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Abstract—Power systems can be stabilized using distributed
control methods with wide-area measurements for feedback.
However, wide-area measurements are subject to time delays in
communication, which can have undesirable effects on system
performance. We present time-domain analysis results regarding
the small-signal stability of a two-area power system with damp-
ing control subjected to asymmetric time delays in the feedback
measurements. We consider two wide-area damping control
implementations. The first is implemented with a High Voltage
DC transmission line, and the second uses distributed Energy
Storage devices. Numerical results show regions of stability for
the closed-loop systems that depend on the time delays and the
choice of the control gain. These results show that increasing
the control gains cause the systems to be less robust to time
delays, and, under certain conditions, increasing the time delays
can have a stabilizing effect. Furthermore, we provide analysis of
time simulations and eigenvalue plots that verify these stability
regions and show how stability is affected as time delays increase.

I. INTRODUCTION

A power system consists of a complex interconnection
of nonlinear components distributed across wide geographic
regions, and these regions may have sparse concentrations of
power loads and generation distributed between them. In these
systems, sudden increases or decreases in load or generation
result in swings in the power transfer between regions. These
power swings are called inter-area oscillations [1], and they
occur in the western North American Power System (wNAPS)
and around the world. Damping inter-area oscillations is
crucial for maintaining a secure and reliable power grid, and
failing to do so can have severe consequences, such as the
blackouts experienced throughout the wNAPS in 1996 [2].

Traditionally, Power System Stabilizers (PSSs), utilizing
local measurements, have been used to implement damping
control that mitigates the effects of inter-area oscillations.
More recently, the use of remote signals with PSSs has been
shown to be advantageous [3]. System-wide information has
been used in damping control implemented with distributed
resources, system components such as Thyristor Controlled
Series Compensators (TCSCs), energy storage, and renewable
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resources [4]–[7]. Additionally, implementing damping control
with High Voltage DC (HVDC) transmission lines has been
proposed and successfully implemented [8], [9].

Although system-wide information may enable and improve
the performance of damping controllers, the latencies associ-
ated with remote signals can have unexpected and detrimental
effects on system performance. This paper investigates the
effects that asymmetric delays in feedback signals have on
the stability of a two-area power system that is prone to inter-
area oscillations. Two different implementations of a wide-area
damping controller are considered, where power injections in
each area of the power system are computed using wide-
area information. These two control implementations are based
on a controllable HVDC transmission line and on distributed
Energy Storage (ES) devices. Without delays, the two control
implementations are identical; however, the presence of asym-
metric delays causes the closed-loop dynamics to be different
and affects system stability and performance.

Several techniques have been used for studying small-signal
stability of power systems subject to time delays. In [10],
the effect of asymmetric network latencies are analyzed using
time-domain simulations as well as root locus methods and
computing the maximum singular value of the input sensitivity
function. However, only an HVDC-based damping controller
is considered. In other work [11], we apply a Lyapunov-
Krasovskii approach to determine delay-dependent sufficient
conditions for stability of a power system with damping
control and asymmetric time delays.

In this work, we perform time-domain simulations to ana-
lyze the closed-loop stability of an example two-area power
system prone to inter-area oscillations. From these simulations,
we determine regions of stability that depend on the size of the
time delays and the choice of the control gain for both closed-
loop systems with HVDC and ES based damping controllers.
The results show that increasing the control gain causes each
system to be less robust to time delays, but increasing the
time delays may stabilize each system. The phenomenon that
delayed feedback can stabilize a system has been documented
previously for oscillatory systems with positive feedback [12].
Furthermore, we analyze the movement of the poles of the
closed-loop systems as the time delays increase.

This paper is organized as follows. We first introduce power
system dynamics and damping controllers in Section II. Next
we present numerical results for a representative two-area
power system in Section III. Finally, Section IV contains
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concluding remarks and directions for future work.

II. PROBLEM FORMULATION

A. Two-Area Power System Model

Power system inter-area phenomena can be analyzed using
low order models. These models are usually the result of ag-
gregating multiple generators using coherency-based methods
[13], [14]. The dynamics of interest for small-signal stability
can be obtained from the linearization of a system where
generators are represented by electromechanical models. In
this paper, we consider the two-area power system shown in
Figure 1, which has one generator per area and a dominant
inter-area oscillation.
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Fig. 1. A two-area power system represented with one generator in each area.

The electromechanical model for the synchronous genera-
tors in Figure 1 is given as in [13], for i = 1, 2, by

δ̇i = Ωωi

2Hiω̇i = Pmi − Pei −Diωi −
1

Ri
ωi − PLi + PDi

(1)

with the power flow between the areas given by

Pe1 = C12 sin(δ1 − δ2), Pe2 = C21 sin(δ2 − δ1).

The states of the system are the generators’ rotor angles δi
and angular velocities ωi, for i = 1, 2. The scalars C12 and
C21 are given by C12 = X−112 E1E2 and C21 = X−112 E2E1,
respectively, where X12 is the impedance (assumed to be only
reactive) of the transmission line connecting the two areas,
and E1 and E2 are the internal voltage angles of generators 1
and 2, respectively. The parameter Ω is the per-unit constant
used for unit conversion. The aggregated load and controllable
power injection in the ith area are denoted by PLi and PDi,
respectively. Pmi represents the mechanical power input to
the ith machine, and Di denotes its damping. The governing
droop constant of area i is denoted by Ri.

A linearized model for system (1) can be used in order to
study its small-signal stability. A block diagram of the linear
model is given in Figure 2, where

Gi(s) =
1

2His+Di
,

and Hi is the inertia constant of machine i. In this model, we
assume the reference signals ∆r1 and ∆r2 are equal to zero.

Defining the state of the linearized system as x(t) =
[∆δ(t)> ∆ω(t)>]>, where ∆δ(t) = [∆δ1(t) ∆δ2(t)]>

is the vector of generator rotor angles and ∆ω(t) =
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Fig. 2. Block diagram for the linear model of a two-area power system
(adapted from [1]).

[∆ω1(t) ∆ω2(t)]> is the vector of generator angular veloc-
ities, the linear dynamics for the two-area power system in
Figure 2 can be written as

ẋ(t) = Ax(t) +BDPD(t) +BLPL(t). (2)

The system A matrix is given by

A =

[
0 ΩI

−(2H)−1Ts −(2H)−1(D +R−1)

]
,

where 0 denotes a matrix with appropriate dimensions and all
elements equal to zero, and I denotes the identity matrix. The
matrix,

Ts =

[
−C12 cos(δ̄1 − δ̄2) C12 cos(δ̄1 − δ̄2)
C21 cos(δ̄2 − δ̄1) −C21 cos(δ̄2 − δ̄1)

]
is the synchronizing torque matrix that has a Laplacian struc-
ture. Parameters δ̄1 and δ̄2 denote the operating conditions
(at which the system is linearized) of the rotor angles of the
generators in Areas 1 and 2, respectively. The matrices D, R,
and H are defined as

D =

[
D1 0
0 D2

]
, R =

[
R1 0
0 R2

]
, H =

[
H1 0
0 H2

]
.

The input matrices for the power injections PD(t) =
[PD1(t) PD2(t)]> and aggregated loads PL(t) =
[PL1(t) PL2(t)]> are given by

BD =

[
0

(2H)−1

]
, BL = −BD.

(Open-loop) stability of the linear system (2) can be de-
termined by computing the eigenvalues of the system A
matrix. For this two-area system, the A matrix has four
eigenvalues. Due to the Laplacian nature of matrix Ts, one of
the eigenvalues is at the origin, and because the damping and
droop coefficients Di and Ri, respectively, are positive, the
remaining three eigenvalues lie in the left-half plane. There-
fore, system (2) is (open-loop) stable. Next we present two
implementations of a damping controller and later investigate
the stability of the resulting closed-loop system.



B. Damping Control

In this section, we present a damping controller that is
designed to compute power injection inputs PD(t) in order to
improve the damping of system (2). As previously mentioned,
we are interested in the small-signal stability of power systems
that are prone to inter-area oscillations. These types of systems
have a pair of eigenvalues with low damping (i.e., they are
close to the imaginary axis). The objective of a damping
controller is to increase the damping of this pair of eigenvalues
(i.e., move them further into the left half plane). We consider
a damping controller of the form

PD(t) =
[
0 K

]
x(t), (3)

where K is a gain matrix given by

K =

[
−kd kd
kd −kd

]
,

and kd is the control gain to be selected. The resulting power
injections PD1(t) and PD2(t) have the same magnitude but
opposite sign. This type of damping controller was proposed
for the wNAPS in [8] and has since been successfully imple-
mented and tested [9].

Now we can rewrite the system (2) as

ẋ(t) = Aclx(t) +BLPL(t), (4)

where

Acl =

[
0 ΩI

−(2H)−1Ts −(2H)−1(D +R−1 −K)

]
.

The stability of the resulting closed-loop system (4) can be
analyzed by computing the eigenvalues of the matrix Acl.

C. Delay in the Feedback Signals

The control architecture considered here is often called
wide-area damping control because the measurement devices
and control resources are widely distributed across large
geographic areas. Wide-area damping control has been made
possible due to the deployment of Phasor Measurement Unit
(PMU) technology that allows for, e.g., voltage and fre-
quency measurements to be collected throughout the power
system [15]. Because of this architecture, the feedback mea-
surements must be communicated over a network using, for
instance, internet protocols and are, therefore, subject to time
delays. In this section, we present two different implemen-
tations of the damping controller (3) and discuss how they
differ when subjected to time delays in the feedback signals.
We assume that the generator angular velocities ∆ω(t) are
measured and available for feedback.

A depiction of a two-area power system is shown in Figure
3, where two measurements are taken (one in each area).
These measurements are transmitted to the controllers in
each area, which compute the power injections that increase
damping in the system. Each measurement is subject to a
time delay. In this work, we assume that there are only two
(asymmetric) delays and that they are constant. The first delay
τ1 occurs when transmitting the local measurement, i.e., the
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Fig. 3. Power injections and measurement delays in a two-area power system.

measurement in Area 1 to the controller in Area 1 and likewise
for Area 2. The second delay τ2 occurs when transmitting the
remote measurements, i.e., the measurement in Area 1 from
the controller in Area 1 to the controller in Area 2 and likewise
for Area 2. Although it may be natural to assume that local
measurement delays are smaller than remote measurement
delays, for full generality, we make no assumptions about the
size of the delays. In practice, these delays depend on the
communication channels linking the controller and the remote
measurement devices.

1) Damping Control using HVDC: A controllable HVDC
transmission line may be used to implement the controller
(3). In this implementation, there is just a single controller
located in either area, and the injection in the area without
the controller is simply the negative of the power injection
implemented by the controller (assuming no losses), i.e.,
PD1(t) = −PD2(t). Incorporating the local and inter-area time
delays τ1 and τ2, as shown in Figure 3, and neglecting losses,
the HVDC damping controller is given by

PD1(t) = −kd(∆ω1(t− τ1)−∆ω2(t− τ2))

PD2(t) = kd(∆ω1(t− τ1)−∆ω2(t− τ2)),
(5)

and the closed-loop system is given by the following linear
Delay Differential Equation (DDE)

ẋ(t) = Ax(t)+AHV
1 x(t−τ1)+AHV

2 x(t−τ2)+BLPL(t), (6)

where

AHV
1 =


0 0 0 0
0 0 0 0

0 0 −kd

2H1
0

0 0 kd

2H2
0

 , AHV
2 =


0 0 0 0
0 0 0 0

0 0 0 kd

2H1

0 0 0 −kd

2H2

 .
2) Damping Control using Energy Storage: Instead of

using an HVDC transmission line, one could install an ES
device co-located with a controller in each area to provide
power injections. In this case, each controller is subject to a
local and inter-area time delay, as shown in Figure 3. Then
the ES enabled damping controllers are given by

PD1(t) = −kd(∆ω1(t− τ1)−∆ω2(t− τ2))

PD2(t) = kd(∆ω1(t− τ2)−∆ω2(t− τ1)),
(7)



and the closed-loop system is given by the following DDE

ẋ(t) = Ax(t)+AES
1 x(t−τ1)+AES

2 x(t−τ2)+BLPL(t), (8)

where

AES
1 =


0 0 0 0
0 0 0 0

0 0 −kd

2H1
0

0 0 0 −kd

2H2

 , AES
2 =


0 0 0 0
0 0 0 0

0 0 0 kd

2H1

0 0 kd

2H2
0

 .

The differences between the closed-loop dynamics for the
HVDC system (6) and the ES system (8) appear in the matrices
AES

1 , AHV
1 and AES

2 , AHV
2 .

III. TIME-DOMAIN STABILITY ANALYSIS

In this Section we present numerical results analyzing the
stability of the two-area power system in Figure 2 for both
damping control implementations subjected to asymmetric
time delays in the feedback signals. We assume that the
two areas are identical with the following parameter values:
D1 + R−11 = D2 + R−12 = 0.1, H1 = H2 = 5/2, and
Ts = 14. With these parameter values, the open-loop system
(i.e., kd = 0) has a complex pair of eigenvalues located at
−0.01± 2.336j, which corresponds to the inter-area mode of
the system.

A. Time Simulations

Thirty second time simulations of the HVDC system (6)
and the ES system (8) are performed for several values of the
control gain kd and time delays from zero to nine seconds.
Although nine second time delays may be impractically large,
we consider them here in order to show the resulting structure
that appears in the delay-dependent regions of stability. After
one second, a unit step input in the aggregated load in Area
1, ∆PL1, is applied, resulting in inter-area oscillations.

The objective of a damping controller is to effectively damp
the response of the system after a fault. Physically, this means
driving the angular velocities of the generators to the same
value more quickly than would naturally occur. Therefore,
closed-loop stability and performance can be quantified by
computing |∆ω1(t)−∆ω2(t)|. If this quantity decreases over
time, the system is stable. The faster the quantity decreases,
the better the damping performance. Our stability criterion is
given precisely in Figure 4. The resulting stability regions are
shown in Figure 5. As the control gain kd is increased, the
closed-loop systems are stable for fewer values of the time
delays. Furthermore, the unstable regions also grow as the
time delays increase.

Due to the oscillatory nature of the system response, delayed
measurements may still be fairly accurate as long as the delays
are close to an integer multiple of the period of oscillation.
The undamped oscillation for this example (shown in Figure
4) has a frequency of 0.367 Hz. Therefore, the period of
oscillation is about 2.73 seconds, and when the delays are 1.36
seconds, the measurements are π radians out of phase with the
true state. Looking at Figure 5(a), delays that are odd integer

Fig. 4. Stability criterion. If the largest amplitude of the response between 5
and 10 seconds (red) is larger than the largest amplitude of the response
between 25 and 30 seconds (blue), the system is declared to be stable.
Otherwise, the system is unstable. This is the response of system (2) with
no control (i.e., PD(t) = 0 for all t), and it is stable.
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Fig. 5. Regions of stability (black areas) for the HVDC system (6) (left) and
the ES system (8) (right) for several values of control gain kd.

multiples of 1.36 seconds lead to injections that destabilize
the system, whereas delays that are integer multiples of 2.73
seconds lead to injections that preserve stability of the system.
Therefore, increasing one or both time delays to better match
the period of oscillation may be beneficial. However, this is
not necessarily the case as the control gain is increased, as
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Fig. 6. Responses of the HVDC system (6) (top) and ES system (8) (bottom)
with kd = 1 and several values for the time delays. Increasing one or both
of the time delays can stabilize the system.
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Fig. 7. Power injections PD(t) for the HVDC system (6) (top) and ES
system (8) (bottom) with kd = 1 and several values for the time delays.
These injections correspond to the stable responses shown in Figure 6. Solid
and dashed lines represent injections in Area 1 and Area 2, respectively.

in Figures 5(b) and 5(c). Larger control gains amplify the
effects of errors in the feedback measurements, so smaller
errors can lead to injections that destabilize the systems. This
relationship between oscillation frequency and time delays
leading to instability is ongoing work.

Figure 6 shows simulations for both the HVDC and ES
systems for several values of time delays and kd = 1. When
the time delays are equal to τ1 = τ2 = 1, both systems are
unstable. However, if τ1 is kept the same and τ2 is increased
to 2.5, both systems are stable. Therefore, increasing the time
delays may stabilize the systems. The power injections PD(t)
resulting in the stable responses in Figure 6 are shown in
Figure 7. As expected, the injections from the HVDC based
damping controller (5) are symmetric about 0, and when the
time delays are equal, τ1 = τ2 = 2.5, the two damping
controllers are identical. When the time delays are asymmetric,
the injections from the controllers (5) and (7) are different.
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Fig. 8. Poles of both the HVDC and ES systems (6) and (8) as the time delays
increase and are equal. Each colored line indicates motion of an individual
pole as the values of the time delays change, and symbols indicate the location
of the poles for particular values of the time delays.

B. Eigenvalue Analysis

To further analyze these systems, we next present figures
plotting the poles (equivalently, the eigenvalues) of the closed-
loop systems and show how they move as the time delays
increase. Because the HVDC and ES systems (6) and (8),
respectively, have an infinite number of poles, we first approx-
imate both systems using a Padé approximation of sufficiently
high order (in this case, 37 was chosen) to show all of the
relevant poles (near the imaginary axis).

Figures 8-9 show how the poles that cross the imaginary
axis move as the time delays are increased for different values
of the control gain kd. These are zoomed-in plots that neither
show the symmetric eigenvalues below the real axis that
exhibit the same behavior nor the poles on the real axis that
never cross into the right-half-plane. In these figures, it is clear
that the HVDC and ES systems are different; for instance,
the ES system has more poles close to the imaginary axis.
Interestingly, for a particular system, all of the poles that
cross the imaginary axis cross in the same locations. However,
as the value of the control gain kd increases, the poles that
cross into the right-half-plane move farther to the right. This
corresponds to the system being unstable for more values of
the time delays, as is seen in Figure 5. Therefore, the systems
are less robust to time delays as the control gain is increased.



IV. CONCLUSION

We investigated the small-signal stability of a representative
two-area power system that is prone to inter-area oscillations.
Two wide-area damping control implementations subjected to
time delays in their feedback signals were considered. We
presented regions where the closed-loop systems are stable
depending on the size of the time delays and the chosen control
gain. Increasing the control gain causes the systems to be less
robust to time delays, but increasing the time delays may have
a stabilizing effect. Moreover, we showed how the eigenvalues
of the closed-loop systems move as the time delays increase.

Future work will investigate the advantages and disadvan-
tages of each damping controller implementation, regarding
transient performance and magnitude of the control actions.
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(a) HVDC with kd = 1
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(b) ES with kd = 1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4

Real Axis

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Im
a
g
in
a
ry

A
x
is

HVDC with kd =3

τ1 =0.5, τ2 =0.05

τ1 =0.5, τ2 =1

τ1 =0.5, τ2 =3

τ1 =0.5, τ2 =5

τ1 =0.5, τ2 =9

(c) HVDC with kd = 3
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(d) ES with kd = 3

Fig. 9. Poles of HVDC system (6) and ES system (8) with τ1 = 0.5 and τ2
increasing from 0.5 to 9. Each colored line indicates motion of an individual
pole as the values of the time delays change, and symbols indicate the location
of the poles for particular values of the time delays.


