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Visual inspection research has a long history spanning the 20th century and continuing to the present day.
Current efforts in multiple venues demonstrate that visual inspection continues to have a vital role for many 
different types of tasks in the 21st century. The nature of this role spans the range from traditional human 
visual inspection to fully automated detection of defects. Consequently, today’s practitioners must not only 
successfully identify and apply lessons learned from the past, but also explore new areas of research in 
order to derive solutions for modern day issues such as those presented by introducing automation during 
inspection. A key lesson from past research indicates that the factors that can degrade performance will
persist today, unless care is taken to design the inspection process appropriately.

INTRODUCTION

Lessons learned from past research. Visual inspection is 
commonly used in both manufacturing tasks and non-
production environments. In manufacturing tasks, the purpose 
is to verify that a product is free of defects before installation 
in the next level of assembly or final distribution to the 
customer. In non-production environments, the objective is to 
determine whether the features indicative of a “target” are 
present and prevent potential negative impacts. Many fields in 
which visual inspection is used are considered high
consequence due to the potentially high costs of inspection 
errors—injury, fatality, loss of expensive equipment, scrapped 
items, rework, or failure to procure repeat business. Such 
high-consequence fields include nuclear weapons, nuclear 
power, airport baggage screening, aircraft maintenance, food 
industry, and medicine. 

Visual inspection has been extensively researched since 
the early 20th century to understand the factors that impact 
performance (See, 2012; See, 2015). The most frequent and
consistent observation is the imperfection of human 
inspectors. The minimum error rate of 10-3 applies primarily to 
very simple accept/reject inspection tasks (Swain & 
Guttmann, 1983). Most inspection tasks are much more 
complex and typically exhibit error rates of 20% to 30% 
(Drury & Fox, 1975). Inspection errors may occur for many 
reasons, but can be traced to task, environmental, individual, 
organizational, and social factors (See, 2012) (Table 1).
Although they cannot be eliminated entirely, inspection errors 
can be reduced with appropriate interventions. Namely, the 
quality of an inspection process can be enhanced by proper 
attention to three primary factors—training, inspection 
procedures, and apparatus (See, 2012).

Challenges of visual inspection in the 21st century. The 
premise of this discussion panel is that human visual 
inspection continues to have a vital role in the 21st century. In
some cases, the nature of this role remains virtually unchanged
as compared to traditional 20th century processes. In other 
cases, the nature of this role has evolved, in large part due to 
recent advances in the use of automated techniques for visual 
inspection. Consequently, practitioners in the 21st century face 
multiple challenges. On the one hand, they must successfully 
identify and apply the lessons learned from the past that 

continue to impact visual inspection processes in the 21st

century. On the other hand, they must pursue new avenues of 
research in order to derive solutions for modern day issues,
such as those introduced by automation.

Table 1: Factors Impacting Inspection Performance
Task

• Defect Rate
• Defect Type
• Defect Salience
• Defect Location
• Complexity
• Standards
• Pacing
• Multiple Inspections
• Overlays
• Automation

Individual
• Gender
• Age
• Visual Acuity
• Intelligence
• Aptitude
• Personality
• Time in Job
• Experience
• Visual Lobe
• Scanning Strategy
• Biases

Environmental
• Lighting
• Noise
• Temperature
• Shift Duration
• Time of Day
• Vigilance
• Workplace Design

Organizational
• Management Support
• Training
• Retraining
• Instructions
• Feedforward Information
• Feedback
• Incentives
• Job Rotation

Social
• Pressure
• Consultation

• Isolation
• Communications

Successful application of lessons learned from past 
research is a challenge for all visual inspection processes, 
regardless of whether automated techniques are used. All too 
frequently, the engineers who design the product also develop
the associated inspection procedures. Operating under the 
faulty assumption that visual inspection will be performed 
with 100% accuracy, the engineers may or may not consult the 
human factors practitioners who can apply principles from 
previous research to optimize inspection training, standard 
operating procedures/concepts of operation, and apparatus.
This problem can be especially detrimental for processes that 
rely entirely on human visual inspection without automated 
aids. For example, in small production runs characterized by
low throughputs, it may not be cost effective to use automated 
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inspection due to required investments in equipment, training 
materials, and time.

Introducing some form of automation into the process 
presents different types of challenges. Automation does not 
replace humans in the system; it merely transforms the nature 
of their role. For instance, if machine detection is used to 
search for and identify defective parts, an active visual 
inspection task may become a passive supervisory task. The 
result is that vigilance effects may become more 
pronounced—the human monitors the system for continued 
functionality and perhaps performs spot checks on accuracy, 
but is not an active participant in the process. In tasks such as 
baggage screening wherein automation may augment the 
error-prone search phase, humans function as the final 
decision makers in the system, judging whether an item meets 
criteria for rejection. When the human role during search is 
supplemented or replaced, any human issues associated with 
the decision-making phase become even more prominent.

Finally, despite nearly a century of research, gaps exist 
that continue to present challenges for visual inspection in the 
21st century. For example, while many individual factors have 
been investigated to identify traits of the “perfect” inspector, 
an approach that adequately explains variance in the data has 
yet to be discovered (Drury & Wang, 1986; See, 2012). 
Additional research to address such gaps will benefit visual 
inspection in general, regardless of whether automated 
techniques are incorporated.

Panelist contributions. The contributions from each 
panelist in the remainder of this paper highlight various 
aspects of these challenges confronting human visual 
inspection in the 21st century. Colin Drury describes the 
changing nature of visual inspection and identifies new 
applications that can benefit from past research. Ann Speed 
discusses visual search and inspection during baggage 
screening, highlighting continued efforts to discover which 
individual differences best explain observed differences in 
performance. Allison Williams and Negar Khalandi describe 
the enduring role of traditional forms of visual inspection in 
processes characterized by low throughput. Ms. Khalandi
further discusses attempts to use virtual and augmented reality 
techniques to provide training or to assist inspectors during 
visual inspection.

CONTRIBUTIONS

Is visual inspection shrinking or merely changing?
Colin G. Drury

The study of human factors in visual inspection began 
with mass production in manufacturing. However; with 
improved techniques in sensing, measurement, and computing 
power in many fields; the human visual inspection function is 
frequently being replaced by automation (Friedman, 2016).
The obvious place to replace human visual inspection involves
repetitive measurement of physical variables of industrial-
scale mass production, given that machines are more rapid and 
accurate than humans. In fact, in tightly-coupled production 
systems with defect rates of 10-6 being expected and achieved,
human detection of defects becomes ineffective. Instead, we 

look for necessary precursors to error rather than error itself. If 
we know the mean of a process has shifted by a given amount, 
then we can deduce that defects will be more common, even if 
we find no defects. This principle of in-process Statistical 
Process Control is widely used, but often misused, in 
manufacturing (Kelly & Drury, 2002). In addition to 
“variables” inspection, the industrial quality control function, 
there has traditionally been “attributes” inspection to detect 
and remove items with discrete blemishes or defects from the 
production stream. Here, the human, who may be aided by 
rather simple visual tools, is used as the detector and decision 
maker (e.g., Kleiner & Drury, 1992, for jet engine roller 
bearings). Drury and Sinclair (1983) studied this same task to 
test an automated system for detecting visual defects, finding 
that neither unaided humans nor total automation was 
effective.

However, the capabilities of automation are constantly 
improving, so that the study of hybrid systems, potentially 
combining the best aspects of human visual inspection and 
automation, is appropriate. Hou, Lin, and Drury (1993) found 
that the combined attributes of humans, sensors, and 
computers typically yield better performance than any single 
“component.” Perhaps visual inspection as a human task, even 
in mass production, is changing rather than disappearing.

With the rise of human factors/ergonomics (HFE) came 
the study of not just how well people can perform visual 
inspection tasks, but how their roles in the system could be 
modeled to predict performance during systems design.
Studies of industrial inspection were undertaken for a variety 
of products, combining detailed observations and interviews 
with measurements of defect detection performance, a 
tradition that continues today (See, 2015). The two theories 
most widely used in inspection are visual search theory and 
signal detection theory. The insights from these theories 
proved beneficial as they combined aspects of speed and 
accuracy (or productivity and reliability) into a single model
(Drury, 1975). This combined search-plus-decision model, 
which focuses on the two most complex steps in the inspection 
process (Figure 1), was found to be a powerful predictor of 
overall performance, even in later applications to airport
baggage screening (Drury, Ghylin, & Scwanninger, 2007).
Across 11 data sets, the model fit for both hits and false alarms 
was greater than r = 0.8 in all but one case.

Does this mean human visual inspection need no longer 
be studied? Perhaps not. Industrial production is not the only 
use of inspection, and it may be limited to special tasks such 
as surface finish on automobiles (Lloyd, Boyce, Ferzacca, 
Eklund, & He, 2000). Modern imaging systems allow visual 
inspection using non-visual wavelengths, and even ultrasound 
images, as in nondestructive inspection of composite 
structures in aircraft. Not only can we use novel energy 
sensing, but we can transmit images remotely and rapidly to 
allow for physical decoupling of the inspector from the item 
inspected. This approach applies to medical images, security 
images, and the problem of continuing in-service inspection of 
a variety of systems such as aircraft. All require HFE input if 
the best use is to be made of the unique capabilities of the 
human as inspector. Specifically, the human search process 
must often be aided with visual image processing, as search is 



the component of inspection least likely to achieve high levels 
of success. Finally, as Drury (2009) has noted, the whole field 
of auditing is merely inspection applied to systems. HFE 
continues to have a vital role in visual inspection and must
remain involved.

Visual search in airport baggage screening
Ann Speed

Since 2009, my team and I have conducted experiments 
for the Transportation Security Administration (TSA) to 
understand the impact of different factors on Transportation 
Security Officer (TSO) decision making, primarily at the X-
Ray duty station. Over the course of seven studies focused on 
X-Ray baggage screening, we have collected data from more 
than 1000 TSOs at 10 different airports (see Speed et al., 
2015). We also conducted a detailed review of several decades 
of empirical work on X-Ray decision making led by the 
Federal Aviation Administration (FAA), Department of 
Homeland Security (DHS), and the TSA.

One theme that has emerged from this work is the 
importance of closely mirroring live checkpoint conditions in 
our experiments, an approach I call a “near operational” 
environment. This approach requires considerable effort, but is 
important for two reasons. First, we want to understand the 
checkpoint environment and avoid assuming that certain 
characteristics of the checkpoint (e.g., the noise) do or do not 
influence TSO threat detection without actually testing, or 
controlling for, those factors. Second, we want to ensure that 
study results are not summarily dismissed due to poor face 
validity. Many TSA decision makers came from TSO 
checkpoint positions; thus, they have an intuition for factors 
that impact their decisions. We honor those intuitions by 
attending to constraints in the operational environment and 

including such characteristics in our designs as best we can. 
As a result, the TSA is more willing to believe results that may 
counter their intuitions.

As an example of this approach, in later studies, we 
created custom software that emulates the look, feel, and 
functionality of the checkpoint X-Ray system. We locate 
computers with this emulator at checkpoints in order to 
capture the effects of checkpoint noise and chaos. This 
software uses X-Ray images of mock passenger bags, created 
for us by the TSA to mimic the “stream of commerce”—the 
composition and numbers of bags, contents, and threat items.

Another theme that has emerged from our work is the 
large contribution of individual differences to variability in 
TSO threat detection, which often far overshadows the effects
from any manipulated variables. As a result, we have looked 
for proxy tasks in open peer-reviewed literature to identify 
people who may excel at the X-Ray task (Matzen, Haass, 
McNamara, Stevens-Adams, & McMichael, 2015). Proxy 
tasks include standards from the visual attention/visual search 
world such as the “TL” and “OQ” visual search tasks, spatial 
reasoning tasks such as mental rotation and the Group 
Embedded Figures Test (Witkin, Oltman, Raskin, & Karp, 
1971), measures of general intelligence (a variant of Raven’s 
Progressive Matrices) (Matzen et al., 2010), and even visual 
acuity tests such as the Early Treatment Diabetic Retinopathy 
Study (ETDRS) test. We have also explored numerous 
standard demographic variables such as age and gender. To 
date, we have not found a test or group of tests that explains
more than 4% of the variance in accuracy for baggage search 
tasks in any reasonable sample size.

Visual inspection in high-consequence production
Allison Williams

Nondestructive testing (NDT) methods in low-throughput
high-consequence production operations such as nuclear 
weapons assembly and disassembly rely heavily on human 
visual inspection. Upon receipt from the manufacturer; cables,
critical components, tools, and equipment used in these 
operations undergo some level of visual inspection before 
each use to verify quality and functionality. Additionally,
NDT methods such as radiography, magnetic particle, and 
liquid penetrant testing rely on human-led visual inspection. 
Liquid penetrant testing involves visual observation and 
interpretation of surface defects. At the Pantex Plant, penetrant 
testing is used to inspect weapon components, high 
explosives, tooling used to machine high explosives, hooks 
used on facility hoists, and other maintenance equipment. 
Penetrant testing is one of the most sensitive methods used to 
detect surface discontinuities in a wide variety of materials
and can be performed quickly with relatively inexpensive 
equipment (Moore, 2016). However, recent studies show 
relatively poor detections around 50% (Stephens, 2000).

HFE has a key role in the reliability of liquid penetrant 
testing. Visual acuity, external work environment factors, and 
training are important during interpretation of test results. 
Visual acuity, defined as the ability to recognize a certain 
object, depends on five factors: contrast of the luminance 
between the object and its background, adaptation of the eye 

Figure 1. Inspection process. Search and decide are 
the most complex steps in the process.



to lighting changes, object dimension, object presentation 
time, and probability of recognizing the object (Stadthaus, 
1997). Visual acuity and various eye conditions can affect 
inspector performance (Stadthaus, Michalski, & Kaiser, 1976). 
Although most conditions can be corrected with lenses, 
changes in the eye at the age of 55 cannot likely be corrected 
to the extent of supporting adequate visual inspection
(Stadthaus, Michalski, & Kaiser, 1976).

External work environment factors are also important in 
visual inspection. As previously stated, object presentation 
time is one factor affecting visual acuity and, therefore, visual 
inspection. Time pressure and excessive time on shift decrease 
the quality of visual inspection (Bainbridge, 2002); however, 
there is a tradeoff associated with inspection time. Too little 
time for inspection leads to missed defects, while too much 
time leads to false alarms (See, 2015). For continuous visual 
inspection, a limit of two hours is recommended to prevent 
degradations due to vigilance effects (Bainbridge, 2002). 
Unrealistic inspection criteria can negatively impact inspector 
motivation and attitude (Larson, 2002). Therefore, inspection 
specifications should provide clear accept/reject criteria.

Finally, training and familiarity with the parts for 
inspection enhance quality. NDT training focuses on the 
methods for applying and interpreting the test. In liquid 
penetrant testing, inspectors must be trained to recognize a 
particular defect in order to increase detections and decrease 
false alarms (Larson, 2002). In highly specialized high-
consequence operations, impacts of defects on part 
functionality should also be trained to decrease the probability 
of false alarms (Moore, 2016).

Incorporating automation into visual inspection tasks in 
low-throughput operations such as those at the Pantex Plant
would be ideal; however, with current capabilities, that goal is 
not yet practical. For example, digital radiography is 
becoming increasingly popular to inspect internal defects 
using software tools that enhance image contrast. Human-led 
traditional film radiography is still the current method for 
large components because the equipment cannot withstand the 
higher energies used in radiography. Semi-automated 
processes for liquid penetrant testing have been patented for 
some high-throughput operations (Mendoza, 1973; Vetterlein, 
Wagener, Rongen, & Sampson, 2006); however, the human 
still has a role in visual inspection for this NDT method. Some 
fully automated methods for liquid penetrant inspection have 
been proposed but have not yet been implemented (Popescu, 
Anania, Cotet, & Amza, 2013). Thus, the human continues to 
have a vital role in visual inspection for low-throughput high-
consequence operations such as those at the Pantex Plant. 

Technological aids for visual inspection
Negar Khalandi

For the purposes of our work at the Kansas City National 
Security Campus (KCNSC), visual inspection is used to detect 
defects and verify quality in four primary areas:

1. Dimensional quality
2. Surface quality
3. Correct assembly
4. Accuracy or correct operation

As demonstrated in previous research, visual inspection 
errors typically range from 20% to 30% (Drury & Fox, 1975). 
Some of the imperfections can be attributed to human error 
(Chi & Drury, 2001; Drury & Sheehan, 1969; George, 1963), 
while others are due to space limitations (Mozrall, Drury, 
Sharit, & Cerny, 2000). Errors can be reduced through training 
and practice (Koller, Drury, & Schwaninger, 2009), but cannot 
be eliminated entirely. Visual inspection errors in 
manufacturing take one of two forms—missing an existing 
defect or incorrectly identifying a defect that does not exist
(false alarm). Misses tend to occur much more frequently than 
false alarms (See, 2012). Misses can lead to quality escapes, 
whereas false alarms can increase production costs and waste.

Given inherent human limitations during visual search 
and inspection, there is an opportunity to supplement 
inspectors with technological advances to improve overall 
results. Automated Optical Inspection (AOI) instruments 
reduce variation in inspection processes, but do not entirely 
eliminate error (Jalili, Dehgan, & Nourani, 2013; Lee, Ko, & 
Lee, 2016). Further, not all applications lend themselves well 
to the use of AOI. At the KCNSC, improvements in inspection 
of two-dimensional components and two-dimensional surfaces 
of three-dimensional components have occurred with AOI. 
However, additional maturation is needed before AOI can be 
confidently applied in three-dimensional applications.

Technologies such as virtual reality and augmented reality 
have shown promise to enhance visual inspection. Virtual 
reality replaces the real world with an interactive simulated 
world. Virtual reality and computer-aided systems have been 
used for many years for inspector training in large industries 
characterized by high throughputs, particularly aircraft 
inspection and airport baggage screening (See, 2012). In a 
simple form, eye tracking techniques are useful to support 
inspector training and improve subsequent performance by 
linking failure modes to visual search activity (e.g., the 
problem of “looking but not seeing”) (Muczynski & Gucma, 
2013). Virtual reality training scenarios emulating aircraft 
inspection have led to improved search and detection 
performance by permitting novices to observe expert 
inspectors’ scanning patterns in real time (Mehta, Sadasivan, 
Greenstein, Gramopadhye, & Duchowski, 2005).

Augmented reality provides a real-time view of the actual 
physical environment and augments it with computer-
generated inputs such as sound or graphics. The most popular 
form of augmented reality uses wearable digital eyewear such 
as Google Glass and Microsoft HoloLens, which frees the
user’s hands for important tasks. Other modes of augmented 
reality include smart tablets, gloves, and work surface
projection. When visual inspection is still a necessity, 
augmented reality can help overcome human limitations
contributing to error. For example, given that human 
inspectors tend to perform relatively more poorly during the 
search portion of the visual inspection task, augmented reality
can be leveraged to improve the search component and 
essentially eliminate it. Human inspectors can then focus more 
heavily on the decision-making portion of the task. 
Augmented reality can also be leveraged pre-inspection during 
assembly. For instance, augmented reality can provide haptic, 
visual, or audio feedback during manual assembly to 



communicate inaccurate assembly. In this application, object 
detection is used to visually verify the current assembly before 
continuing to the next step, providing user feedback real-time 
and offering a second opinion approach. This process 
eliminates errors at the start and prevents misses from 
occurring altogether during subsequent visual inspection. In 
fact, Boeing, BMW, and Volkswagen have demonstrated 
success incorporating augmented reality on the assembly line 
to monitor process improvements (Dillow, 2009).

Additional augmented reality usability studies need to be
implemented to understand the extent of virtual assistance 
required for various processes. Factors such as user interface, 
system ease of use, and deviation from traditional visual 
inspection practices could impact human-machine interaction. 
Ultimately, the objective for augmented reality during visual 
inspection is to simplify the user’s tasks and reduce reliance 
on tribal knowledge not contained in traditional work aids.
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