 51;

int nInn = nx
double xL = 0
double xR = 1
double dx 1

grid points

inner grid points
left boundary

right boundary

Jii Epeak

constexpr
constexpr
constexpr
constexpr

=2
.0
40
constexpr (0]

#endif /+ EXAMPLES_POISSON1D_CONSTS_H_ x/

The initialization function has the form:

void initialize (AccessHandle<std: :vector<double>>

AccessHandle<std:
AccessHandle<std:
AccessHandle<std::

create_work ([=]

{

:vector<double>>
:vector<double>>

vector<double>>

// first call default constructors

subD.emplace_value() ;
supD.emplace_value () ;
// resize and reset all
subD->resize (nInn, 0.0);
supD->resize (nInn, 0.0);

// get data pointers

double x ptrDl = subD->datal();
double * ptrD3 = supD->data();

diag.emplace_value() ;
rhs.emplace_value () ;
EoNZe oS

diag->resize (nInn,0.0);
rhs—->resize (nInn,0.0);

double x ptrD
double * ptrD

95

2 2 22

2
4

spacing

subD,
diag,
supD,
rhs)

= diag->data() ;

rhs->data () ;

18

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

O 00 N N W R W N =

—_ = s = =
wn AW = O

O 00 N N W R W N =

// loop and set the values based on finite-difference stencil
double x = dx;
for (int i = 0; i < nInn; ++i)
{
ptrD2[i] = -2; // diagonal elements

// sub and super diagonals

if (1i>0)
ptrD1[i] = 1.0;
i (3 <mn T nm—il)
ptrD3[i] = 1.0;

// right hand side
ptrD4[i] = rhsEval (x) * dxxdx;

// correction to RHS due to known BC

if (i==1)
ptrD4[i] —-= BC(xL);
if (i==nInn-1)
ptrD4[i] —-= BC(xR);
x += dx;

The function to solve the linear system is:

void solveTridiagonalSystem (AccessHandle<std::vector<double>> & subD,
AccessHandle<std: :vector<double>> & diag,
AccessHandle<std: :vector<double>> & supD,
AccessHandle<std: :vector<double>> & rhs)

create_work ([=]

{

double x pta = subD->data();
double * ptb = diag->data();
double x ptc = supD->data();
double * ptd = rhs->data();

solveThomas (pta, ptb, ptc, ptd, nInn);
)i

Finally, we check for convergence by checking the L!-norm of the error between the computed and true solution.

void checkFinallLlError (AccessHandle<std: :vector<double>> & solution)
{
create_work ([=]

{
double *» ptd

solution—->data () ;

double error = 0.0;
double x = dx;
for (int i = 0; 1 < (int) solution->size(); ++1)

96

10
11
12
13
14
15

17

O 0 N N R W N =

—_
(=]

error += std::abs(trueSolution(x) - ptd[i]);
x += dx;
}
std::eonut << " Ll error = " << error << std::endl;

assert (error < le-2);

)i

A.6 1D Heat Equation

In this section, we solve the following simple problem:

T (x,8) BPT(w, 1)
ot " a2
where T'(x, t) is the temperature, ¢ is time, and « is the thermal diffusivity. The steady-state solution of this problem
is a straight line connecting the left and right boundary conditions.

in Q = (0,1), with 7(0,¢) = 100, T(1,¢) = 10, V¢ > 0 (A.5)

We discretize the spatial domain with /N equally spaced points such that

1
i =1Ax, Ar=——, i=0,1,...,.N-1 A.6
z 1Az z N_1 7 (A.6)
Similarly, in time with n;;., steps such that
tmam
tm =mAt, At=—"—m=0,1,..., 05 — 1 (A7)
Niter — 1

We use second-order finite-differences in space, and Euler method in time. Hence, the discrete version takes the form:

T T T - 20 4 T

At Az?

where 7™ represents the approximate temperature at the i-th grid point, at the m-th time instant. Hence, for every

(A.8)

grid point 7, given the solution at the current time instant 77", the solution at the next step is given by

1; = L+ @(i+1 2T} +Ti—1) (A.9)

For demonstration purposes, we adopt here o = 0.0075, discretize the domain with N = 16, use n;¢e,» = 2500 time
steps and consider At = 0.05 which is sufficiently small for the numerical method to be stable. The main constants
are defined in the following header file:

#ifndef EXAMPLES_HEAT 1D_COMMON_H_
#define EXAMPLES_HEAT_1D_COMMON_H_

constexpr int n_iter = 2500; // num of iterations in time
constexpr double deltaT = 0.05; // time step
constexpr double alpha 0.0075; // diffusivity

constexpr int nx = 16; // total number of grid points
constexpr double x_min = 0.0; // domain start x
constexpr double x max = 1.0; // domain end x

97

11
12
13
14
15
16

18
19
20
21
22
23
24
25
26
27
28

S I SR

constexpr double deltaX = (x_max—-x_min)/((double) (nx-1)); // cell spacing
constexpr double cfl = alpha * deltaT / (deltaX =* deltaX); // cfl condition
static_assert(cfl < 0.5, "cfl not small enough");

// alpha * DT/ DX"2

constexpr double alphadtOvdxSg = (alpha x deltaT) / (deltaX = deltaX);
constexpr double Tl = 100.0; // left BC for temperature
constexpr double Tr = 10.0; // right BC for temperature

// steady state solution

double steadySolution (double x)

{
const double a = (T1l-Tr)/ (x_min-x_max) ;
const double b = Tl - a * x_min;
return a*x + b;

#endif /+ EXAMPLES_HEAT 1D _COMMON_H_ «/

The problem involves three main stages, namely initialization, time advancing, and convergence check. We use four
DARMA ranks to distribute the grid points, such that each rank handles a local grid with 4 points. In brief, the problem
is setup by having each rank generate tasks for its local grid, then communicate with the neighboring ranks to get the
information for the ghost points needed to update the stencil. A high-level schematic of the work-flow is shown in

Figure A.T.

Rank 0 Rank 1 Rank 2 Rank 3
® © ¢ ¢ ¢ ¢ ¢ ¢ ¢ ©¢ @ ¢ o ¢ O o

Initialize

ghost points
dependency

Task Task Task Task

Time Loop

ghost points
dependency

Task

Figure A.1 Schematic of task generation for the heat 1D PDE.

The full main code is shown below.

#include <cmath>
#include <darma.h>
#include "../common_heatld.h"

/ *

98

6 Bul N grids

7 o o @ © © © o @ o © © o o o o ©

8

9 Distribute uniformly accross all ranks:

10

11 + © © o o *

12 * O O O o *

13 * O O O *

14 = e @ o o &

15

16 r0 rl i r3

17

18 Locally, each rank owns elements:

19

20 *x O O O O *

21

22 where inner points are: o

23 ghosts points are: x*

24

25 The points denoted with + are not needed because outside of domain,
26 but exist anyway so that each local vector has same size.

27

28 Below we use following shortcut for indices of key points:

29

30 * (©) o (©) o *

31 11i 131 igal geieal

32/

33

34 int darma_main (int argc, charxx argv)

35 |

36 using namespace darma_runtime;

37 using namespace darma_runtime::keyword arguments_for_ publication;
38 darma_init (argc, argv);

39 const size_t me = darma_spmd_rank();

40 const size_t n_spmd = darma_spmd_size();

41 // supposed to be run with 4 ranks

42 if (n_spmd!=4) {

43 std::cerr << "# of ranks != 4, not supported!" << std::endl;
44 std::cery << U TLED S < W e B BINED e EN i

45 exit (EXIT_FAILURE);

46 }

47

48 // Figure out my neighbors. 0 or n_spmd-1, I am my own neighbor
49 const bool is_leftmost = me == 0;

50 const size_t left_neighbor = is_leftmost ? me : me - 1;

51 const bool is_rightmost = me == n_spmd - 1;

52 const size_t right_neighbor = is_rightmost ? me : me + 1;

53 assert (nx % n_spmd == 0); // same number of points locally
54 const int num_points_per_rank = nx / n_spmd;

55 const int num_points_per_rank_wghosts = num_points_per_rank + 2;
56 const int num_cells_per_ rank = num_points_per_rank-1;

57

58 // useful to identify local grid points

59 coenst dnt 1Tles =20

99

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
71
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

const int 11 = 1;
const int =i num_points_per_rank;
const int rri num_points_per_rank+1l;

// left boundary of my local part of the grid
const double xL = is_leftmost ? 0.0 : num_points_per_rank » deltaX * me;

/*******k*k*********k*k*k*k*******k*k*k*k**k**k********‘k***************

initialize temp field and ghost values

**/

// handle to my data

auto data = initial_access<std::vector<double>> ("data", me);

// handle to ghost value for my left neighbor

auto gv_to_left = initial_access<double> ("ghost_for_ left_neigh", me, 0);
// handle to ghost value for my right neighbor

auto gv_to_right = initial_access<double> ("ghost_for_right_neigh", me, 0);

create_work ([=]

{
data.emplace_value () ;
data->resize (num_points_per_rank_wghosts, 50.0);
auto & vecRef = data.get_reference();

if(is_leftmost)

vecRef[1li] = T1;
if (is_rightmost)
vecRef [ri] = Tr;

// all tasks need to set the values of the ghosts
gv_to_left.set_value(vecRef[li]);
gv_to_right.set_value (vecRef[ri]);

1)

// publish only the ghost points, since data remains local
gv_to_left.publish(n_readers=1);

gv_to_right.publish (n_readers=1);

/~k~k~k~k*****~k********~k~k~k*~k~k~k*********************************
Time loop

**/

for (int iLoop = 0; iLoop < n_iter; ++iLoop)

{

auto gv_from_left_neigh
= is_leftmost ? read_access<double> ("ghost_for_left_neigh",me, iLoop)
read_access<double> ("ghost_for_right_neigh", left_neighbor, iLoop) ;

auto gv_from_right_neigh

= is_rightmost ? read_access<double> ("ghost_for_ right_neigh",me, iLoop)
read_access<double> ("ghost_for left_neigh", right_neighbor, iLoop) ;

100

114 gv_to_left = initial_access<double> ("ghost_for_ left_neigh",me, iLoop+l);

115 gv_to_right = initial_access<double> ("ghost_for_right_neigh",me, iLoop+l);
116

117 create_work ([=]

118 {

119 auto & dataRef = data.get_reference();

120 std: :vector<double> my_T_ wghosts (dataRef) ;

121 my_T_wghosts[11li] = gv_from_left_neigh.get_value();
122 my_T_ wghosts[rri] = gv_from right_neigh.get_value () ;

123

124 // update field only for inner points based on FD stencil
125 for (dnt i = 1i; 1 <= ri; itk)

126 {

127 double FD = my_T_wghosts[i+1]-2.0*my_T_wghosts[i]+my_T wghosts[i-1];
128 dataRef[i] = my_T _wghosts[i] + alphadtOvdxSg x FD;

129 }

130

131 // fix the domain boundary conditions

132 if (is_leftmost)

133 dataRef[1li] = T1;

134 if(is_rightmost)

135 dataRef[ri] = Tr;

136

137 gv_to_left.set_value(dataRef[1i]);

138 gv_to_right.set_value(dataRef[ri]);

139)i

140

141 if (iLoop < n_iter-1) {

142 gv_to_left.publish(n_readers=1);

143 gv_to_right.publish(n_readers=1);

144 }

145

146 } //time loop

147

148 /*********************~k*******~k****************************
149 Check convergence & print

150 ~k********‘k***k**********************************‘k‘k*********/
151

152 // calculate error locally

153 auto myErr = initial_access<double> ("myllerror", me);

154 // need a separate variable for the collective result

155 auto myGlobalErr = initial_access<double> ("globalllerror", me);
156 create_work ([=]

157 {

158 const auto & vecRef = data.get_reference();

159 // only compute error for internal points

160 double error = 0.0;

161 for (ant i = My 9 <= ri; ++i)

162 {

163 double xx = xL+ (i-1)*deltaX;

164 error += std::abs(steadySolution(xx) - vecRef[i]);

165 }

166 myErr.set value (error);

167 myGlobalErr.set_value (error) ;

101

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

1) i
// will be read by all ranks except myself
myErr.publish (n_readers=n_spmd-1) ;

// each rank performs global sum: mimicing collective
for (int iPd = 0; iPd < n_spmd; ++iPd)
{

if (iPd != me)
{
auto iPdErr = read_access<double> ("myllerror",iPd) ;
create_work ([=]
{
myGlobalErr.get_reference () += iPdErr.get_value();

1)

create_work ([=]
{
std::stringstream ss;
ss << " global Ll error = " << myGlobalErr.get_value() << std::endl;
std::cout << ss.str();
if (myGlobalErr.get_value() > le-2)
{
std::cerr << "PDE solve did not converge: L1 error > le-2" << std::endl;
stdsiicerr << W W RILE = << " << LINE = << "\n’;
exit (EXIT_FAILURE);
}
1) i

darma_finalize () ;
return 0;

}//end main

102

Appendix B

Rules for Making Flows

To better illustrate when particular make_X_ f1ow functions are called and which Uses they belong to, we provide an
illustrative set of code samples. We denote permissions as scheduling/immediate e.g. Modify/Read means scheduling
privileges of Modify, immediate privileges of Read. We also indicate the Use object associated with a handle as
Use(x,y) where x and y label the input and output Flow of the Use.

B.1 Modify Capture with Immediate-Modify Permissions

Consider the following code:

auto handle = initial_access<T>(...);

//handle has Use(a,b) and Modify/Modify privileges
create_work ([=]{ //modify capture
//handle has Use (c,d)
})
//handle has Use (e, f)

In the code sample above, the Flow objects were created as follows:

= make_forwarding flow(a, ForwardingChanges) ;
make_next_flow(c, Output);

= make_same_flow(d, Input);

= make_same_flow (b, Output);

H O Q Q
Il

B.2 Modify Capture without Immediate Privileges

auto handle = initial_access<T>(...);

//handle has Use (a,b) and Modify/None privileges
create_work ([=]{ //modify capture
//handle has Use (c,d)
})
//handle has Use (e, f)

In the code sample above, the Flow objects were created as follows:

= make_same_flow
make_next_flow
= make_same_flow
= make_same_flow

Qe EnouE)i:
c, Output);
d, Input);
b, N OuEpltE)e;

H O Q Q
Il

103

B.3 Read Capture with Immediate Modify Privileges

auto handle = initial_access<T>(...);

//handle has Use(a,b) and Modify/Modify privileges
create_work ([=]1{ //read capture
//handle has Use (c,d)
})
//handle has Use (e, f) and Modify/Read privileges

In the code sample above, the Flow objects were created as follows:

= make_forwarding flow(a, ForwardingChanges);
make_same_flow(c, OutputFlowOfReadOperation);
= make_same_flow(c, Input);

= make_same_flow (b, Output);

Hh O Q Q
Il

B.4 Read Capture with Immediate Read Privileges

auto handle = initial_access<T>(...);

//handle has Use(a,b) and Read/Read privileges
create_work ([=]{ //read capture
//handle has Use (c,d)

})
//handle has Use (a,b) and Read/Read privileges

In the code sample above, the Flow objects were created as follows:

c = make_same_flow(a, Input);
d = make_same_flow(c, OutputFlowOfReadOperation);

In contrast to previous cases, the newly created task does not create a new Use for the continuing context. The previous
Use is considered to have continued.

104

Glossary

abstract machine model A model of a computer system that is designed to allow application developers to focus on
the aspects of the machine that are important or relevant to performance and code structure [21].

access group An abstract (as of yet unspecified) concept. An access group is a group of tasks that may read a particular
piece of data. Until all tasks in the access group release read privileges on the data (or a copy is made), the data
can not be overwritten.

actor model An actor model covers both aspects of programming and execution models| In the actor model, applica-
tions are decomposed across objects called actors rather than processes or threads (Message Passing Interface]
(MPI) ranks). The actor model shares similarities with active messages. Actors send messages to other actors,
but beyond simply exchanging data they can invoke remote procedure calls to create remote work or even spawn
new actors. The actor model mixes aspects of SPMD]in that many actors are usually created for a data-parallel
decomposition. It also mixes aspects of in that actor messages can “fork” new parallel work; the forks
and joins, however, do not conform to any strict parent-child structure since usually any actor can send messages
to any other actor.

AMT See AMT model

AMT model Asynchronous many-task (AMT) is a categorization of programming and that break
from the dominant or SPMD) models. Different asynchronous many-task runtime system (AMT RTS)
implementations can share a common AMT model. An AMT programming model decomposes applications into
small, units of work (many tasks) with associated inputs (dependencies or data blocks) rather than
simply decomposing at the process level (MP] ranks). An AMT can be viewed as the coarse-
grained, distributed memory analog of instruction-level parallelism, extending the concepts of data prefetching,
out-of-order task execution based on dependency analysis, and even branch prediction (speculative execution)).
Rather than executing in a well-defined order, tasks execute when inputs become available. An AMT model aims
to leverage all available task parallelism| and ppipeline parallelism|, rather than rely solely on for
concurrencyl. The term asynchronous encompasses the idea that 1) processes (threads) can diverge to different
tasks, rather than executing in the same order; and 2) is maximized (minimum synchronization)
by leveraging multiple forms of parallelism. The term many-task encompasses the idea that the application is
decomposed into many units of work, to enable the overlap of communication and computation as

well as load balancing strategies.

AMT RTS A runtime system based on concepts. An AMT RTS provides a specific implementation of an
imodel.

anti-dependency See [Write-After-Read.

API An application programmer interface (API) is set of functions and tools provided by a library developer to allow
an application programmer to interact with a specific piece of software or allow a developer to utilize prebuilt
functionality.

archive In DARMA serialization, an object that performs either 1) packing operations, storing serialized values in the
archive or 2) unpacking operations, deserializing values stored in the archive..

ASC The Advanced Simulation and Computing (ASC) Program supports the Department of Energy’s National Nu-
clear Security Administration (NNSA) Defense Programs’ shift in emphasis from test-based confidence to
simulation-based confidence. Under ASC, computer simulation capabilities are developed to analyze and predict
the performance, safety, and reliability of nuclear weapons and to certify their functionality. ASC integrates the
work of three Defense programs laboratories (Los Alamos National Laboratory, Lawrence Livermore National

105

Laboratory, and Sandia National Laboratories) and university researchers nationally into a coordinated program
administered by NNSA.

associative array An abstract data type composed of a collection of key-value pairs, such that each possible key
appears just once in the collection [?, associative-array] Data is retrieved from an associative array via its key,
rather than its address in the array.

asynchronous Asynchronous indicates two operations can happen independently without requirizing synchroniza-
tion..

back end A software stack may comprise many layers, separating the user from the hardware. Each layer comprises a
and a back end. The front end provides a set of abstractions and the user interface for the functionality
implemented by the back end.

barrier Generally a synonym for global barrier. A group of processes must reach a particular execution point before
any one process can continue.

bulk synchronous The bulk synchronous model of parallel computation (BSP) is defined as the combination of three
attributes: 1) A number of components, each performing processing and/or memory functions; 2) A router that
delivers messages point to point between pairs of components; and 3) Facilities for synchronizing all or a subset
of the components at regular intervals of L time units where L is the periodicity parameter. A computation
consists of a sequence of supersteps. In each superstep, each component is allocated a task consisting of some
combination of local computation steps, message transmissions and (implicitly) message arrivals from other
components. After each period of L time units, a global check is made to determine whether the superstep has
been completed by all the components. If it has, the machine proceeds to the next superstep. Otherwise, the
next period of L units is allocated to the unfinished superstep. See Reference [22] and [23] for more details.

capture In Ct+ the capture list specifies which variables defined outside the lambda are available for use within the
lambda. Variables may be captured by value or reference. See [24] for more detail.

captured context See [deferred work.
captured work See [deferred work.

chare The basic unit of computational work within the Charm++ framework. Chares are essentially C++ objects that
contain methods that carry out computations on an objects data asynchronously from the method’s invocation.

child task A successor task in a task graph. Predecessor tasks are parent tasks. More rigorously, in a
representing task-order constraints, child task means there is a directed edge from parent to child
indicating a parent happens-before child relationship..

co-design Co-design refers to a computer system design process where scientific problem requirements influence
architecture design and technology and constraints inform formulation and design of algorithms and software.
Co-design methodology requires the combined expertise of vendors, hardware architects, system software devel-
opers, domain scientists, computer scientists, and applied mathematicians working together to make informed
decisions about features and tradeoffs in the design of the hardware, software and underlying algorithms [25].

concept A concept is a description of the supported operations on a type to be used in generic programming. In C++,
there is no language level support for concepts (yet), but the idea can still be applied to C++ templates and
deduced types in the context of API specification. DARMA performs most of its concept checking using the
void_t detection idiom [26]..

concurrency A condition of a system in which multiple tasks are logically active at one time.

conservative execution The only spawns tasks in parallel that are guaranteed not to conflict. The

application exposes Read-After-Write rite-After-Rea conflicts, allowing the
to decide which tasks can safely run in parallel. Independent threads do not need to explicitly synchronize.

Execution begins with zero concurrency and grows conservatively to the maximum allowed concurrencyl.

106

continuing context the code in the outer scope after alcreate_workl.

coordination semantics The operations to support communication between different computation activities. Inde-
pendent parallel workers never directly communicate, rather they “coordinate” indirectly via a
or ftuple space. Lindalis a notable programming language] with coordination semantics.

copy-on-write data-flow execution This is an intermediate between [conservative execution| and jphased execution|
with the additional constraint that the application guarantees no WAR conflicts. Tasks are written to follow a
write-once, read-many policy when necessary to avoid anti-dependencies. The only synchronizations required
are RAW, ensuring that a value exists before a task can run. Similar to conservative execution|, tasks spawn once
all their RAW]dependencies are met, forking new concurrency. Once running, tasks do not synchronize because
there are no WARI conflicts to avoid. This approach often has higher memory requirements, and the necessary
garbage collection adds complications.

CSP CSP (communicating sequential processes) is the most popular concurrency model for science and engineer-
ing applications, often being synonymous with SPMD]. CSP covers execution models where a usually fixed
number of independent workers operate in parallel, occasionally synchronizing and exchanging data through
inter-process communication. Workers are disjoint processes, operating in separate address spaces. This also
makes it generally synonymous with message-passing in which data exchanges between parallel workers are
copy-on-read, creating disjoint data parallelism. The term sequential is historical and CSP is generally applied
even to cases in which each “sequential process” is composed of multiple parallel workers (usually threads).

DARMA DARMA is an AMT portability layer serving as a vehicle for community-based co-design activities. The
layer aims to 1) insulate applications from runtime system and hardware idiosyncrasies, 2) improve AMT run-
time programmability by co-designing an API directly with application developers, 3) synthesize application
co-design activities into meaningful requirements for runtimes, and 4) facilitate AMT design space characteri-
zation and definition, accelerating the development of AMT best practices.

data model A model capturing assumptions or restrictions on the structure of data.

data parallelism A type of parallelism that involves carrying out a single task and/or instruction on different segments
of data across many computational units. Data parallelism is best illustrated by jvector processing or singled
instruction, multiple-data (SIMD) operations on central processing units (CPUs) and Many Integrated Core|

Architecture (MIC)s or typical parallel applications.

data-flow dependency A data dependency where a set of tasks or instructions require a certain sequence to complete
without causing race conditions. Data-flow dependency types include Write-After-Read, Read-After-Write and
Write-After-Writel.

declarative A style of programming that focuses on using statements to define what a program should accomplish
rather than how it should accomplish the desired result.

deferred execution Execution of work is not performed until all dependencies are met.

deferred task See(deferred work. A instantiated in the application code which, instead of executing immediately
as would be done in a sequential C++ code, is delayed while other tasks execute and are created. The term is
applied to tasks that, even once created, immediately execute. A more precise term would be “deferrable task”,
but without ambiguity we use the adjective deferred to match previous literature.

deferred work See deferred task. Work performed by code inside the capturing lambda passed to the

construct (as well as other deferred constructs which may be added to future versions of the specification).
DEP The method by which changes are made to the DARMA specification.
dependency See Read-After-Writel.
DHT An implementation of a key-value map (table) that relies a consistent hash of keys and a partition of the key

space to distribute storage of the table across a distributed system.

107

distributed memory model Each processor has its own private memory. Computational tasks can only operate on
their local data. When remote data is required, it is communicated between the remote and local tasks.

DSL Domain specific languages (DSL) are a subset of programming languages| that have been specialized to a partic-
ular application domain. Typically, DSL code focuses on what a programmer wants to happen with respect to
their application and leaves the to determine how the application is executed.

EDSL A domain specific language (DSL) that is defined as a library for a generic host programming language. The
embedded domain specific language inherits the generic language constructs of its host language - sequencing,
conditionals, iteration, functions, etc. - and adds domain-specific primitives that allow programmers to work at
a much higher level of abstraction.

elastic task a task with inherent parallelism, as opposed to a sequential task with no parallelism that will execute
serially. These parallel tasks are termed elastic since they usually involve a flexible amount of parallelism,
executing faster as more processors are allocated to running the task.

event-based The term event-based covers both programming models and execution models in which an application is
expressed and managed as a set of events with precedence constraints, often taking the form of a directed graph
of event dependencies.

execution model A parallel execution model specifies how an application creates and manages concurrency. This
includes, e.g., (communicating sequential processes), strict fork-join, or event-based execution. These
classifications distinguish whether many parallel workers begin simultaneously (e.g., [CSP) and synchronize to
reduce or if a single top-level worker forks new tasks to increase concurrency. These classifica-
tions also distinguish how parallel hazards (WAR]|, RAW)|, Write-After-Write are managed. Execution
models fall into the follwing broad categories: conservative execution|, phased execution, copy-on-write data{
iflow execution, and speculative execution. In many cases, the programming model and execution model are
closely tied and therefore not distinguished. In other cases, the way execution is managed is decoupled from
the programming model in runtime systems with [declarative| programming modelg like Legion or Uintah. The

execution model is implemented in the ’

execution space A labstract machine model abstraction used to describe where work is executed.

execution stream A top-level task (no predecessors) that is guaranteed to make forward progress. No other restric-
tions apply. An execution stream (being a task) may communicate and may be interrupted. Execution streams
are often part of an SPMD launch and therefore automatically given a unique integer ID for each particular
stream. We use the term rank for this unique ID to match MPI terminology.

fetch A fetch operation reads values from the key-value store. Fetches are requests that must be satisfied with a
matching publish into the key-value store. In DARMA, fetches implicitly occur when read-only handles are

created through [read_accesg].

fork-join A model of concurrent execution in which child tasks are forked off a parent task. When child tasks
complete, they synchronize with join partners to signal execution is complete. execution requires
join edges be from parent to child while requires child tasks to join with grandparent or other
ancestor tasks. This style of execution contrasts with SPMD) in which there are many parallel sibling tasks
running, but they did not fork from a common parent and do not join with ancestor tasks.

front end A software stack may comprise many layers, separating the user from the hardware. Each layer comprises a
front end and a pack end. The front end provides a set of abstractions and the user interface for the functionality
implemented by the back end.

fully strict Fully strict execution requires join edges between parent and child tasks.

functional A style of programming that treats computation as the evaluation of mathematical functions and avoids
changing-state and mutable data.

108

handle In DARMA, types are wrapped in a lightweight wrapper we term handle. Handles replace conventional C++
variables as the means for accessing a data value. The handle wrapper provides a control block used by DARMA
in creating tasks..

immediate permissions The permissions for a handle that applies immediately at the current point in execution.
For immediate Read permissions, handle.get_value () can be called. For immediate Write permissions,
handle.set_value () and handle.get_reference () can also be called..

imperative A style of programming where statements change the state of a program to produce a specific result. This
contrasts to declarative programming that focuses on defining the desired result without specifying how the
result is to be accomplished.

interference test A test on two operations to see if they can safely run in parallel or if they conflict and must run in
sequence. Two operations on different data never interfere. For operations on the same data, if the operation is
read-only, there is no interference. Operations writing and reading the same data do interfere.

introspection The ability of a program to examine properties of an object at runtime.

key-value store A database that has an as its underlying data model. In DARMA, a key-value store.

keyword argument An argument that is passed to a function as a keyword=value.

lambda In C++ alambda is a mechanism for defining an unnamed function object at the location where it is invoked.
Lambdas are capable of capturing (see variables in scope. See [24] for more detail.

leaf task A task with no direct successors, i.e. at the end of a task graph branch.

Linda Linda is a model of coordination and communication among several parallel processes operating upon objects
stored in and retrieved from shared, virtual, associative memory [27].

memory model Describes the interactions of processing entities (e.g., threads) with memory, including how they
store and retrieve data.

memory space An abstract machine model abstraction used to describe where data resides.

MIC Intel Many Integrated Core Architecture or Intel MIC is a coprocessor computer architecture developed by
Intel incorporating earlier work on the Larrabee many core architecture, the Teraflops Research Chip multicore
chip research project, and the Intel Single-chip Cloud Computer multicore microprocessor. Prototype products
codenamed Knights Ferry were announced and released to developers in 2010. The Knights Corner product was
announced in 2011 and uses a 22 nm process. A second generation product codenamed Knights Landing using
a 14 nm process was announced in June 2013. Xeon Phi is the brand name used for all products based on the
Many Integrated Core architecture.

migratable Migratable is used in DARMA to indicate that something can be serialized, transported or to a remote
process, deserialized, and used on that remote process..

operation The fundamental, indivisible (not-interruptible) work unit. Operations are closed, unable to communicate
with other operations and unable to add/release variables.

overdecomposition A problem which is decomposed into more tasks than compute units. i Usually applied to a data-
parallel overdecomposition in which, e.g., an array is broken in 4x times as many chunks as there are compute
units. Rather than have each compute unit execute one task of cost 4, each compute units 4 tasks of cost 1. The
increased granularity enables dynamic load balancing at the cost of increased scheduling overheads.

parent task A predecessor task in a task graph. Successors tasks are child tasks. More rigorously, in a DAG] repre-

senting task-order constraints, parent task means there is a directed edge from parent to child indicating a parent
happens-before child relationship..

109

perfect forwarding A mechanism for forwarding arguments of one function to another in C++ that avoids copying
and maintains lvalue/rvalue nature of the arguments. See [28] for more detail.

phase barrier A fine-grained barrier used by a group of processes (potentially only two processes) to agree that a
particular phase of execution has completed. Phase barriers are not rigorously defined and may be non-blocking
and multiple phase barriers may be active at a given time.

phased execution The spawns many tasks in parallel. Where RAW or WAR conflicts may exist,
a is executed to guarantee safe execution. The term has previously been used in

Legion [?] and X10 [?]. Barriers may be local operations or global collectives. Execution begins with maximum
parallelism and decreases when necessary to satisfy synchronization constraints.

pipeline parallelism Pipeline parallelism is achieved by breaking up a task into a sequence of individual sub-tasks,
each of which represents a stage whose execution can be overlapped.

POD In C+, POD stands for Plain Old Data—that is, a class or struct without constructors, destructors and virtual
members functions and all data members of the class are also POD.

positional argument An argument passed to a function, whose corresponding parameter is inferred by the argument’s
position within the function call.

precondition When applied to tasks, preconditions are the set of events that must occur before a task can safely run,
leading to the data the task operates on being in the correct state. Preconditions usually are either other tasks,
data staging or copying, or communication operations.

procedural A style of programming where developers define step by step instructions to complete a given func-
tion/task. A procedural program has a clearly defined structure with statements ordered specifically to define
program behavior.

process Used here as a process in the UNIX sense. Each process will have its own address space and global variables.
The process begins from a singly-defined int main(...) function.

programming language A programming language is a syntax and code constructs for implementing one or more
programming models. For example, the C++ programming language supports both [functional and jprocedural
imperativel programming models|.

programming model A parallel programming model is an abstract view of a machine and set of first-class constructs
for expressing algorithms. The programming model focuses on how problems are decomposed and expressed.
In MPI, programs are decomposed based on [MP] ranks that coordinate via messages. This programming model
can be termed SPMD), decomposing the problem into disjoint (non-conflicting) data regions. Charm+ decom-
poses problems via migratable objects called that coordinate via remote procedure calls (entry methods).
Legion decomposes problems in a data-centric way with logical regions. All parallel coordination is implicitly
expressed via data dependencies. The parallel programming model covers how an application expresses
urrencyl In many cases, the and programming model are closely tied and the same term has
been used to describe both an execution model and programming model, e.g. CSP (communicating sequential
processes).

rank A unique integer identifier for an created in an SPMD launch. The term rank matches the MPI
notion of a unique process ID in an MPI communicator.

RDMA Remote direct memory access (RDMA) is a direct memory access from the memory of one computer into
that of another without involving either one’s operating system. This permits high-throughput, low-latency
networking, which is especially useful in massively parallel computing.

Read-After-Write Read after write (RAW)) is a standard data dependency (or potential hazard) where one instruction
or task requires, as an input, a data value that is computed by some other instruction or task.

110

reference counted pointer An abstract data type that stores a traditional pointer, along with the number of shared
references to that pointers memory location. Objects referenced by the contained raw pointer are only destroyed
when all copies of the reference counted pointer are destroyed.

remote procedure invocation See RPC.

runtime system A parallel runtime system primarily implements portions of an gxecution model, managing how and
where concurrency is managed and created. Runtime systems therefore control the order in which parallel work
(decomposed and expressed via the programming model) is actually performed and executed. Runtime systems
can range greatly in complexity. A runtime could only provide point-to-point message-passing, for which the
runtime only manages message order and tag matching. A full MPI implementation automatically manages
collectives and global synchronization mechanisms. Legion handles not only data movement but task placement
and out-of-order task execution, handling almost all aspects of execution in the runtime. Generally, parallel
execution requires managing task placement, data placement, concurrency creation, concurrency managed, task
ordering, and data movement. A runtime comprises all aspects of parallel execution that are not explicitly
managed by the application.

scheduling permissions The permissions for a handle when scheduling new tasks, but which may not apply im-
mediately. A task may schedule further tasks with read privileges in certain cases even if the data cannot be
immediately read..

semantics A mathematical model representing the intended computational behavior of program.
sequential semantics Computational behavior of code is equivalent to running it sequentially, in program order.

serialization The process of converting a C++ object into a sequence of bytes that can be transmitted over the network
or stored.

SIMD The term single-instruction multiple-data (SIMD) refers to a type of instruction level parallelism where an
individual instruction is synchronously executed on different segments of data. This type of is

best illustrated by [vector processing.

slicing A subset of an array. The slice can either be across array indices or, if each array entry, a subset of the fields
within each class. Slices are defined only abstractly here, as slices may be in-place, referring to the original
array data or the slice may create a copy of values.

speculative execution Potential data hazards are ignored and, in some cases, work is performed prior to whether or
not it is known whether it will be required. By performing the work speculatively, the delay associated with
waiting to know whether or not the work was in fact required are avoided. Conflicts that are detected after the
fact lead to rollback or recovery.

SPMD The term single-program multiple-data (SPMD) refers to a parallel programming model where the same tasks
are carried out by multiple processing units but operate on different sets of input data. This is the most common
form of parallelization and often involves multithreading on a single compute node and/or distributed computing
using communication.

subtask Any task instantiated with will be a subtask of the task running at the time

was invoked. For sequential semantics, a task cannot complete until all of its subtasks have completed..

task The work unit explicitly instantiated by the application developer through create_work]. Currently a task has
no restrictions on behavior, other than a gurantee of forward progress. It can be interrupted and communicate
(indirectly through coordination) with other tasks. The fundamental (indivisible and interruptible) work unit
(operation) is not instantiated directly in the application. Thus tasks are the more fundamental concept in the
programming model.

task elasticity See flastic task.

111

task parallelism A type of parallelism that focuses on completing multiple tasks simultaneously over different com-
putational units. These tasks may operate on the same segment of data or many different datasets.

task stealing See work stealing].

template metaprogramming In template metaprogramming templates are used by a compiler to generate additional
source code, (e.g., compile-time constants, data structures, funcitons), which is merged by the compiler with the
rest of the user-provided source code prior to compilation.

terminally strict Terminally strict execution requires child tasks to join with grandparent or other ancestor
tasks.

thread pool A preallocated (usually already spawned) group of threads used for implementing thread-parallel appli-
cations. Instead of allocating a new thread (with corresponding stack resources and initialization overheads), a
pool of ready and waiting threads are maintained. Threads are chosen from the thread pool to execute new tasks.

translation layer The C++ femplate metaprogramming layer between the DARMA and the set of abstract
classes that must be implemented by an implementation of the pack end.

Trilinos The Trilinos Project is an effort to develop algorithms and enabling technologies within an object-oriented
software framework for the solution of large-scale, complex multi-physics engineering and scientific prob-
lems [29].

tuple A tuple is a finite ordered list of elements. See [30] for more detail.

tuple space A repository of that can be accessed concurrently, used to relate input to output patterns. A

tuple space served as the underpinning to programming language. Tuple spaces can be considered a
generalization of a key-value stores. Implementations of tuple spaces have been developed for a number of

other programming models including Java and Python. See [31] for more detail.

vector processing A vector processing is performed by a central processing unit (CPU) that implements an instruc-
tion set containing instructions that operate on one-dimensional arrays of data called vectors, compared to scalar
processors, whose instructions operate on single data items. Vector processing can greatly improve performance
on certain workloads, notably numerical simulation and similar tasks. Vector machines appeared in the early
1970s and dominated supercomputer design through the 1970s into the 1990s, notably the various Cray plat-
forms. As of 2015 most commodity implement architectures that feature instructions for a form of vector
processing on multiple (vectorized) data sets, typically known as SIMD, Common examples include MMX,

Streaming SIMD Extensions (SSE), AltiVec and [Advanced Vector Extensions (AVX).

work stealing The act of one computational unit (thread/process), which has completed it’s workload, taking some
task/job from another computational unit. This is a basic method of distributed load balancing.

Write-After-Read Write after read (WAR)), also known as an anti-dependency, is a potential data hazard where a task
or instruction has required input(s) that are later changed. An anti-dependency can be removed at instruction-
level through register renaming or a task-level through copy-on-read or copy-on-write.

Write-After-Write Write after write (WAW)), also known as an output dependency, is a potential data hazard where
data dependence is only written (not read) by two or more tasks. In a sequential execution, the value of the
data will be well defined, but in a parallel execution, the value is determined by the execution order of the tasks
writing the value.

zero-copy Zero-copy transfers are data transfers that occur directly from send to receive location without any addi-
tional buffering. Data is put immediately on the wire on the sender side and stored immediately in the final
receive buffer off the wire on the receiver side. This usually leverages RDMA| operations on pinned memory.

112

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

R. Stevens, A. White, S. Dosanjh, A. Geist, B. Gorda, K. Yelick, J. Morrison, H. Simon, J. Shalf, J. Nichols, and
M. Seager, “Architectures and technology for extreme scale computing,” U. S. Department of Energy, Tech.
Rep., 2009. [Online]. Available:
http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Arch_tech_grand_challenges_report.pdf 9

S. Ahern, A. Shoshani, K.-L. Ma, A. Choudhary, T. Critchlow, S. Klasky, V. Pascucci, J. Ahrens, E. W. Bethel,
H. Childs, J. Huang, K. Joy, Q. Koziol, G. Lofstead, J. S. Meredith, K. Moreland, G. Ostrouchov, M. Papka,
V. Vishwanath, M. Wolf, N. Wright, and K. Wu, Scientific Discovery at the Exascale, a Report from the DOE
ASCR 2011 Workshop on Exascale Data Management, Analysis, and Visualization, 2011. [Online]. Available:
http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Exascale- ASCR- Analysis.pdf 9]

H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling manycore performance portability through
polymorphic memory access patterns,” Journal of Parallel and Distributed Computing, vol. 74, no. 12, pp. 3202
— 3216, 2014, domain-Specific Languages and High-Level Frameworks for High-Performance Computing.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/S0743731514001257 9, [13]

R. D. Hornung and J. A. Keasler, “The RAJA portability layer: Overview and status,” LLNL, Tech. Rep.
782261, September 2014. [Online]. Available: https://e-reports-ext.lInl.gov/pdf/782261.pdf 9] 13|

T. Mattson, R. Cledat, Z. Budimlic, V. Cave, S. Chatterjee, B. Seshasayee, R. van der Wijngaart, and V. Sarkar,
“OCR: The Open Community Runtime Interface,” Tech. Rep., June 2015. [Online]. Available:
https://xstack.exascale-tech.com/git/public?p=xstack.git;a=blob;f=ocr/spec/ocr-1.0.0.pdf;hb=HEAD 9

P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas, N. Amato, and L. Rauchwerger, “Stapl: an
adaptive, generic parallel c++ library,” in Proceedings of the 14th international conference on Languages and
compilers for parallel computing, 2003, pp. 193-208. [Online]. Available:
https://parasol.tamu.edu/publications/download.php?file_id=663 9

M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: expressing locality and independence with logical
regions,” in SC ’12: International Conference for High Performance Computing, Networking, Storage and
Analysis, 2012, pp. 1-11. [Online]. Available: http://dl.acm.org/citation.cfm?id=2389086 9

S. Treichler, M. Bauer, and A. Aiken, “Realm: An event-based low-level runtime for distributed memory
architectures,” in PACT 2014: 23rd International Conference on Parallel Architectures and Compilation, 2014,
pp. 263-276. 9

T. Heller, H. Kaiser, and K. Iglberger, “Application of the parallex execution model to stencil-based problems,”
Comput. Sci., vol. 28, pp. 253-261, 2013. §

L. V. Kale and S. Krishnan, “Charm++: A portable concurrent object oriented system based on c++,” in
OOPSLA 1993: 8th Annual Conference on Object-Oriented Programming Systems, Languages, and
Applications, 1993, pp. 91-108. 9

J.D. D. S. Germain, S. G. Parker, C. R. Johnson, and J. McCorquodale, “Uintah: a massively parallel problem
solving environment,” 2000. [Online]. Available: http://content.lib.utah.edu/u?/ir-main,29551 9

E. A. Luke, “Loci: A deductive framework for graph-based algorithms,” in Computing in Object-Oriented
Parallel Environments (3rd ISCOPE’99), ser. Lecture Notes in Computer Science (LNCS), S. Matsuoka, R. R.
Oldehoeft, and M. Tholburn, Eds. San Francisco, California, USA: Springer-Verlag (New York), Dec. 1999,
vol. 1732, pp. 142-153. 9

113

[13] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. J. Dongarra, “PaRSEC: Exploiting
Heterogeneity to Enhance Scalability,” Computer Science and Engineering, vol. 15, pp. 36-45, 2013. 9

[14] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and J. Dongarra, “DAGuE: A Generic
Distributed DAG Engine for High Performance Computing,” Parallel Comput., vol. 38, pp. 37-51, 2012. 9

[15] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou, “Cilk: An efficient
multithreaded runtime system,” SIGPLAN Notices, vol. 30, pp. 207-216, 1995. 0]

[16] J. Bennett, R. Clay et al., “ASC ATDM Level 2 milestone #5325: Asynchronous Many-Task runtime system
analysis and assessment for next generation platforms,” Sandia National Laboratories, Tech. Rep.
SAND2015-8312, 2015. 10

[17] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating directed task graphs to
multiprocessors,” ACM Comput. Surv., vol. 31, no. 4, pp. 406471, Dec. 1999. [Online]. Available:
http://doi.acm.org/10.1145/344588.344618

[18] N. Vydyanathan, S. Krishnamoorthy, G. M. Sabin, U. V. Catalyurek, T. Kurc, P. Sadayappan, and J. H. Saltz,
“An integrated approach to locality-conscious processor allocation and scheduling of mixed-parallel
applications,” IEEE Trans. Parallel Distrib. Syst., vol. 20, no. 8, pp. 1158-1172, Aug. 2009. [Online]. Available:
http://dx.doi.org/10.1109/TPDS.2008.219 [11]

[19] N. Fauzia, V. Elango, M. Ravishankar, J. Ramanujam, F. Rastello, A. Rountev, L.-N. Pouchet, and
P. Sadayappan, “Beyond reuse distance analysis: Dynamic analysis for characterization of data locality
potential,” ACM Trans. Archit. Code Optim., vol. 10, no. 4, pp. 53:1-53:29, Dec. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2541228.2555309 [11]

[20] W. Zhang, A. Almgren, M. Day, T. Nguyen, J. Shalf, and D. Unat, “Boxlib with tiling: An AMR software
framework,” Apr. 12 2016, comment: Accepted for publication in STAM J. on Scientific Computing. [Online].
Auvailable: http://arxiv.org/abs/1604.03570 [13

[21] J. A. Ang, R. F. Barrett, R. E. Benner, D. Burke, C. Chan, J. Cook, D. Donofrio, S. D. Hammond, K. S.
Hemmert, S. M. Kelly, H. Le, V. J. Leung, D. R. Resnick, A. F. Rodrigues, J. Shalf, D. T. Stark, D. Unat, and
N. J. Wright, “Abstract machine models and proxy architectures for exascale computing,” in Co-HPC@SC.
IEEE, 2014, pp. 25-32. [Online]. Available: http://dl.acm.org/citation.cfm?id=2689669 105

[22] L. G. Valiant, “A bridging model for parallel computation,” Commun. ACM, vol. 33, no. 8§, pp. 103—111, Aug.
1990. [Online]. Available: http://doi.acm.org/10.1145/79173.79181 106

[23] Bulk synchronous parallel. [Online]. Available: https://en.wikipedia.org/wiki/Bulk_synchronous_parallel
[24] Lambda functions. [Online]. Available: http://en.cppreference.com/w/cpp/language/lambda [106, 109
[25] DOE ASCR co-design. [Online]. Available: http://science.energy.gov/ascr/research/scidac/co-design/ 106

[26] W. E. Brown. (2015) Proposing standard library support for the c++ detection idiom. [Online]. Available:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4436.pdf 106

[27] N.J. Carriero, D. Gelernter, T. G. Mattson, and A. H. Sherman, “The linda alternative to message-passing
systems,” Parallel Comput., vol. 20, pp. 633-655, 1994. [109

[28] Perfect Forwarding. [Online]. Available: http://en.cppreference.com/w/cpp/utility/forward [I10]
[29] Trilinos. [Online]. Available: https://trilinos.org

[30] Tuple: Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Tuple 112

[31] Tuple Space: Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Tuple_space 112

114

DISTRIBUTION:

1 MS 0899 Technical Library, 8944 (electronic copy)

115

116

v1.39

@ Sandia National Laboratories

