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How does liner initiation and initial liner geometry impact stagnation
morphology and conditions?

= MagLIF exhibits non-uniformities at stagnation (helix and brightness)
= Postulated that this is caused by instabilities initiated on the outside of the liner

= |nstability theory indicates feedthrough should be inversely proportional to liner aspect ratio
(outer liner radius/ liner thickness)

= Here we vary liner aspect ratio to explore feedthrough and also test dielectric
coatings on full MagLIF shots to try to minimize seed of electro-thermal instabilities

Initial liner configurations  In-flight liner stability/density ~ Stagnation structure/conditions
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MAGnetized Liner Inertial Fusion consists of imploding a pre-magnetized,
pre-heated liner with the Z electrical pulse

Axial Laser Magnetically-driven 2 kJ laser pulse

Magnetization Heating Compression 10 T field coils
Imploding liner

Inhibit heat High initial Compress to fusion
conduction adiabat conditions

Dynamics from 3D MHD simulations, C.A. Jennings Photograph of hardware from MagLIF experiment on Z




Early MaglLIF experiments indicated that these implosions are
susceptible to helical instabilities during implosion and at stagnation

6/9 keV self-emission
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Is there a connection between early-time helical outer structure and helical stagnation structure

Is the final structure the result of MRT feedthrough?




By varying the liner aspect ratio we aim to vary the feed-through of instabilities

Cross section:

A
More robust to
Liner Outer Aspect
g 651 ym 5.95 mm 4.6 :
ID 4.65 mm 465 um 5.58 mm 6 <+— ‘Standard’ MagLIF
290 pm 5.23 mm 9 !
v ¥
More susceptible to
MRT feed through
Premagnetization, B, ~ 10T
Incident laser energy ~ 0.4 kd + 2.1 kJ
Deuterium fill density ~ 1 mg/cm3

Keep inner diameter fixed to keep fuel volume and preheat fixed




Stagnation uniformity is inversely proportional to aspect ratio

= Data shown in spherical AR 4.5 Uncoated AR 6 Uncoated AR 9 Uncoated

crystal imaging at 6+9 keV 4
= Developed by E Harding

= Decreasing AR from typical -2
AR 6 liner we showed =
improved stability & EO
uniformity >
" Increasing AR we showed a °
more unstable stagnation 4
column
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Aspect Ratio 4.6

Aspect Ratio 6
z3017 AR4.5 5 z2839 AR6

Structures are significantly changed with different aspect ratios

Aspect Ratio 9
5 22852 ARG

. 23018 AR9

Y (mm)

-04 -02 0

0.2 0.4
X (mm)

Near continuous column

= Spotty structure *  Complicated structure
=  Bifurcation near top = Bifurcation on some shots = Many overlapped modes
=  Change in wavelength at top
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Amplitude and frequency of helical structure increases with aspect ratio

Helix Amplitude
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We have shown promising predictions of stagnation stability under different

initial conditions

AR 4.5 Uncoated

-4
Shown are comparison of experimental

and pre-shot simulated monochromatic
images

Full height simulations are underway to
give more appropriate comparison

Work continuing on comparison of
plasma parameters
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Previous Z experiments have demonstrated that dielectric coatings can tamp
early-time electro-thermal instability growth, and enhance implosion stability
= Experiments by T. Awe et al. have shown that imploding surface of liner is more
stable if a thin dielectric coating is used on the outer surface of an aspect ratio 6 liner
= Experiments use a Pt tracer to identify inner surface of implosion

Uncoated Coated
Z22390,t=3107 ns 22616,t=3108 ns




We explored the stabilizing role of dielectric coatings on high aspect ratio liners

Epon coatin
_— P g

Liner Outer Epon Complete
Thickness | Diameter coatlng mass
290 um 5.23 mm 8.3 mg
ID 4.65 mm 242 um 5.13 mm 75 um 8.3 mg
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Use aspect ratio 9 liner (most unstable) and compare this to a
coated liner with the same mass

Keep inner diameter fixed to keep fuel volume and preheat fixed
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Consistent with previous aspect ratio 6 work, radiography demonstrates
enhanced stability with coatings for aspect ratio 9 liners; mass profile is changed

Uncoated Coated

22946 Radiography Frame 1
- 0.5
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= Both coated and uncoated aspect ratio 9 liners show
continuous, well defined implosion front to
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= More uniform implosion front on coated e ]
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= Difference in mass distribution between two
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At stagnation, find that coated liners can significantly aid stability

= Uncoated AR 9 was least AR 9 Uncoated AR 9 Coated
stable/uniform implosion
-4
=  With coating, AR 9 can provide much
more uniform column 2

= For AR 9, coating does not diminish =
yield £ O
= |f anything enhanced from 2.2e12 to 3.0e12 >

= AR 6 showed lower yield with coating >
(Gomez APS-DPP 2016)

=  DTyield and spectrum indicate 4
magnetization as good as most
uncoated stagnations 0.4 0 0.4

X (mm_)




Coating has significant impact on frequency and amplitude of helix

Coated/Uncoated Helix Amplitude
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Initial indications are that coated AR 9 liners shows promising reproducibility

Z3019 DCI Left (cont)  Z3075 Left (cont)

= Both experiments with coated aspect ratio 9 (6, 9. 12 keV) (6.4 keV)

liners showed quasi-uniform column and
good yield and magnetization

= Some changes is structure as shown by
continuum images

m)

= Yields reproduce well

yim

_EI_ 3075

3.0e12 2.6e12 -13%
DT 4.8e10 4.1e10 -15%
DD/DT 62.5 63.4 1.4%

T(cont) 3.0 3.3 +10%
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X-ray intensity is significantly less axially-varying with coating

= Axial structure in typical uncoated AR6 shows = Coated AR 9 exhibit significantly more uniform
significant variation structures

= Often emission series of bright spots rather = Coated AR 6 show similar (Gomez APS 2016)
than column
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Summary

= Liner stagnation structures change significantly with aspect ratios
= Consistent with instability feed through

= Coatings significantly aid stability and uniformity

= Promising for a good uniformity MagLIF platform

Future directions

= Continue to quantify differences in stagnation structures
= Look at differences in stagnation conditions

= Diagnose evolution of stagnation with time resolved imaging

= Continue to study reproducibility of coated liner stagnations




