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Visual inspection research has a long history spanning the 20 century and continuing to the present day.
Current efforts in multiple venues demonstrate that visual inspection continues to have a vital role for many
different types of tasks in the 21% century. The nature of this role spans the range from traditional human
visual inspection to fully automated detection of defects. Consequently, today’s practitioners must not only
successfully identify and apply lessons learned from the past, but also explore new areas of research in
order to derive solutions for modern day issues such as those presented by introducing automation during
inspection. A key lesson from past research indicates that the factors that can degrade performance will
persist today, unless care is taken to design the inspection process appropriately.

INTRODUCTION

Lessons learned from past research. Visual inspection is
commonly used in both manufacturing tasks and non-
production environments. In manufacturing tasks, the purpose
is to verify that a product is free of defects before installation
in the next level of assembly or final distribution to the
customer. In non-production environments, the objective is to
determine whether the features indicative of a “target” are
present and prevent potential negative impacts. Many fields in
which visual inspection is used are considered high
consequence due to the potentially high costs of inspection
errors—injury, fatality, loss of expensive equipment, scrapped
items, rework, or failure to procure repeat business. Such
high-consequence fields include nuclear weapons, nuclear
power, airport baggage screening, aircraft maintenance, food
industry, and medicine.

Visual inspection has been extensively researched since
the early 20" century to understand the factors that impact
performance (See, 2012; See, 2015). The most frequent and
consistent observation is the imperfection of human
inspectors. The minimum error rate of 10~ applies primarily to
very simple accept/reject inspection tasks (Swain &
Guttmann, 1983). Most inspection tasks are much more
complex and typically exhibit error rates of 20% to 30%
(Drury & Fox, 1975). Inspection errors may occur for many
reasons, but can be traced to task, environmental, individual,
organizational, and social factors (See, 2012) (Table 1).
Although they cannot be eliminated entirely, inspection errors
can be reduced with appropriate interventions. Namely, the
quality of an inspection process can be enhanced by proper
attention to three primary factors—training, inspection
procedures, and apparatus (See, 2012).

Challenges of visual inspection in the 21* century. The
premise of this discussion panel is that human visual
inspection continues to have a vital role in the 21* century. In
some cases, the nature of this role remains virtually unchanged
as compared to traditional 20" century processes. In other
cases, the nature of this role has evolved, in large part due to
recent advances in the use of automated techniques for visual
inspection. Consequently, practitioners in the 21% century face
multiple challenges. On the one hand, they must successfully
identify and apply the lessons learned from the past that

continue to impact visual inspection processes in the 21
century. On the other hand, they must pursue new avenues of
research in order to derive solutions for modern day issues,
such as those introduced by automation.

Table 1: Factors Impacting Inspection Performance

Task Individual
* Defect Rate * Gender
* Defect Type * Age
* Defect Salience * Visual Acuity
* Defect Location * Intelligence
* Complexity » Aptitude
» Standards * Personality
» Pacing * Time in Job
» Multiple Inspections » Experience
* Overlays * Visual Lobe
* Automation * Scanning Strategy

» Biases
Environmental Organizational
» Lighting * Management Support
* Noise * Training
* Temperature * Retraining
* Shift Duration * Instructions
* Time of Day * Feedforward Information
» Vigilance » Feedback
* Workplace Design * Incentives
 Job Rotation
Social

* Pressure * Isolation

¢ Consultation « Communications

Successful application of lessons learned from past
research is a challenge for all visual inspection processes,
regardless of whether automated techniques are used. All too
frequently, the engineers who design the product also develop
the associated inspection procedures. Operating under the
faulty assumption that visual inspection will be performed
with 100% accuracy, the engineers may or may not consult the
human factors practitioners who can apply principles from
previous research to optimize inspection training, standard
operating procedures/concepts of operation, and apparatus.
This problem can be especially detrimental for processes that
rely entirely on human visual inspection without automated
aids. For example, in small production runs characterized by
low throughputs, it may not be cost effective to use automated



inspection due to required investments in equipment, training
materials, and time.

Introducing some form of automation into the process
presents different types of challenges. Automation does not
replace humans in the system; it merely transforms the nature
of their role. For instance, if machine detection is used to
search for and identify defective parts, an active visual
inspection task may become a passive supervisory task. The
result is that vigilance effects may become more
pronounced—the human monitors the system for continued
functionality and perhaps performs spot checks on accuracy,
but is not an active participant in the process. In tasks such as
baggage screening wherein automation may augment the
error-prone search phase, humans function as the final
decision makers in the system, judging whether an item meets
criteria for rejection. When the human role during search is
supplemented or replaced, any human issues associated with
the decision-making phase become even more prominent.

Finally, despite nearly a century of research, gaps exist
that continue to present challenges for visual inspection in the
21% century. For example, while many individual factors have
been investigated to identify traits of the “perfect” inspector,
an approach that adequately explains variance in the data has
yet to be discovered (Drury & Wang, 1986; See, 2012).
Additional research to address such gaps will benefit visual
inspection in general, regardless of whether automated
techniques are incorporated.

Panelist contributions. The contributions from each
panelist in the remainder of this paper highlight various
aspects of these challenges confronting human visual
inspection in the 21* century. Colin Drury describes the
changing nature of visual inspection and identifies new
applications that can benefit from past research. Ann Speed
discusses visual search and inspection during baggage
screening, highlighting continued efforts to discover which
individual differences best explain observed differences in
performance. Allison Williams and Negar Khalandi describe
the enduring role of traditional forms of visual inspection in
processes characterized by low throughput. Ms. Khalandi
further discusses attempts to use virtual and augmented reality
techniques to provide training or to assist inspectors during
visual inspection.

CONTRIBUTIONS

Is visual inspection shrinking or merely changing?
Colin G. Drury

The study of human factors in visual inspection began
with mass production in manufacturing. However; with
improved techniques in sensing, measurement, and computing
power in many fields; the human visual inspection function is
frequently being replaced by automation (Friedman, 2016).
The obvious place to replace human visual inspection involves
repetitive measurement of physical variables of industrial-
scale mass production, given that machines are more rapid and
accurate than humans. In fact, in tightly-coupled production
systems with defect rates of 107 being expected and achieved,
human detection of defects becomes ineffective. Instead, we

look for necessary precursors to error rather than error itself. If
we know the mean of a process has shifted by a given amount,
then we can deduce that defects will be more common, even if
we find no defects. This principle of in-process Statistical
Process Control is widely used, but often misused, in
manufacturing (Kelly & Drury, 2002). In addition to
“variables” inspection, the industrial quality control function,
there has traditionally been “attributes” inspection to detect
and remove items with discrete blemishes or defects from the
production stream. Here, the human, who may be aided by
rather simple visual tools, is used as the detector and decision
maker (e.g., Kleiner & Drury, 1992, for jet engine roller
bearings). Drury and Sinclair (1983) studied this same task to
test an automated system for detecting visual defects, finding
that neither unaided humans nor total automation was
effective.

However, the capabilities of automation are constantly
improving, so that the study of hybrid systems, potentially
combining the best aspects of human visual inspection and
automation, is appropriate. Hou, Lin, and Drury (1993) found
that the combined attributes of humans, sensors, and
computers typically yield better performance than any single
“component.” Perhaps visual inspection as a human task, even
in mass production, is changing rather than disappearing.

With the rise of human factors/ergonomics (HFE) came
the study of not just how well people can perform visual
inspection tasks, but how their roles in the system could be
modeled to predict performance during systems design.
Studies of industrial inspection were undertaken for a variety
of products, combining detailed observations and interviews
with measurements of defect detection performance, a
tradition that continues today (See, 2015). The two theories
most widely used in inspection are visual search theory and
signal detection theory. The insights from these theories
proved beneficial as they combined aspects of speed and
accuracy (or productivity and reliability) into a single model
(Drury, 1975). This combined search-plus-decision model,
which focuses on the two most complex steps in the inspection
process (Figure 1), was found to be a powerful predictor of
overall performance, even in later applications to airport
baggage screening (Drury, Ghylin, & Scwanninger, 2007).
Across 11 data sets, the model fit for both hits and false alarms
was greater than » = 0.8 in all but one case.

Does this mean human visual inspection need no longer
be studied? Perhaps not. Industrial production is not the only
use of inspection, and it may be limited to special tasks such
as surface finish on automobiles (Lloyd, Boyce, Ferzacca,
Eklund, & He, 2000). Modern imaging systems allow visual
inspection using non-visual wavelengths, and even ultrasound
images, as in nondestructive inspection of composite
structures in aircraft. Not only can we use novel energy
sensing, but we can transmit images remotely and rapidly to
allow for physical decoupling of the inspector from the item
inspected. This approach applies to medical images, security
images, and the problem of continuing in-service inspection of
a variety of systems such as aircraft. All require HFE input if
the best use is to be made of the unique capabilities of the
human as inspector. Specifically, the human search process
must often be aided with visual image processing, as search is



the component of inspection least likely to achieve high levels
of success. Finally, as Drury (2009) has noted, the whole field
of auditing is merely inspection applied to systems. HFE
continues to have a vital role in visual inspection and must
remain involved.

~—, Inspection system is prepared for use. Tools,
equipment, and supplies are procured and
Set Up calibrated; procedures are available to aid
inspector; and inspector has been trained to
N/ perform task correctly.

The inspector and the entity to be inspected
Present are brought together so that inspection can
take place.

~—\, Typically asequential serial process in which
whole item to be inspected is brought piece-by-
Search piece under scrutiny, stopping when an
indication is found or further search is
N~/ considered unnecessary.

. The indication located by search is judged
Decide against a standard to determine whether it is a
true defect.

N
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Respond The action chosen in Decide is taken correctly.
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Figure 1. Inspection process. Search and decide are
the most complex steps in the process.

Visual search in airport baggage screening
Ann Speed

Since 2009, my team and I have conducted experiments
for the Transportation Security Administration (TSA) to
understand the impact of different factors on Transportation
Security Officer (TSO) decision making, primarily at the X-
Ray duty station. Over the course of seven studies focused on
X-Ray baggage screening, we have collected data from more
than 1000 TSOs at 10 different airports (see Speed et al.,
2015). We also conducted a detailed review of several decades
of empirical work on X-Ray decision making led by the
Federal Aviation Administration (FAA), Department of
Homeland Security (DHS), and the TSA.

One theme that has emerged from this work is the
importance of closely mirroring live checkpoint conditions in
our experiments, an approach I call a “near operational”
environment. This approach requires considerable effort, but is
important for two reasons. First, we want to understand the
checkpoint environment and avoid assuming that certain
characteristics of the checkpoint (e.g., the noise) do or do not
influence TSO threat detection without actually testing, or
controlling for, those factors. Second, we want to ensure that
study results are not summarily dismissed due to poor face
validity. Many TSA decision makers came from TSO
checkpoint positions; thus, they have an intuition for factors
that impact their decisions. We honor those intuitions by
attending to constraints in the operational environment and

including such characteristics in our designs as best we can.
As a result, the TSA is more willing to believe results that may
counter their intuitions.

As an example of this approach, in later studies, we
created custom software that emulates the look, feel, and
functionality of the checkpoint X-Ray system. We locate
computers with this emulator at checkpoints in order to
capture the effects of checkpoint noise and chaos. This
software uses X-Ray images of mock passenger bags, created
for us by the TSA to mimic the “stream of commerce”—the
composition and numbers of bags, contents, and threat items.

Another theme that has emerged from our work is the
large contribution of individual differences to variability in
TSO threat detection, which often far overshadows the effects
from any manipulated variables. As a result, we have looked
for proxy tasks in open peer-reviewed literature to identify
people who may excel at the X-Ray task (Matzen, Haass,
McNamara, Stevens-Adams, & McMichael, 2015). Proxy
tasks include standards from the visual attention/visual search
world such as the “TL” and “OQ” visual search tasks, spatial
reasoning tasks such as mental rotation and the Group
Embedded Figures Test (Witkin, Oltman, Raskin, & Karp,
1971), measures of general intelligence (a variant of Raven’s
Progressive Matrices) (Matzen et al., 2010), and even visual
acuity tests such as the Early Treatment Diabetic Retinopathy
Study (ETDRS) test. We have also explored numerous
standard demographic variables such as age and gender. To
date, we have not found a test or group of tests that explains
more than 4% of the variance in accuracy for baggage search
tasks in any reasonable sample size.

Visual inspection in high-consequence production
Allison Williams

Nondestructive testing (NDT) methods in low-throughput
high-consequence production operations such as nuclear
weapons assembly and disassembly rely heavily on human
visual inspection. Upon receipt from the manufacturer; cables,
critical components, tools, and equipment used in these
operations undergo some level of visual inspection before
each use to verify quality and functionality. Additionally,
NDT methods such as radiography, magnetic particle, and
liquid penetrant testing rely on human-led visual inspection.
Liquid penetrant testing involves visual observation and
interpretation of surface defects. At the Pantex Plant, penetrant
testing is used to inspect weapon components, high
explosives, tooling used to machine high explosives, hooks
used on facility hoists, and other maintenance equipment.
Penetrant testing is one of the most sensitive methods used to
detect surface discontinuities in a wide variety of materials
and can be performed quickly with relatively inexpensive
equipment (Moore, 2016). However, recent studies show
relatively poor detections around 50% (Stephens, 2000).

HFE has a key role in the reliability of liquid penetrant
testing. Visual acuity, external work environment factors, and
training are important during interpretation of test results.
Visual acuity, defined as the ability to recognize a certain
object, depends on five factors: contrast of the luminance
between the object and its background, adaptation of the eye



to lighting changes, object dimension, object presentation
time, and probability of recognizing the object (Stadthaus,
1997). Visual acuity and various eye conditions can affect
inspector performance (Stadthaus, Michalski, & Kaiser, 1976).
Although most conditions can be corrected with lenses,
changes in the eye at the age of 55 cannot likely be corrected
to the extent of supporting adequate visual inspection
(Stadthaus, Michalski, & Kaiser, 1976).

External work environment factors are also important in
visual inspection. As previously stated, object presentation
time is one factor affecting visual acuity and, therefore, visual
inspection. Time pressure and excessive time on shift decrease
the quality of visual inspection (Bainbridge, 2002); however,
there is a tradeoff associated with inspection time. Too little
time for inspection leads to missed defects, while too much
time leads to false alarms (See, 2015). For continuous visual
inspection, a limit of two hours is recommended to prevent
degradations due to vigilance effects (Bainbridge, 2002).
Unrealistic inspection criteria can negatively impact inspector
motivation and attitude (Larson, 2002). Therefore, inspection
specifications should provide clear accept/reject criteria.

Finally, training and familiarity with the parts for
inspection enhance quality. NDT training focuses on the
methods for applying and interpreting the test. In liquid
penetrant testing, inspectors must be trained to recognize a
particular defect in order to increase detections and decrease
false alarms (Larson, 2002). In highly specialized high-
consequence operations, impacts of defects on part
functionality should also be trained to decrease the probability
of false alarms (Moore, 2016).

Incorporating automation into visual inspection tasks in
low-throughput operations such as those at the Pantex Plant
would be ideal; however, with current capabilities, that goal is
not yet practical. For example, digital radiography is
becoming increasingly popular to inspect internal defects
using software tools that enhance image contrast. Human-led
traditional film radiography is still the current method for
large components because the equipment cannot withstand the
higher energies used in radiography. Semi-automated
processes for liquid penetrant testing have been patented for
some high-throughput operations (Mendoza, 1973; Vetterlein,
Wagener, Rongen, & Sampson, 2006); however, the human
still has a role in visual inspection for this NDT method. Some
fully automated methods for liquid penetrant inspection have
been proposed but have not yet been implemented (Popescu,
Anania, Cotet, & Amza, 2013). Thus, the human continues to
have a vital role in visual inspection for low-throughput high-
consequence operations such as those at the Pantex Plant.

Technological aids for visual inspection
Negar Khalandi

For the purposes of our work at the Kansas City National
Security Campus (KCNSC), visual inspection is used to detect
defects and verify quality in four primary areas:

1. Dimensional quality

2. Surface quality

3. Correct assembly

4. Accuracy or correct operation

As demonstrated in previous research, visual inspection
errors typically range from 20% to 30% (Drury & Fox, 1975).
Some of the imperfections can be attributed to human error
(Chi & Drury, 2001; Drury & Sheehan, 1969; George, 1963),
while others are due to space limitations (Mozrall, Drury,
Sharit, & Cerny, 2000). Errors can be reduced through training
and practice (Koller, Drury, & Schwaninger, 2009), but cannot
be eliminated entirely. Visual inspection errors in
manufacturing take one of two forms—missing an existing
defect or incorrectly identifying a defect that does not exist
(false alarm). Misses tend to occur much more frequently than
false alarms (See, 2012). Misses can lead to quality escapes,
whereas false alarms can increase production costs and waste.

Given inherent human limitations during visual search
and inspection, there is an opportunity to supplement
inspectors with technological advances to improve overall
results. Automated Optical Inspection (AOI) instruments
reduce variation in inspection processes, but do not entirely
eliminate error (Jalili, Dehgan, & Nourani, 2013; Lee, Ko, &
Lee, 2016). Further, not all applications lend themselves well
to the use of AOI. At the KCNSC, improvements in inspection
of two-dimensional components and two-dimensional surfaces
of three-dimensional components have occurred with AOI.
However, additional maturation is needed before AOI can be
confidently applied in three-dimensional applications.

Technologies such as virtual reality and augmented reality
have shown promise to enhance visual inspection. Virtual
reality replaces the real world with an interactive simulated
world. Virtual reality and computer-aided systems have been
used for many years for inspector training in large industries
characterized by high throughputs, particularly aircraft
inspection and airport baggage screening (See, 2012). In a
simple form, eye tracking techniques are useful to support
inspector training and improve subsequent performance by
linking failure modes to visual search activity (e.g., the
problem of “looking but not seeing”) (Muczynski & Gucma,
2013). Virtual reality training scenarios emulating aircraft
inspection have led to improved search and detection
performance by permitting novices to observe expert
inspectors’ scanning patterns in real time (Mehta, Sadasivan,
Greenstein, Gramopadhye, & Duchowski, 2005).

Augmented reality provides a real-time view of the actual
physical environment and augments it with computer-
generated inputs such as sound or graphics. The most popular
form of augmented reality uses wearable digital eyewear such
as Google Glass and Microsoft HoloLens, which frees the
user’s hands for important tasks. Other modes of augmented
reality include smart tablets, gloves, and work surface
projection. When visual inspection is still a necessity,
augmented reality can help overcome human limitations
contributing to error. For example, given that human
inspectors tend to perform relatively more poorly during the
search portion of the visual inspection task, augmented reality
can be leveraged to improve the search component and
essentially eliminate it. Human inspectors can then focus more
heavily on the decision-making portion of the task.
Augmented reality can also be leveraged pre-inspection during
assembly. For instance, augmented reality can provide haptic,
visual, or audio feedback during manual assembly to



communicate inaccurate assembly. In this application, object
detection is used to visually verify the current assembly before
continuing to the next step, providing user feedback real-time
and offering a second opinion approach. This process
eliminates errors at the start and prevents misses from
occurring altogether during subsequent visual inspection. In
fact, Boeing, BMW, and Volkswagen have demonstrated
success incorporating augmented reality on the assembly line
to monitor process improvements (Dillow, 2009).

Additional augmented reality usability studies need to be
implemented to understand the extent of virtual assistance
required for various processes. Factors such as user interface,
system ease of use, and deviation from traditional visual
inspection practices could impact human-machine interaction.
Ultimately, the objective for augmented reality during visual
inspection is to simplify the user’s tasks and reduce reliance
on tribal knowledge not contained in traditional work aids.
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